1
|
Azarmgin S, Torabinejad B, Kalantarzadeh R, Garcia H, Velazquez CA, Lopez G, Vazquez M, Rosales G, Heidari BS, Davachi SM. Polyurethanes and Their Biomedical Applications. ACS Biomater Sci Eng 2024; 10:6828-6859. [PMID: 39436687 DOI: 10.1021/acsbiomaterials.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The tunable mechanical properties of polyurethanes (PUs), due to their extensive structural diversity and biocompatibility, have made them promising materials for biomedical applications. Scientists can address PUs' issues with platelet absorption and thrombus formation owing to their modifiable surface. In recent years, PUs have been extensively utilized in biomedical applications because of their chemical stability, biocompatibility, and minimal cytotoxicity. Moreover, addressing challenges related to degradation and recycling has led to a growing focus on the development of biobased polyurethanes as a current focal point. PUs are widely implemented in cardiovascular fields and as implantable materials for internal organs due to their favorable biocompatibility and physicochemical properties. Additionally, they show great potential in bone tissue engineering as injectable grafts or implantable scaffolds. This paper reviews the synthesis methods, physicochemical properties, and degradation pathways of PUs and summarizes recent progress in applying different types of polyurethanes in various biomedical applications, from wound repair to hip replacement. Finally, we discuss the challenges and future directions for the translation of novel polyurethane materials into biomedical applications.
Collapse
Affiliation(s)
- Sepideh Azarmgin
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
| | - Bahman Torabinejad
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
| | - Rooja Kalantarzadeh
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Heriberto Garcia
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Carlo Alberto Velazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gino Lopez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Marisol Vazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gabriel Rosales
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Behzad Shiroud Heidari
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| |
Collapse
|
2
|
Xu H, Yan S, Gerhard E, Xie D, Liu X, Zhang B, Shi D, Ameer GA, Yang J. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402871. [PMID: 38801111 PMCID: PMC11309907 DOI: 10.1002/adma.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Academy of Orthopedics of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, P. R. China
| | - Xiaodong Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Bing Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| |
Collapse
|
3
|
Ji H, Li Y, Su B, Zhao W, Kizhakkedathu JN, Zhao C. Advances in Enhancing Hemocompatibility of Hemodialysis Hollow-Fiber Membranes. ADVANCED FIBER MATERIALS 2023; 5:1-43. [PMID: 37361105 PMCID: PMC10068248 DOI: 10.1007/s42765-023-00277-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 06/28/2023]
Abstract
Hemodialysis, the most common modality of renal replacement therapy, is critically required to remove uremic toxins from the blood of patients with end-stage kidney disease. However, the chronic inflammation, oxidative stress as well as thrombosis induced by the long-term contact of hemoincompatible hollow-fiber membranes (HFMs) contribute to the increase in cardiovascular diseases and mortality in this patient population. This review first retrospectively analyzes the current clinical and laboratory research progress in improving the hemocompatibility of HFMs. Details on different HFMs currently in clinical use and their design are described. Subsequently, we elaborate on the adverse interactions between blood and HFMs, involving protein adsorption, platelet adhesion and activation, and the activation of immune and coagulation systems, and the focus is on how to improve the hemocompatibility of HFMs in these aspects. Finally, challenges and future perspectives for improving the hemocompatibility of HFMs are also discussed to promote the development and clinical application of new hemocompatible HFMs. Graphical Abstract
Collapse
Affiliation(s)
- Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207 China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| |
Collapse
|
4
|
Zaman SU, Rafiq S, Ali A, Mehdi MS, Arshad A, Rehman SU, Muhammad N, Irfan M, Khurram MS, Zaman MKU, Hanbazazah AS, Lim HR, Show PL. Recent advancement challenges with synthesis of biocompatible hemodialysis membranes. CHEMOSPHERE 2022; 307:135626. [PMID: 35863415 DOI: 10.1016/j.chemosphere.2022.135626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Accepted: 07/03/2022] [Indexed: 05/27/2023]
Abstract
The focus of this study is to enhance the protein fouling resistance, hydrophilicity, biocompatibility, hemocompatibility and ability of the membranes and to reduce health complications like chronic pulmonary disease, peripheral vascular disease, cerebrovascular disease, and cardiovascular disease after dialysis, which are the great challenges in HD applications. In the current study, the PSF-based dialysis membranes are studied broadly. Significant consideration has also been provided to membrane characteristics (e.g., flowrate coefficient, solute clearance characteristic) and also on commercially available polysulfone HD membranes. PSF has gained a significant share in the development of HD membranes, and continuous improvements are being made in the process to make high flux PSF-based dialysis membranes with enhanced biocompatibility and improved protein resistance ability as the major issue in the development of membranes for HD application is biocompatibility. There has been a great increase in the demand for novel biocompatible membranes that offer the best performances during HD therapy, for example, low oxidative stress and low change ability of blood pressure.
Collapse
Affiliation(s)
- Shafiq Uz Zaman
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, Pakistan.
| | - Sikander Rafiq
- Department of Chemical Polymer and Composite Materials Engineering, University of Engineering and Technology Lahore, New Campus, Pakistan.
| | - Abulhassan Ali
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia.
| | - Muhammad Shozab Mehdi
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, Pakistan.
| | - Amber Arshad
- Department of Community Medicine, King Edward Medical University, Lahore, Pakistan.
| | - Saif-Ur Rehman
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan.
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Muhammad Irfan
- Centre of Environmental Sustainability and Water Security (IPASA), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | | | | | - Abdulkader S Hanbazazah
- Department of Industrial and Systems Engineering, University of Jeddah, Jeddah, Saudi Arabia.
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
5
|
Zheng X, Ni C, Xiao W, Yu G, Li Y. In vitro hemocompatibility and hemodialysis performance of hydrophilic ionic liquid grafted polyethersulfone hollow fiber membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Li W, Li Y, Wen X, Teng Y, Wang J, Yang T, Li X, Li L, Wang C. Flexible Zr-MOF anchored polymer nanofiber membrane for efficient removal of creatinine in uremic toxins. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Ozkan E, Mondal A, Douglass M, Hopkins SP, Garren M, Devine R, Pandey R, Manuel J, Singha P, Warnock J, Handa H. Bioinspired ultra-low fouling coatings on medical devices to prevent device-associated infections and thrombosis. J Colloid Interface Sci 2022; 608:1015-1024. [PMID: 34785450 PMCID: PMC8665144 DOI: 10.1016/j.jcis.2021.09.183] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023]
Abstract
Addressing thrombosis and biofouling of indwelling medical devices within healthcare institutions is an ongoing problem. In this work, two types of ultra-low fouling surfaces (i.e., superhydrophobic and lubricant-infused slippery surfaces) were fabricated to enhance the biocompatibility of commercial medical grade silicone rubber (SR) tubes that are widely used in clinical care. The superhydrophobic (SH) coatings on the tubing substrates were successfully created by dip-coating in superhydrophobic paints consisting of polydimethylsiloxane (PDMS), perfluorosilane-coated hydrophobic zinc oxide (ZnO) and copper (Cu) nanoparticles (NPs) in tetrahydrofuran (THF). The SH surfaces were converted to lubricant-infused slippery (LIS) surfaces through the infusion of silicone oil. The anti-biofouling properties of the coatings were investigated by adsorption of platelets, whole blood coagulation, and biofilm formation in vitro. The results revealed that the LIS tubes possess superior resistance to clot formation and platelet adhesion than uncoated and SH tubes. In addition, bacterial adhesion was investigated over 7 days in a drip-flow bioreactor, where the SH-ZnO-Cu tube and its slippery counterpart significantly reduced bacterial adhesion and biofilm formation of Escherichia coli relative to control tubes (>5 log10 and >3 log10 reduction, respectively). The coatings also demonstrated good compatibility with fibroblast cells. Therefore, the proposed coatings may find potential applications in high-efficiency on-demand prevention of biofilm and thrombosis formation on medical devices to improve their biocompatibility and reduce the risk of complications from medical devices.
Collapse
Affiliation(s)
- Ekrem Ozkan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Sean P Hopkins
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Rashmi Pandey
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - James Manuel
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - James Warnock
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
8
|
Li W, Chao S, Li Y, Bai F, Teng Y, Li X, Li L, Wang C. Dual-layered composite nanofiber membrane with Cu-BTC-modified electrospun nanofibers and biopolymeric nanofibers for the removal of uremic toxins and its application in hemodialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Liu Y, Li G, Han Q, Lin H, Li Q, Deng G, Liu F. Construction of electro-neutral surface on dialysis membrane for improved toxin clearance and anti-coagulation/inflammation through saltwater fish inspired trimethylamine N-oxide (TMAO). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Fu X, Lei T, Li SJ, Liu YF, Peng J, Ning JP. Construction of novel antiplatelet modified polyethersulfone membrane and study into its blood compatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112659. [DOI: 10.1016/j.msec.2022.112659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 01/17/2023]
|
11
|
Fisher C, Shao H, Ho CH. Improved hemocompatibility of polysulfone hemodialyzers with Endexo® surface modifying molecules. J Biomed Mater Res B Appl Biomater 2021; 110:1335-1343. [PMID: 34951744 DOI: 10.1002/jbm.b.35003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022]
Abstract
Anticoagulation therapy is widely used to reduce clotting during hemodialysis (HD), but may cause adverse effects in end-stage kidney disease patients. A new hemodialyzer with a membrane modified by surface modifying molecule was developed to improve hemocompatibility that aimed to reduce the need for anticoagulation during dialysis treatments. We compared membrane surface characteristics and in vitro hemocompatibility of the new hemodialyzer to the standard polysulfone (PSF) hemodialyzer membrane. Scanning electron microscopy, contact angle measurement (68° ± 3° test vs. 41.6° ± 6° control), and X-ray photoelectron spectrometry measurement for fluorine atomic % (7.4% ± 0.4% test vs. not detectable control), showed that the membrane surface was modified with surface modifying macromolecule (SMM1) but maintained membrane structure and surface hydrophilicity. Zeta potential of the blood-contacting surface showed that the absolute surface charge was reduced at neutral pH (-3.3 mV ± 1.1 mV test vs. -15.6 mV ± 1.0 mV control). Platelet count reduction was significantly less for the SMM1-modified dialyzer (40.88% ± 21.89%) compared to the standard PSF dialyzer (62.62% ± 34.13%), along with Platelet Factor 4 (1824.10 ng/ml ± 436.26 ng/ml test vs. 2479.00 ng/ml ± 852.96 ng/ml control). These studies demonstrate the successful incorporation of SMM1 into the new hemodialyzer with the expected results. Our in vitro experiments indicate that the SMM1-modified hemodialyzers could improve hemocompatibility compared to standard PSF hemodialyzers and have the potential to minimize the patient's anticoagulant requirements during HD. Additional research with SMM1 additives incorporated into the entire dialysis circuit and use in a clinical settings are required to confirm these promising findings.
Collapse
Affiliation(s)
- Colleen Fisher
- Biosciences Department, Fresenius Medical Care North America Global Research and Development, Ogden, Utah, USA
| | - Hui Shao
- Product Development Department, Fresenius Medical Care North America Global Research and Development, Ogden, Utah, USA
| | - Chih-Hu Ho
- Biosciences Department, Fresenius Medical Care North America Global Research and Development, Ogden, Utah, USA
| |
Collapse
|
12
|
Antioxidant and antithrombotic study of novel chitosan-diallyl disulfide inclusion complexes nanoparticles for hemodialysis applications. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Synthesis of ceramic membrane using inexpensive precursors and evaluation of its biocompatibility for hemofiltration application. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Heparin-mimicking semi-interpenetrating composite membrane with multiple excellent performances for promising hemodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118740] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Hollow fiber membranes for long-term hemodialysis based on polyethersulfone-SlipSkin™ polymer blends. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Koh E, Lee YT. Development of an embossed nanofiber hemodialysis membrane for improving capacity and efficiency via 3D printing and electrospinning technology. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Shan L, Sun Y, Shan F, Li L, Xu ZP. Recent advances in heparinization of polymeric membranes for enhanced continuous blood purification. J Mater Chem B 2020; 8:878-894. [PMID: 31956883 DOI: 10.1039/c9tb02515d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Continuous blood purification technology such as hemodiafiltration has been used worldwide for saving patients suffering from severe diseases or organ function failure, especially in the intensive care unit and emergency setting. The filters as core devices are commonly made of polymer materials as hollow fiber membranes. However, the membrane is often inductively blocked by blood clot formation due to its interactions with blood components. Heparin is the anticoagulant often used in clinical practice for anti-coagulation. Recently, heparin is also employed to modify the hollow fiber membranes either chemically or physically to improve the filtration performance. This review summarizes recent advances in methodology for surface heparinization of such hollow fiber membranes, and their filtration performance improvement. The review also provides expert opinions for further research in this rapidly expanding field.
Collapse
Affiliation(s)
- Liang Shan
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| | - Yunbo Sun
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Feng Shan
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
18
|
Wang Y, He C, Feng Y, Yang Y, Wei Z, Zhao W, Zhao C. A chitosan modified asymmetric small-diameter vascular graft with anti-thrombotic and anti-bacterial functions for vascular tissue engineering. J Mater Chem B 2020; 8:568-577. [DOI: 10.1039/c9tb01755k] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rapid endothelialization and prevention of restenosis are two vital challenges for the preparation of a small-diameter vascular graft (SDVG), while postoperative infection after implantation is often neglected.
Collapse
Affiliation(s)
- Yilin Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yunbo Feng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ye Yang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhiwei Wei
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Weifeng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
19
|
van Gaal RC, van Sprang JF, Borneman Z, Dankers PYW. Development of Poor Cell Adhesive Immersion Precipitation Membranes Based on Supramolecular Bis-Urea Polymers. Macromol Biosci 2019; 20:e1900277. [PMID: 31885206 DOI: 10.1002/mabi.201900277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/19/2019] [Indexed: 11/07/2022]
Abstract
A variety of biomedical applications requires tailored membranes; fabrication through a mix-and-match approach is simple and desired. Polymers based on supramolecular bis-urea (BU) moieties are capable of modular integration through directed non-covalent stacking. Here, it is proposed that non-cell adhesive properties can be introduced in polycaprolactone-BU-based membranes by the addition of poly(ethylene glycol) (PEG)-BU during immersion precipitation membrane fabrication, while unmodified PEG is not retained in the membrane. PEG-BU addition results in denser membranes with a similar pore size compared to pristine membranes, while PEG addition induces defect formation. Infrared spectroscopy and surface hydrophobicity measurements indicate that PEG-BU is retained during membrane processing. Additionally, PEG-BU incorporation successfully leads to poor cell adhesive surfaces. No evidence is observed to indicate PEG retention. The results obtained indicate that the BU system enables intimate mixing of BU-modified polymers after processing. Collectively, the results provide the first steps toward BU-based immersion precipitated supramolecular membranes for biomedical applications.
Collapse
Affiliation(s)
- Ronald C van Gaal
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Johnick F van Sprang
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Zandrie Borneman
- Department of Chemical Engineering and Chemistry, Membrane Materials and Processes, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
20
|
Hemodialysis performance and anticoagulant activities of PVP-k25 and carboxylic-multiwall nanotube composite blended Polyethersulfone membrane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109769. [PMID: 31349444 DOI: 10.1016/j.msec.2019.109769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 11/22/2022]
Abstract
Non-covalent electrostatic interaction between amide nitrogen and carbonyl carbon of shorter chain length of polyvinylpyrrolidone (PVP-k25) was developed with in-house carboxylic oxidized multiwall carbon nanotubes (O-MWCNT) and then blended with Polyethersulfone (PES) polymer. FTIR analysis was utilized to confirm bonding nature of nano-composites (NCs) of O-MWCNT/PVP-k25 and casting membranes. Non-solvent induces phase separation process developed regular finger-like channels in composite membranes whereas pristine PES exhibited spongy entities as studied by cross sectional analysis report of FESEM. Further, FESEM instrument was also utilized to observe the dispersion of O-MWCNT/PVP based nanocomposite (NCs) with PES and membranes leaching phenomena analysis. Contact angle experiments described 24% improvement of hydrophilic behaviour, leaching ratio of additives was reduced to 1.89%, whereas water flux enhanced up to 6 times. Bovine serum albumin (BSA) and lysozyme based antifouling analysis shown up to 25% improvement, whereas 84% of water flux was regained after protein fouling than pristine PES. Anticoagulant activity was reported by estimating prothrombin, thrombin, plasma re-calcification times and production of fibrinogen cluster with platelets-adhesions photographs and hemolysis experiments. Composite membranes exhibited 3.4 and 3 times better dialysis clearance ratios of urea and creatinine solutes as compared to the raw PES membrane.
Collapse
|
21
|
Said N, Abidin MNZ, Hasbullah H, Ismail AF, Goh PS, Othman MHD, Abdullah MS, Ng BC, Kadir SHSA, Kamal F. Iron oxide nanoparticles improved biocompatibility and removal of middle molecule uremic toxin of polysulfone hollow fiber membranes. J Appl Polym Sci 2019. [DOI: 10.1002/app.48234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Noresah Said
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Muhammad Nidzhom Zainol Abidin
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Hasrinah Hasbullah
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of MedicineUniversiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital 47000 Sungai Buloh Selangor Malaysia
| | - Fatmawati Kamal
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of MedicineUniversiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital 47000 Sungai Buloh Selangor Malaysia
| |
Collapse
|
22
|
Quan WY, Hu Z, Liu HZ, Ouyang QQ, Zhang DY, Li SD, Li PW, Yang ZM. Mussel-Inspired Catechol-Functionalized Hydrogels and Their Medical Applications. Molecules 2019; 24:E2586. [PMID: 31315269 PMCID: PMC6680511 DOI: 10.3390/molecules24142586] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/13/2019] [Accepted: 07/13/2019] [Indexed: 12/19/2022] Open
Abstract
Mussel adhesive proteins (MAPs) have a unique ability to firmly adhere to different surfaces in aqueous environments via the special amino acid, 3,4-dihydroxyphenylalanine (DOPA). The catechol groups in DOPA are a key group for adhesive proteins, which is highly informative for the biomedical domain. By simulating MAPs, medical products can be developed for tissue adhesion, drug delivery, and wound healing. Hydrogel is a common formulation that is highly adaptable to numerous medical applications. Based on a discussion of the adhesion mechanism of MAPs, this paper reviews the formation and adhesion mechanism of catechol-functionalized hydrogels, types of hydrogels and main factors affecting adhesion, and medical applications of hydrogels, and future the development of catechol-functionalized hydrogels.
Collapse
Affiliation(s)
- Wei-Yan Quan
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Zhang Hu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China.
| | - Hua-Zhong Liu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Qian-Qian Ouyang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Dong-Ying Zhang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Si-Dong Li
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Pu-Wang Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China.
| | - Zi-Ming Yang
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
23
|
Lusiana RA, Putri A, Suseno A, Djunaedi MC, Gunawan. The influence of grafted heparin on chitosan/poly (ethylene glycol) blend membrane and it’s application for creatinine and urea transport. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/509/1/012121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
He C, Ji H, Qian Y, Wang Q, Liu X, Zhao W, Zhao C. Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. J Mater Chem B 2019; 7:1186-1208. [PMID: 32255159 DOI: 10.1039/c8tb02671h] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Heparin is the highest negatively charged biomolecule, which is a polysaccharide belonging to the glycosaminoglycan family, and its role as a regulator of various proteins, cells and tissues in the human body makes it an indispensable macromolecule. Heparin-based hydrogels are widely investigated in various applications including implantation, tissue engineering, biosensors, and drug-controlled release due to the 3D-constructs of hydrogels. However, heparin has supply and safety problems because it is usually derived from animal sources, and has the clinical limitations of bleeding and thrombocytopenia. Therefore, analogous heparin-mimicking polymers and hydrogels derived from non-animal and/or totally synthetic sources have been widely studied in recent years. In this review, the progress and potential biomedical applications of heparin-based and heparin-inspired hydrogels are highlighted. We classify the forms of these hydrogels by their size including macro-hydrogels, injectable hydrogels, and nano-hydrogels. Then, we summarize the various fabrication strategies for these hydrogels including chemical covalent bonding, physical conjugation, and the combination of chemical and physical interactions. Covalent bonding includes free radical polymerization of vinyl-containing components, amide bond formation reaction, Michael-type addition reaction, click-chemistry, divinyl sulfone crosslinking, and mussel-inspired coating. Hydrogels physically conjugated via host-guest interaction, electrostatic interaction, hydrogen bonding, and hydrophobic interaction are also discussed. Finally, we conclude with the challenges and future directions for the fabrication and the industrialization of heparin-based and heparin-inspired hydrogels. We believe that this review will attract more attention toward the design of heparin-based and heparin-inspired hydrogels, leading to future advancements in this emerging research field.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ma L, Huang J, Zhu X, Zhu B, Wang L, Zhao W, Qiu L, Song B, Zhao C, Yan F. In vitro and in vivo anticoagulant activity of heparin-like biomacromolecules and the mechanism analysis for heparin-mimicking activity. Int J Biol Macromol 2019; 122:784-792. [PMID: 30399381 DOI: 10.1016/j.ijbiomac.2018.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 02/05/2023]
Abstract
Heparin-like biomacromolecules (HepLBm), exhibiting similar chemical structure and biological properties to heparin, can be obtained by modifying either synthetic biopolymers or natural biomacromolecules with physical or chemical methods. In this work, a low-cost and biocompatible sodium alginate was chosen as a model biomacromolecule to design anticoagulant HepLBm with a similar sulfation degree to heparin. FTIR, 1H NMR, and element analysis data were used to confirm the chemical structure of HepLBm. Hemolysis tests, clotting time, complement activation, and contact activation tests were carried out to determine the in vitro anticoagulant activity of HepLBm. In addition, systematic studies of blood cell count, coagulation function, and histopathology were performed to demonstrate the in vivo anticoagulant activity and toxicity of HepLBm with SD rat experiments. Furthermore, a series of linear molecules containing carboxyl groups, sulfonic groups, and hydroxyl groups were selected and their clotting time was tested to provide a mechanism analysis for the excellent anticoagulant activity of HepLBm. With the excellent in vitro/in vivo anticoagulant activity, good biocompatibility, and low cost, the HepLBm synthesized in this work would have great potential for substitution of heparin in many application fields, such as the surface modification of biomedical devices, extracorporeal anticoagulants, and other clinical fields.
Collapse
Affiliation(s)
- Lang Ma
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianbo Huang
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoxia Zhu
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bihui Zhu
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liyun Wang
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Feng Yan
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Mansur S, Othman MHD, Ismail AF, Kadir SHSA, Goh PS, Hasbullah H, Ng BC, Abdullah MS, Kamal F, Abidin MNZ, Lusiana RA. Synthesis and characterisation of composite sulphonated polyurethane/polyethersulphone membrane for blood purification application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:491-504. [PMID: 30889724 DOI: 10.1016/j.msec.2019.01.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 11/26/2022]
Abstract
Polyurethane (PU) with three different functional groups: carboxyl, hydroxyl and sulphonyl group on its molecular structure were synthesised in this work. The synthesised material suppresses blood clotting and exhibits anticoagulant characteristics due to the presence of the important anionic groups. The synthesised PU was blended with polyethersulphone (PES) and fabricated into flat-sheet membrane to study the physico-chemical and biocompatibility properties of the PES membrane for blood purification application. PES-PU flat-sheet membranes were fabricated via the dry-wet phase separation technique. Different loading of PU (0, 1, 2, 3, 4, and 5%) blended with PES was studied and compared. Based on the in-vitro biocompatibility analysis of the membrane, it can be suggested that the membrane incorporated with PU has better anticoagulant properties compared to the pristine PES membrane. PU incorporation prolonged the clotting time, decreased the formation of thrombin, decreased soluble complement component 3a (C3a) generation and suppressed platelet adhesion and aggregation. The anionic groups on the membrane surface might bind to coagulation factors (antithrombin) and the calcium ions, Ca2+ and thus improve anticoagulant ability. Based on both physico-chemical and in-vitro studied, 4% loading of PU is the optimum loading for incorporation with PES membrane. These results suggested that the blended PES-PU membranes with good haemocompatibility allowed practical application in the field of blood purification.
Collapse
Affiliation(s)
- Sumarni Mansur
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Molecular Medicine and Biotechnology, Faculty of Medicine, Universiti Teknologi Mara Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - Hasrinah Hasbullah
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - Fatmawati Kamal
- Institute of Molecular Medicine and Biotechnology, Faculty of Medicine, Universiti Teknologi Mara Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| | - Muhammad Nidzhom Zainol Abidin
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - Retno Ariadi Lusiana
- Department of Chemistry, Faculty of Science and Mathematics, Universitas Diponegoro, Jalan.Prof. Soedarto, S.H.Tembalang, Tembalang, Kota Semarang, Jawa Tengah 50275, Indonesia
| |
Collapse
|
27
|
Ma L, Zhou M, He C, Li S, Fan X, Nie C, Luo H, Qiu L, Cheng C. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. GREEN CHEMISTRY 2019. [DOI: 10.1039/c9gc02266j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Environmentally friendly and biomimetic approaches to fabricate graphene-based advanced nanoplatforms and biocomposites for biomedical applications are summarized in this review.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Mi Zhou
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Shuang Li
- Functional Materials
- Department of Chemistry
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Xin Fan
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry
- Freie Universitat Berlin
- Berlin 14195
- Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Li Qiu
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chong Cheng
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| |
Collapse
|
28
|
Irfan M, Irfan M, Idris A, Baig N, Saleh TA, Nasiri R, Iqbal Y, Muhammad N, Rehman F, Khalid H. Fabrication and performance evaluation of blood compatible hemodialysis membrane using carboxylic multiwall carbon nanotubes and low molecular weight polyvinylpyrrolidone based nanocomposites. J Biomed Mater Res A 2018; 107:513-525. [DOI: 10.1002/jbm.a.36566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 09/06/2018] [Accepted: 09/28/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Muhammad Irfan
- Interdisciplinary Research Centre in Biomedical Materials; COMSATS University Islamabad (CUI), Lahore Campus; Defence Road, Off Raiwind Road, Lahore Pakistan
- Faculty of Chemical and Energy Engineering; Institute of Bioproduct Development, Universiti Teknologi Malaysia; 81310 UTM, Johor Bahru Johor Malaysia
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering; Universiti Teknologi Malaysia; 81310 UTM, Johor Bahru Johor Malaysia
| | - Masooma Irfan
- Department of Chemistry; COMSATS University Islamabad (CUI), Lahore Campus; Defence Road, Off Raiwind Road, Lahore Pakistan
| | - Ani Idris
- Faculty of Chemical and Energy Engineering; Institute of Bioproduct Development, Universiti Teknologi Malaysia; 81310 UTM, Johor Bahru Johor Malaysia
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering; Universiti Teknologi Malaysia; 81310 UTM, Johor Bahru Johor Malaysia
| | - Nadeem Baig
- Chemistry Department; King Fahd University of Petroleum and Minerals; Dhahran, 31261 Saudi Arabia
| | - Tawfik A. Saleh
- Chemistry Department; King Fahd University of Petroleum and Minerals; Dhahran, 31261 Saudi Arabia
| | - Rozita Nasiri
- Faculty of Chemical and Energy Engineering; Institute of Bioproduct Development, Universiti Teknologi Malaysia; 81310 UTM, Johor Bahru Johor Malaysia
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering; Universiti Teknologi Malaysia; 81310 UTM, Johor Bahru Johor Malaysia
| | - Younas Iqbal
- Faculty of Science, Technology and Human Development; University Tun Hussein Onn Malaysia; 86400 Parit Raja Johor, Malaysia
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials; COMSATS University Islamabad (CUI), Lahore Campus; Defence Road, Off Raiwind Road, Lahore Pakistan
| | - Fozia Rehman
- Interdisciplinary Research Centre in Biomedical Materials; COMSATS University Islamabad (CUI), Lahore Campus; Defence Road, Off Raiwind Road, Lahore Pakistan
| | - Hamad Khalid
- Interdisciplinary Research Centre in Biomedical Materials; COMSATS University Islamabad (CUI), Lahore Campus; Defence Road, Off Raiwind Road, Lahore Pakistan
| |
Collapse
|
29
|
Wang Y, Huang X, He C, Li Y, Zhao W, Zhao C. Design of carboxymethyl chitosan-based heparin-mimicking cross-linked beads for safe and efficient blood purification. Int J Biol Macromol 2018; 117:392-400. [DOI: 10.1016/j.ijbiomac.2018.05.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
|
30
|
Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis. Carbohydr Polym 2018. [DOI: 10.1016/j.carbpol.2018.01.106] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Chinyerenwa AC, Wang H, Zhang Q, Zhuang Y, Munna KH, Ying C, Yang H, Xu W. Structure and thermal properties of porous polylactic acid membranes prepared via phase inversion induced by hot water droplets. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Phillips SJ, Stenken JA. In Situ Inner Lumen Attachment of Heparin to Poly(ether sulfone) Hollow Fiber Membranes Used for Microdialysis Sampling. Anal Chem 2018; 90:4955-4960. [DOI: 10.1021/acs.analchem.7b03927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sarah J. Phillips
- Department of Chemistry and Biochemistry, University of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Julie A. Stenken
- Department of Chemistry and Biochemistry, University of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
33
|
Xie Y, Chen S, Qian Y, Zhao W, Zhao C. Photo-responsive membrane surface: Switching from bactericidal to bacteria-resistant property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Ippel BD, Dankers PYW. Introduction of Nature's Complexity in Engineered Blood-compatible Biomaterials. Adv Healthc Mater 2018; 7. [PMID: 28841771 DOI: 10.1002/adhm.201700505] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/04/2017] [Indexed: 01/07/2023]
Abstract
Biomaterials with excellent blood-compatibility are needed for applications in vascular replacement therapies, such as vascular grafts, heart valves and stents, and in extracorporeal devices such as hemodialysis machines and blood-storage bags. The modification of materials that are being used for blood-contacting devices has advanced from passive surface modifications to the design of more complex, smart biomaterials that respond to relevant stimuli from blood to counteract coagulation. Logically, the main source of inspiration for the design of new biomaterials has been the endogenous endothelium. Endothelial regulation of hemostasis is complex and involves a delicate interplay of structural components and feedback mechanisms. Thus, challenges to develop new strategies for blood-compatible biomaterials now lie in incorporating true feedback controlled mechanisms that can regulate blood compatibility in a dynamic way. Here, supramolecular material systems are highlighted as they provide a promising platform to introduce dynamic reciprocity, due to their inherent dynamic nature.
Collapse
Affiliation(s)
- Bastiaan D. Ippel
- Institute for Complex Molecular Systems; Laboratory for Chemical Biology; and Laboratory for Cell and Tissue Engineering; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Patricia Y. W. Dankers
- Institute for Complex Molecular Systems; Laboratory for Chemical Biology; and Laboratory for Cell and Tissue Engineering; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
35
|
Liu D, Zheng J, Wang X, Lu X, Zhu J, He C. Low-fouling PES membranes fabricated via in situ copolymerization mediated surface zwitterionicalization. NEW J CHEM 2018. [DOI: 10.1039/c7nj03437g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PEGylated and zwitterionic PES membranes were fabricated during membrane formation, showing superior antifouling and anticoagulant properties.
Collapse
Affiliation(s)
- Dapeng Liu
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou
- P. R. China
| | - Junzhi Zheng
- Suzhou Institute of Inspection on Fiber
- Suzhou
- P. R. China
| | - Xin Wang
- Department of Vascular Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Xinwu Lu
- Department of Vascular Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Jing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai
- P. R. China
| | - Chunju He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai
- P. R. China
| |
Collapse
|
36
|
A facile way to prepare anti-fouling and blood-compatible polyethersulfone membrane via blending with heparin-mimicking polyurethanes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1035-1045. [DOI: 10.1016/j.msec.2017.04.123] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022]
|
37
|
Pengaruh Agen Pencangkok Heparin terhadap Kemampuan Transpor Kreatinin dan Urea Membran Turunan Kitosan. JURNAL KIMIA SAINS DAN APLIKASI 2017. [DOI: 10.14710/jksa.20.2.92-94] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Immersi heparin dilakukan pada membran kitosan untuk menambah sisi aktif membran, pada proses transpor urea. Dari data analisis didapatkan terjadi peningkatan persentase transpor urea dari 17,57 % menjadi 27,09 % dengan adanya penambahan heparin.
Collapse
|
38
|
Le Thi P, Lee Y, Kwon HJ, Park KM, Lee MH, Park JC, Park KD. Tyrosinase-Mediated Surface Coimmobilization of Heparin and Silver Nanoparticles for Antithrombotic and Antimicrobial Activities. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20376-20384. [PMID: 28557441 DOI: 10.1021/acsami.7b02500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thrombus and infections are the most common causes for the failure of medical devices, leading to higher hospitalization costs and, in some cases, patient morbidity. It is, therefore, necessary to develop novel strategies to prevent thrombosis and infection caused by medical devices. Herein, we report a simple and a highly efficient strategy to impart antithrombotic and antimicrobial properties to substrates, by simultaneously immobilizing heparin and in situ-synthesized silver nanoparticles (Ag NPs) via a tyrosinase-catalyzed reaction. This consists of tyrosinase-oxidized phenolic groups of a heparin derivative (heparin-grafted tyramine, HT) to catechol groups, followed by immobilizing heparin and inducing the in situ Ag NP formation onto poly(urethane) (PU) substrates. The successful immobilization of both heparin and in situ Ag NPs on the substrates was confirmed by analyses of water contact angles, XPS, SEM, and AFM. The sustained silver release and the surface stability were observed for 30 days. Importantly, the antithrombotic potential of the immobilized surfaces was demonstrated by a reduction in fibrinogen absorption, platelet adhesion, and prolonged blood clotting time. Additionally, the modified PU substrates also exhibited remarkable antibacterial properties against both Gram-positive and Gram-negative bacteria. The results of this work suggest a useful, effective, and time-saving method to improve simultaneous antithrombotic and antibacterial performances of a variety of substrate materials for medical devices.
Collapse
Affiliation(s)
- Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University , 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University , 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| | - Ho Joon Kwon
- Department of Molecular Science and Technology, Ajou University , 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| | - Kyung Min Park
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University , Incheon 22012, Republic of Korea
| | - Mi Hee Lee
- Department of Medical Engineering, Yonsei University College of Medicine , Seoul 120-752, Republic of Korea
| | - Jong-Chul Park
- Department of Medical Engineering, Yonsei University College of Medicine , Seoul 120-752, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University , 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| |
Collapse
|
39
|
In-situ monitoring techniques for membrane fouling and local filtration characteristics in hollow fiber membrane processes: A critical review. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Zailani MZ, Ismail AF, Sheikh Abdul Kadir SH, Othman MHD, Goh PS, Hasbullah H, Abdullah MS, Ng BC, Kamal F. Hemocompatibility evaluation of poly(1,8-octanediol citrate) blend polyethersulfone membranes. J Biomed Mater Res A 2017; 105:1510-1520. [DOI: 10.1002/jbm.a.35986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/24/2016] [Accepted: 12/15/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Muhamad Zulhilmi Zailani
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Faculty of Medicine, Institute of Medical Molecular and Biotechnology (IMMB), Universiti Teknologi MARA (UiTM); Sungai Buloh Selangor 47000 Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Hasrinah Hasbullah
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Fatmawati Kamal
- Faculty of Medicine, Institute of Medical Molecular and Biotechnology (IMMB), Universiti Teknologi MARA (UiTM); Sungai Buloh Selangor 47000 Malaysia
| |
Collapse
|
41
|
One-pot synthesis of highly hemocompatible polyurethane/polyethersulfone composite membranes. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-1922-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Deng J, Cheng C, Teng Y, Nie C, Zhao C. Mussel-inspired post-heparinization of a stretchable hollow hydrogel tube and its potential application as an artificial blood vessel. Polym Chem 2017. [DOI: 10.1039/c7py00071e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the fabrication and post-functionalization of a highly stretchable hydrogel tube and its potential application as an artificial blood vessel.
Collapse
Affiliation(s)
- Jie Deng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yingying Teng
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials and Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
43
|
Bioinspired Polyethersulfone Membrane Design via Blending with Functional Polyurethane. INT J POLYM SCI 2017. [DOI: 10.1155/2017/2158124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Polyurethanes (PUs) are currently considered to be biocompatible materials but limited by a low resistance to thrombus. We therefore design a heparin-like PU (HLPU) to modify polyethersulfone (PES) membranes approaching integrated antifouling and antithrombotic properties by bioinspiration of heparin structure. Poly(vinyl pyrrolidone)-HLPU (PVP-HLPU) was synthesized via reversible addition-fragmentation chain transfer polymerization of VP using PU as a macroinitiator and then sulfonated by concentrated H2SO4. FTIR and NMR results demonstrated the successful synthesis of PVP-HLPU. By incorporation of PVP-HLPU, the cross-sectional structure of PES composite membranes altered from finger-like structure to sponge-like structure resulting in tunable permeability. The increased hydrophilicity verified by water contact angles benefited both the permeability and antifouling property. As a consequence, the composite membranes showed good blood compatibility, including decreased protein adsorption, suppressed platelet adhesion, lowered thrombin-antithrombin III generation, reduced complement activation, and prolonged clotting times. Interestingly, the PVP-capped HLPU showed better blood compatibility compared to polyethyleneglycol-capped and citric acid-capped HLPUs. The results demonstrated the enhanced antifouling and antithrombotic properties of PES hemodialysis membranes by the introduction of functional HLPUs. Also, the proposed method may forward the fabrication of hemocompatible membranes via bioinspired surface design.
Collapse
|
44
|
Paluck S, Nguyen TH, Maynard HD. Heparin-Mimicking Polymers: Synthesis and Biological Applications. Biomacromolecules 2016; 17:3417-3440. [PMID: 27739666 PMCID: PMC5111123 DOI: 10.1021/acs.biomac.6b01147] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/26/2016] [Indexed: 12/13/2022]
Abstract
Heparin is a naturally occurring, highly sulfated polysaccharide that plays a critical role in a range of different biological processes. Therapeutically, it is mostly commonly used as an injectable solution as an anticoagulant for a variety of indications, although it has also been employed in other forms such as coatings on various biomedical devices. Due to the diverse functions of this polysaccharide in the body, including anticoagulation, tissue regeneration, anti-inflammation, and protein stabilization, and drawbacks of its use, analogous heparin-mimicking materials are also widely studied for therapeutic applications. This review focuses on one type of these materials, namely, synthetic heparin-mimicking polymers. Utilization of these polymers provides significant benefits compared to heparin, including enhancing therapeutic efficacy and reducing side effects as a result of fine-tuning heparin-binding motifs and other molecular characteristics. The major types of the various polymers are summarized, as well as their applications. Because development of a broader range of heparin-mimicking materials would further expand the impact of these polymers in the treatment of various diseases, future directions are also discussed.
Collapse
Affiliation(s)
- Samantha
J. Paluck
- Department of Chemistry and
Biochemistry and the California NanoSystems Institute, University of California−Los Angeles, 607 Charles E. Young Dr East, Los Angeles, California 90095, United States
| | - Thi H. Nguyen
- Department of Chemistry and
Biochemistry and the California NanoSystems Institute, University of California−Los Angeles, 607 Charles E. Young Dr East, Los Angeles, California 90095, United States
| | - Heather D. Maynard
- Department of Chemistry and
Biochemistry and the California NanoSystems Institute, University of California−Los Angeles, 607 Charles E. Young Dr East, Los Angeles, California 90095, United States
| |
Collapse
|
45
|
Basterretxea A, Haga Y, Sanchez-Sanchez A, Isik M, Irusta L, Tanaka M, Fukushima K, Sardon H. Biocompatibility and hemocompatibility evaluation of polyether urethanes synthesized using DBU organocatalyst. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Xiong Z, Liu F, Lin H, Li J, Wang Y. Covalent Bonding of Heparin on the Crystallized Poly(lactic acid) (PLA) Membrane to Improve Hemocompability via Surface Cross-Linking and Glycidyl Ether Reaction. ACS Biomater Sci Eng 2016; 2:2207-2216. [PMID: 33465896 DOI: 10.1021/acsbiomaterials.6b00413] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhu Xiong
- Ningbo Institute of Materials
Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan
West Road, Ningbo 315201, P.R. China
| | - Fu Liu
- Ningbo Institute of Materials
Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan
West Road, Ningbo 315201, P.R. China
| | - Haibo Lin
- Ningbo Institute of Materials
Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan
West Road, Ningbo 315201, P.R. China
| | - Jinglong Li
- Ningbo Institute of Materials
Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan
West Road, Ningbo 315201, P.R. China
| | - Yi Wang
- Ningbo Institute of Materials
Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan
West Road, Ningbo 315201, P.R. China
| |
Collapse
|
47
|
Xie Y, Wang R, Li S, Xiang T, Zhao CS. A robust way to prepare blood-compatible and anti-fouling polyethersulfone membrane. Colloids Surf B Biointerfaces 2016; 146:326-33. [DOI: 10.1016/j.colsurfb.2016.06.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 01/06/2023]
|
48
|
Roy A, Dadhich P, Dhara S, De S. Understanding and tuning of polymer surfaces for dialysis applications. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anirban Roy
- Department of Chemical Engineering; Indian Institute of Technology; P.O. Box Kharagpur 721302 India
| | - Prabhash Dadhich
- School of Medical Science and Technology; Indian Institute of Technology; P.O. Box Kharagpur 721302 India
| | - Santanu Dhara
- School of Medical Science and Technology; Indian Institute of Technology; P.O. Box Kharagpur 721302 India
| | - Sirshendu De
- Department of Chemical Engineering; Indian Institute of Technology; P.O. Box Kharagpur 721302 India
| |
Collapse
|
49
|
Mansur S, Othman MHD, Ismail AF, Sheikh Abdul Kadir SH, Kamal F, Goh PS, Hasbullah H, Ng BC, Abdullah MS. Investigation on the effect of spinning conditions on the properties of hollow fiber membrane for hemodialysis application. J Appl Polym Sci 2016. [DOI: 10.1002/app.43633] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sumarni Mansur
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE); Universiti Teknologi Malaysia; 81310 UTM Skudai Johor Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE); Universiti Teknologi Malaysia; 81310 UTM Skudai Johor Malaysia
| | - A. F. Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE); Universiti Teknologi Malaysia; 81310 UTM Skudai Johor Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Molecular Medicine and Biotechnology, Faculty of Medicine, Universiti Teknologi Mara Sungai Buloh Campus, Jalan Hospital; Sungai Buloh Selangor 47000 Malaysia
| | - Fatmawati Kamal
- Institute of Molecular Medicine and Biotechnology, Faculty of Medicine, Universiti Teknologi Mara Sungai Buloh Campus, Jalan Hospital; Sungai Buloh Selangor 47000 Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE); Universiti Teknologi Malaysia; 81310 UTM Skudai Johor Malaysia
| | - Hasrinah Hasbullah
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE); Universiti Teknologi Malaysia; 81310 UTM Skudai Johor Malaysia
| | - Bee Cheer Ng
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE); Universiti Teknologi Malaysia; 81310 UTM Skudai Johor Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE); Universiti Teknologi Malaysia; 81310 UTM Skudai Johor Malaysia
| |
Collapse
|
50
|
Xia Y, Cheng C, Wang R, He C, Ma L, Zhao C. Construction of microgels embedded robust ultrafiltration membranes for highly effective bioadhesion resistance. Colloids Surf B Biointerfaces 2016; 139:199-210. [DOI: 10.1016/j.colsurfb.2015.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/18/2015] [Accepted: 12/09/2015] [Indexed: 01/22/2023]
|