1
|
Ladouceur JD, Narbaitz RM. Reduced Low-Pressure Membrane Fouling by Inline Coagulation Pretreatment for a Colored River Water. MEMBRANES 2022; 12:1028. [PMID: 36363583 PMCID: PMC9695621 DOI: 10.3390/membranes12111028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Drinking water treatment (DWT) using low-pressure membranes (LPM) has become increasingly popular due to their many reported advantages compared to conventional technologies. Productivity decline due to fouling has prevented LPMs from becoming the technology of choice in DWT, however, coagulation pretreatment either with or without particle separation mitigates fouling phenomena. The effectiveness of coagulation/flocculation/sedimentation (CF-S), coagulation/flocculation/dissolved air flotation (CF-DAF), and inline coagulation (CF-IN) as technologies for pretreatment of feed water has rarely been investigated using the same water source. In this study, CF-S, CF-DAF, and CF-IN are directly compared as pretreatment of a tubular multi-channeled ultrafiltration (UF) membrane using the same highly colored river water. Three-day long filtration tests were performed using an automated bench-scale filtration apparatus with an inside-out configuration. Although CF-DAF had the greatest removal of dissolved organic matter (DOM) and hydrophobic organics, CF-S pretreatment resulted in a similar level of total fouling. Compared to CF-DAF and CF-S, CF-IN pretreatment resulted in lower fouling. The hydraulic and chemical reversibility of CF-IN fouling was seen to be strongly influenced by the feed water zeta potential, suggesting the importance of floc electrostatic and morphological characteristics on inline coagulation performance.
Collapse
|
2
|
Chen M, Nan J, Xu Y, Yao J, Wang H, Zu X. Effect of microplastics on the physical structure of cake layer for pre-coagulated gravity-driven membrane filtration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Ma C, Huang J, Wang Y, Wang L, Zhang H, Ran Z, McCutcheon JR. Membrane fouling control by Ca 2+ during coagulation-ultrafiltration process for algal-rich water treatment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:809-818. [PMID: 30993498 DOI: 10.1007/s10653-019-00291-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Seasonal algal bloom, a water supply issue worldwide, can be efficiently solved by membrane technology. However, membranes typically suffer from serious fouling, which hinders the wide application of this technology. In this study, the feasibility of adding Ca2+ to control membrane fouling in coagulation-membrane treatment of algal-rich water was investigated. According to the results obtained, the normalized membrane flux decreased by a lower extent upon increasing the concentration of Ca2+ from 0 to 10 mmol/L. Simultaneously, the floc particle size increased significantly with the concentration of Ca2+, which leads to a lower hydraulic resistance. The coagulation performance is also enhanced with the concentration of Ca2+, inducing a slight osmotic pressure-induced resistance. The formation of Ca2+ coagulation flocs resulted in a looser, thin, and permeable cake layer on the membrane surface. This cake layer rejected organic pollutants and could be easily removed by physical and chemical cleaning treatments, as revealed by scanning electron microscopy images. The hydraulic irreversible membrane resistance was significantly reduced upon addition of Ca2+. All these findings suggest that the addition of Ca2+ may provide a simple-operation, cost-effective, and environmentally friendly technology for controlling membrane fouling during coagulation-membrane process for algal-rich water treatment.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd. Unit 3222, Storrs, CT, 06269-3222, USA
- Tianjin Haiyuanhui Technology Co., Ltd., Tianjin, 300457, China
| | - Jingyun Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Yulan Wang
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Zhilin Ran
- Institute of Innovational Education Research, Shenzhen Institute of Information Technology, Shenzhen, 518172, China.
| | - Jeffrey R McCutcheon
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd. Unit 3222, Storrs, CT, 06269-3222, USA
| |
Collapse
|
4
|
Liu Y, Zheng H, An Y, Ren J, Zheng X, Zhao C, Zhang S. Ultrasound-assisted synthesis of the β-cyclodextrin based cationic polymeric flocculants and evaluation of flocculation performance: Role of β-cyclodextrin. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Xing J, Liang H, Cheng X, Yang H, Xu D, Gan Z, Luo X, Zhu X, Li G. Combined effects of coagulation and adsorption on ultrafiltration membrane fouling control and subsequent disinfection in drinking water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33770-33780. [PMID: 29860690 DOI: 10.1007/s11356-018-2416-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the combined effects of coagulation and powdered activated carbon (PAC) adsorption on ultrafiltration (UF) membrane fouling control and subsequent disinfection efficiency through filtration performance, dissolved organic carbon (DOC) removal, fluorescence excitation-emission matrix (EEM) spectroscopy, and disinfectant curve. The fouling behavior of UF membrane was comprehensively analyzed especially in terms of pollutant removal and fouling reversibility to understand the mechanism of fouling accumulation and disinfectant dose reduction. Pre-coagulation with or without adsorption both achieved remarkable effect of fouling mitigation and disinfection dose reduction. The two pretreatments were effective in total fouling control and pre-coagulation combined with PAC adsorption even decreased hydraulically irreversible fouling notably. Besides, pre-coagulation decreased residual disinfectant decline due to the removal of hydrophobic components of natural organic matters (NOM). Pre-coagulation combined with adsorption had a synergistic effect on further disinfectant decline rate reduction and decreased total disinfectant consumption due to additional removal of hydrophilic NOM by PAC adsorption. The disinfectant demand was further reduced after membrane. These results show that membrane fouling and disinfectant dose can be reduced in UF coupled with pretreatment, which could lead to the avoidance of excessive operation cost disinfectant dose for drinking water supply.
Collapse
Affiliation(s)
- Jiajian Xing
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China.
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Licheng District, Jinan, 250101, People's Republic of China
| | - Haiyan Yang
- Department of Geoscience, University of Wisconsin-Milwaukee, 3209 N Maryland Ave, Milwaukee, WI, 53211, USA
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Zhendong Gan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Xuewu Zhu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| |
Collapse
|
6
|
Sillanpää M, Ncibi MC, Matilainen A, Vepsäläinen M. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. CHEMOSPHERE 2018; 190:54-71. [PMID: 28985537 DOI: 10.1016/j.chemosphere.2017.09.113] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/19/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Natural organic matter (NOM) is a complex matrix of organic substances produced in (or channeled to) aquatic ecosystems via various biological, geological and hydrological cycles. Such variability is posing a serious challenge to most water treatment technologies, especially the ones designed to treat drinking water supplies. Lately, in addition to the fluctuating composition of NOM, a substantial increase of its concentration in fresh waters, and also municipal wastewater effluents, has been reported worldwide, which justifies the urgent need to develop highly efficient and versatile water treatment processes. Coagulation is among the most applied processes for water and wastewater treatment. The application of coagulation to remove NOM from drinking water supplies has received a great deal of attention from researchers around the world because it was efficient and helped avoiding the formation of disinfection by products (DBPs). Nonetheless, with the increased fluctuation of NOM in water (concentration and composition), the efficiency of conventional coagulation was substantially reduced, hence the need to develop enhanced coagulation processes by optimizing the operating conditions (mainly the amount coagulants and pH), developing more efficient inorganic or organic coagulants, as well as coupling coagulation with other water treatment technologies. In the present review, recent research studies dealing with the application of coagulation for NOM removal from drinking water supplies are presented and compared. In addition, integration schemes combining coagulation and other water treatment processes are presented, including membrane filtration, oxidation, adsorption and others processes.
Collapse
Affiliation(s)
- Mika Sillanpää
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, 50130, Mikkeli, Finland; Department of Civil and Environmental Engineering, Florida International University, Miami FL, 33174, USA
| | - Mohamed Chaker Ncibi
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, 50130, Mikkeli, Finland.
| | - Anu Matilainen
- Finnish Safety and Chemicals Agency, Kalevantie 2, 33100 Tampere, Finland
| | - Mikko Vepsäläinen
- CSIRO Mineral Resources Flagship, Box 312, Clayton South, VIC, 3169, Australia
| |
Collapse
|
7
|
Nan J, Yao M, Li Q, Zhan D, Chen T, Wang Z, Li H. The role of shear conditions on floc characteristics and membrane fouling in coagulation/ultrafiltration hybrid process – the effect of flocculation duration and slow shear force. RSC Adv 2016. [DOI: 10.1039/c5ra18328f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The impact of shear conditions during coagulation on the ultrafiltration permeate flux in a coagulation–ultrafiltration (C–UF) process was investigated.
Collapse
Affiliation(s)
- Jun Nan
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- PR China
| | - Meng Yao
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- PR China
| | - Qinggui Li
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- PR China
| | - Dan Zhan
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- PR China
| | - Ting Chen
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- PR China
| | - Zhenbei Wang
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- PR China
| | - Haoyu Li
- School of Science & Technology
- Tianjin University
- Taijin 300072
- PR China
| |
Collapse
|
8
|
Kim HC. Novel strategies for diagnosing the cause of short-term organic fouling in ultrafiltration. ENVIRONMENTAL TECHNOLOGY 2015; 37:1539-1549. [PMID: 26586304 DOI: 10.1080/09593330.2015.1120785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The main objective of this study was to demonstrate the usefulness of a multi-strategic approach for identifying the extent and mechanism of fouling in the ultrafiltration (UF) of wastewater effluent organic matter (EfOM). In this study, we combined EfOM fractionation with spectroscopic autopsies for clean and fouled UF membranes. The EfOM fractions were sequentially removed from the wastewater effluent using relatively gentle techniques (neutral pH and no extractions). The residual EfOM samples were then used in UF tests. This work showed that resistance to filtration was partially reduced with the removal of particles (>20 nm), but almost all of the short-term fouling was eliminated with the removal of organic acids, which constitute 22% of the total organic carbon. The membrane autopsies were conducted using attenuated reflectance infrared spectroscopy for the top and bottom fouled membranes, and comparison was made with the infrared spectra of a clean membrane. Hydrophilic base/neutrals were the dominant EfOM constituents at the top of the fouled membranes. Hydrophobic acids were adsorbed onto the pore walls deep inside the membranes, which coincided with the permeability recovery of fouled membranes. The fouling mechanisms were examined by measuring the resistance to filtration as a function of permeate flux using various operational conditions and by investigating the effectiveness of hydraulic and chemical cleaning on the restoration of membrane permeability.
Collapse
Affiliation(s)
- Hyun-Chul Kim
- a Water Resources Research Institute , Sejong University , Seoul , Republic of Korea
| |
Collapse
|
9
|
Yao M, Nan J, Li Q, Zhan D, Chen T, Wang Z, Li H. Effect of under-dosing coagulant on coagulation–ultrafiltration process for treatment of humic-rich water with divalent calcium ion. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
He X, Meng F, Lin A, Zhou Z, Chen Y, Tang CY. Monovalent ion-mediated fouling propensity of model proteins during low-pressure membrane filtration. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|