1
|
Li C, Guo L, Zheng W. Dissipative Particle Dynamics of Nano-Alumina Agglomeration in UV-Curable Inks. Polymers (Basel) 2024; 16:2609. [PMID: 39339073 PMCID: PMC11435484 DOI: 10.3390/polym16182609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Ultraviolet (UV) ink is a primary type of ink used in additive manufacturing with 3D inkjet printing. However, ink aggregation presents a challenge in nano-inkjet printing, affecting the stability and quality of the printing fluid and potentially leading to the clogging of nanometer-sized nozzles. This paper utilizes a Dissipative Particle Dynamics (DPD) simulation to investigate the aggregation behavior of alumina in a blend of 1,6-Hexanediol diacrylate (HDDA) and Trimethylolpropane triacrylate (TMPTA). By analyzing the effects of solid content, polymer component ratios, and dispersant concentration on alumina aggregation, the optimal ink formulation was identified. Compared to traditional experimental methods, DPD simulations not only reduce experimental costs and time but also reveal particle aggregation mechanisms that are difficult to explore through experimental methods, providing a crucial theoretical basis for optimizing ink formulations. This study demonstrates that alumina ceramic ink achieves optimal performance with a solid content of 20%, an HDDA-to-TMPTA ratio of 4:1, and 9% oleic acid as a dispersant.
Collapse
Affiliation(s)
- Chunlai Li
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Guo
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Weihan Zheng
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Ahmad T, Rehman LM, Al-Nuaimi R, de Levay JPBB, Thankamony R, Mubashir M, Lai Z. Thermodynamics and kinetic analysis of membrane: Challenges and perspectives. CHEMOSPHERE 2023; 337:139430. [PMID: 37422221 DOI: 10.1016/j.chemosphere.2023.139430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
The ultimate structure of the membrane is determined using two important effects: (i) thermodynamic effect and (ii) kinetic effect. Controlling the mechanism of kinetic and thermodynamic processes in phase separation is essential for enhancing membrane performance. However, the relationship between system parameters and the ultimate membrane morphology is still largely empirical. This review focuses on the fundamental ideas behind thermally induced phase separation (TIPS) and nonsolvent-induced phase separation (NIPS) methods, including both kinetic and thermodynamic elements. The thermodynamic approach to understanding phase separation and the effect of different interaction parameters on membrane morphology has been discussed in detail. Furthermore, this review explores the capabilities and limitations of different macroscopic transport models used for the last four decades to explore the phase inversion process. The application of molecular simulations and phase field to understand phase separation has also been briefly examined. Finally, it discusses the thermodynamic approach to understanding phase separation and the consequence of different interaction parameters on membrane morphology, as well as possible directions for artificial intelligence to fill the gaps in the literature. This review aims to provide comprehensive knowledge and motivation for future modeling work for membrane fabrication via new techniques such as nonsolvent-TIPS, complex-TIPS, non-solvent assisted TIPS, combined NIPS-TIPS method, and mixed solvent phase separation.
Collapse
Affiliation(s)
- Tausif Ahmad
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Lubna M Rehman
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Reham Al-Nuaimi
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jean-Pierre Benjamin Boross de Levay
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Roshni Thankamony
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Mubashir
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
3
|
Li C, Tang Y, Lin H, Zhang C, Liu Z, Yu L, Wang X, Lin Y. Novel multiscale simulations on the membrane formation via hybrid induced phase separation process based on dissipative particle dynamics. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Ma W, Zhou Z, Ismail N, Tocci E, Figoli A, Khayet M, Matsuura T, Cui Z, Tavajohi N. Membrane formation by thermally induced phase separation: Materials, involved parameters, modeling, current efforts and future directions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Procházka K, Limpouchová Z, Štěpánek M, Šindelka K, Lísal M. DPD Modelling of the Self- and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science. Polymers (Basel) 2022; 14:404. [PMID: 35160394 PMCID: PMC8838752 DOI: 10.3390/polym14030404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
This review article is addressed to a broad community of polymer scientists. We outline and analyse the fundamentals of the dissipative particle dynamics (DPD) simulation method from the point of view of polymer physics and review the articles on polymer systems published in approximately the last two decades, focusing on their impact on macromolecular science. Special attention is devoted to polymer and polyelectrolyte self- and co-assembly and self-organisation and to the problems connected with the implementation of explicit electrostatics in DPD numerical machinery. Critical analysis of the results of a number of successful DPD studies of complex polymer systems published recently documents the importance and suitability of this coarse-grained method for studying polymer systems.
Collapse
Affiliation(s)
- Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Karel Šindelka
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
| | - Martin Lísal
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632, 400 96 Ústí n. Labem, Czech Republic
| |
Collapse
|
6
|
Tang Y, Lin Y, Ford DM, Qian X, Cervellere MR, Millett PC, Wang X. A review on models and simulations of membrane formation via phase inversion processes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Tang Y, Lin Y, Ma W, Wang X. A review on microporous polyvinylidene fluoride membranes fabricated via thermally induced phase separation for MF/UF application. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119759] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Zeng S, Zhang LZ, Zhou J. A coarse-grained simulation of heat and mass transfer through a graphene oxide-based composite membrane. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Formation of Polysulfone Hollow Fiber Membranes Using the Systems with Lower Critical Solution Temperature. FIBERS 2021. [DOI: 10.3390/fib9050028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study deals with the investigation of the phase state of the polymer systems from polysulfone (PSF) with the addition of polyethylene glycol (PEG-400, Mn = 400 g·mol−1) and polyvinylpyrrolidone (PVP K-30, Mn = 40,000 g·mol−1) in N,N-dimethylacetamide (DMA), which feature lower critical solution temperatures (LCSTs). A fragment of the phase state diagram of the system PSF —PEG-400—PVP K-30—DMA was experimentally constructed in the following range of component concentrations: PSF 20–24 wt.%, PEG-400—35–38 wt.% and PVP—0–8 wt.%. It has been established that PVP addition substantially reduces the phase separation temperature down to 50–60 °C. Based on the obtained phase diagrams, a method for preparation of highly permeable hollow fiber membranes from PSF, which involves the processing of the dope solution at a temperature close to the LCST and the temperature of the bore fluid above the LCST, was proposed. Hollow fiber membranes with pure water flux of 1200 L·m−2·h−1 and a sponge-like macrovoid-free structure were obtained via LCST-thermally induced phase separation by free fall spinning technique.
Collapse
|
10
|
Yang B, Chen Q, Ding M, Pan Y, Zhang P, Wang S, Qian J, Miao J, Xia R, Chen P, Shi Y, Tu Y. Facile way of dynamically tailoring microporous structures in polyvinylidene fluoride films prepared by thermally induced phase separation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20190206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bin Yang
- College of Chemistry & Chemical Engineering, Anhui Provincial Key Laboratory of Environment‐Friendly Polymeric Materials Anhui University Hefei China
| | - Qinting Chen
- College of Chemistry & Chemical Engineering, Anhui Provincial Key Laboratory of Environment‐Friendly Polymeric Materials Anhui University Hefei China
| | - Mengya Ding
- College of Chemistry & Chemical Engineering, Anhui Provincial Key Laboratory of Environment‐Friendly Polymeric Materials Anhui University Hefei China
| | - Yang Pan
- College of Chemistry & Chemical Engineering, Anhui Provincial Key Laboratory of Environment‐Friendly Polymeric Materials Anhui University Hefei China
| | - Peng Zhang
- College of Chemistry & Chemical Engineering, Anhui Provincial Key Laboratory of Environment‐Friendly Polymeric Materials Anhui University Hefei China
| | - Shuqing Wang
- College of Chemistry & Chemical Engineering, Anhui Provincial Key Laboratory of Environment‐Friendly Polymeric Materials Anhui University Hefei China
| | - Jiasheng Qian
- College of Chemistry & Chemical Engineering, Anhui Provincial Key Laboratory of Environment‐Friendly Polymeric Materials Anhui University Hefei China
| | - Jibin Miao
- College of Chemistry & Chemical Engineering, Anhui Provincial Key Laboratory of Environment‐Friendly Polymeric Materials Anhui University Hefei China
| | - Ru Xia
- College of Chemistry & Chemical Engineering, Anhui Provincial Key Laboratory of Environment‐Friendly Polymeric Materials Anhui University Hefei China
| | - Peng Chen
- College of Chemistry & Chemical Engineering, Anhui Provincial Key Laboratory of Environment‐Friendly Polymeric Materials Anhui University Hefei China
| | - You Shi
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Youlei Tu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| |
Collapse
|
11
|
Cervellere MR, Qian X, Ford DM, Carbrello C, Giglia S, Millett PC. Phase-field modeling of non-solvent induced phase separation (NIPS) for PES/NMP/Water with comparison to experiments. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Manzanarez H, Mericq J, Guenoun P, Bouyer D. Modeling the interplay between solvent evaporation and phase separation dynamics during membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Wang J, Chen X, Cao C, Yu D. Chain conformation and dynamics in ultrahigh molecular weight polyethylene melts undergoing extensional–shear coupled flow: insight from dissipative particle dynamics simulation. POLYM INT 2020. [DOI: 10.1002/pi.6064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Junxia Wang
- Key Laboratory for Polymeric Composite and Functional Materials of the Ministry of Education and Key Laboratory of High Performance Polymer‐Based Composites of Guangdong Province, School of Chemistry Sun Yat‐Sen University Guangzhou China
| | - Xiaochuan Chen
- Key Laboratory for Polymeric Composite and Functional Materials of the Ministry of Education and Key Laboratory of High Performance Polymer‐Based Composites of Guangdong Province, School of Chemistry Sun Yat‐Sen University Guangzhou China
| | - Changlin Cao
- Key Laboratory for Polymeric Composite and Functional Materials of the Ministry of Education and Key Laboratory of High Performance Polymer‐Based Composites of Guangdong Province, School of Chemistry Sun Yat‐Sen University Guangzhou China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of the Ministry of Education and Key Laboratory of High Performance Polymer‐Based Composites of Guangdong Province, School of Chemistry Sun Yat‐Sen University Guangzhou China
| |
Collapse
|
14
|
Microscopic insights into the intensification effect of shear fields on molecular transport across interfaces. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Ismail N, Venault A, Mikkola JP, Bouyer D, Drioli E, Tavajohi Hassan Kiadeh N. Investigating the potential of membranes formed by the vapor induced phase separation process. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117601] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
El-Samak AA, Ponnamma D, Hassan MK, Ammar A, Adham S, Al-Maadeed MAA, Karim A. Designing Flexible and Porous Fibrous Membranes for Oil Water Separation—A Review of Recent Developments. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1714651] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ali A. El-Samak
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | | | | | - Ali Ammar
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Samer Adham
- ConocoPhillips Global Water Sustainability Center, Qatar Science and Technology Park, Doha, Qatar
| | | | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
17
|
A Dissipative Particle Dynamics Study of Flow Behaviors in Ultra High Molecular Weight Polyethylene/Polyamide 6 Blends Based on Souza-Martins Method. Polymers (Basel) 2019; 11:polym11081275. [PMID: 31370364 PMCID: PMC6722510 DOI: 10.3390/polym11081275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 11/26/2022] Open
Abstract
This paper presents our study on the use of dissipative particle dynamics (DPD) simulations to discover the flow behavior in ultra high molecular weight polyethylene/polyamide 6 (UHMWPE/PA6) blends associated with extensional-shear coupled flow, based on the Souza-Martins method, for the first time. By way of simulations, we aimed at investigating the mesoscopic morphology and alignment behavior in response to extensional-shear coupled flow, in comparison with simple shear flow and simple extensional flow. Our results reveal that the aggregation of polymers is noticeable under zero flow, as expected. Within the considered range of extensional-shear coupled rates, the morphology transforms from micelle-like clusters to a chain-like network structure by increasing coupled rates from 0.01 to 2.0. Furthermore, it shows a linear distribution along the flow direction at a high coupled rate. It can be concluded that the flow behaviors in UHMWPE/PA6 blends are significantly impacted by extensional-shear coupled rates. The orientation behavior induced by extensional-shear coupled flow is more obvious than shear flow, even though flow variations and mass fractions yield less effects on the distribution behaviors of UHMWPE/PA6 blends. The DPD results are verified by mean square displacement (MSD) as a function of simulation time and relative concentration distribution along Z direction.
Collapse
|
18
|
Li C, Fu X, Zhong W, Liu J. Dissipative Particle Dynamics Simulations of a Protein-Directed Self-Assembly of Nanoparticles. ACS OMEGA 2019; 4:10216-10224. [PMID: 31460113 PMCID: PMC6648767 DOI: 10.1021/acsomega.9b01078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
Abstract
Design and fabrication of multifunctional porous structures play key roles in the development of high-performance energy storage devices. Our experiments demonstrated that nanostructured porous components, such as electrodes and interlayers, generated from the protein-directed self-assembly of nanoparticles can significantly improve the battery performances. The protein-directed assembly of nanoparticles in solution is a complex process involving the complicated interactions among proteins, particles, and solvent molecules. In this paper, we investigate the effects of coating proteins and specific solvent environments on the assembled porous structures. Comprehensive dissipative particle dynamics (DPD) simulations have been implemented to explore the molecular interactions and uncover the fundamental mechanisms in a gelatin-directed self-assembly of carbon black particles under different solvent conditions. Our simulations show that compact triple-strand "rod-like" structures are formed in water while loose curved "sheet-like" structures are formed in an acetic acid/water mixture. The structural difference is mainly due to the redistribution of the charges on the gelatin side chains under specific acid-solvent conditions. The strong and flexible "sheet-like" structures lead to a homogenous porous structure with high porosity and with large functionalized surfaces. Our simulations results can reasonably explain the experimental observations; this work demonstrates the great potential of DPD as a powerful tool in guiding future experimental design and optimization.
Collapse
|
19
|
Cervellere MR, Tang YH, Qian X, Ford DM, Millett PC. Mesoscopic simulations of thermally-induced phase separation in PVDF/DPC solutions. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Plisko TV, Bildyukevich AV, Karslyan YA, Ovcharova AA, Volkov VV. Development of high flux ultrafiltration polyphenylsulfone membranes applying the systems with upper and lower critical solution temperatures: Effect of polyethylene glycol molecular weight and coagulation bath temperature. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
|
22
|
Lin HH, Tang YH, Matsuyama H, Wang XL. Dissipative particle dynamics simulation on the membrane formation of polymer–solvent system via nonsolvent induced phase separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Manzanarez H, Mericq J, Guenoun P, Chikina J, Bouyer D. Modeling phase inversion using Cahn-Hilliard equations – Influence of the mobility on the pattern formation dynamics. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Aggregation Behavior of Nano-Silica in Polyvinyl Alcohol/Polyacrylamide Hydrogels Based on Dissipative Particle Dynamics. Polymers (Basel) 2017; 9:polym9110611. [PMID: 30965914 PMCID: PMC6418808 DOI: 10.3390/polym9110611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/10/2017] [Indexed: 12/14/2022] Open
Abstract
Due to the aggregation behavior of nano-silica in aqueous solution, the use of nano-silica without surface modification for synthesizing hydrogels is still a challenging task. This paper presents our study on the use of dissipative particle dynamics simulations to discover the aggregation behavior of nano-silica in polyvinyl alcohol (PVA)/polyacrylamide (PAM) blended hydrogels. By simulations, we aimed at investigating the effects of such factors as nano-silica content, polymer component ratio, temperature and shear rate on the aggregation behavior of nano-silica in terms of the mesoscopic morphologies and the relative concentration distribution functions. Our results reveal that the dispersion of nano-silica is seen if the nano-silica content is increased to 1.5%, and the aggregation of nano-silica becomes noticeable in blended hydrogels with an increase in the nano-silica content. This finding agrees well with the experimental results obtained by means of scanning electron microscopy. Furthermore, it is also found that the dispersion of nano-silica becomes more uniform with an increase in PAM content, temperature and shear rate. These findings greatly enrich our understanding of the aggregation behavior of nano-silica in PVA/PAM blended hydrogels.
Collapse
|
25
|
Gidituri H, Anand DV, Vedantam S, Panchagnula MV. Dissipative particle dynamics study of phase separation in binary fluid mixtures in periodic and confined domains. J Chem Phys 2017; 147:074703. [PMID: 28830165 DOI: 10.1063/1.4999096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigate the phase separation behavior of binary mixtures in two-dimensional periodic and confined domains using dissipative particle dynamics. Two canonical problems of fluid mechanics are considered for the confined domains: square cavity with no-slip walls and lid-driven cavity with one driven wall. The dynamics is studied for both weakly and strongly separating mixtures and different area fractions. The phase separation process is analyzed using the structure factor and the total interface length. The dynamics of phase separation in the square cavity and lid-driven cavity are observed to be significantly slower when compared to the dynamics in the periodic domain. The presence of the no-slip walls and the inertial effects significantly influences the separation dynamics. Finally, we show that the growth exponent for the strongly separating case is invariant to changes in the inter-species repulsion parameter.
Collapse
Affiliation(s)
- Harinadha Gidituri
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - D Vijay Anand
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Srikanth Vedantam
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mahesh V Panchagnula
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
26
|
Multiscale simulation on the membrane formation process via thermally induced phase separation accompanied with heat transfer. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Lin HH, Tang YH, Liu TY, Matsuyama H, Wang XL. Understanding the thermally induced phase separation process via a Maxwell–Stefan model. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Kim JF, Kim JH, Lee YM, Drioli E. Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. AIChE J 2015. [DOI: 10.1002/aic.15076] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jeong F. Kim
- Dept. of Energy Engineering; Hanyang University; Seoul Republic of Korea
| | - Ji Hoon Kim
- Dept. of Energy Engineering; Hanyang University; Seoul Republic of Korea
| | - Young Moo Lee
- Dept. of Energy Engineering; Hanyang University; Seoul Republic of Korea
| | - Enrico Drioli
- Dept. of Energy Engineering; Hanyang University; Seoul Republic of Korea
- National Research Council Institute on Membrane Technology (ITM-CNR), The University of Calabria; Rende Cosenza Italy
| |
Collapse
|
29
|
Three-dimensional phase-field simulations of membrane porous structure formation by thermally induced phase separation in polymer solutions. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|