1
|
Sánchez-Arévalo CM, Aldegheri F, Vincent-Vela MC, Álvarez-Blanco S. Integrated Membrane Process in Organic Media: Combining Organic Solvent Ultrafiltration, Nanofiltration, and Reverse Osmosis to Purify and Concentrate the Phenolic Compounds from Wet Olive Pomace. Int J Mol Sci 2024; 25:5233. [PMID: 38791271 PMCID: PMC11121570 DOI: 10.3390/ijms25105233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Phenolic compounds from a hydroalcoholic extract of wet olive pomace were purified and concentrated by an integrated membrane process in organic media. First, UF010104 (Solsep BV) and UP005 (Microdyn Nadir) membranes were tested to be implemented in the ultrafiltration stage, with the aim of purifying the extract and obtaining a permeate enriched in phenolic compounds. Despite the high flux observed with the UF010104 membrane (20.4 ± 0.7 L·h-1·m-2, at 2 bar), the UP005 membrane was selected because of a more suitable selectivity. Even though some secoiridoids were rejected, the permeate stream obtained with this membrane contained high concentrations of valuable simple phenols and phenolic acids, whereas sugars and macromolecules were retained. Then, the ultrafiltration permeate was subjected to a nanofiltration step employing an NF270 membrane (DuPont) for a further purification and fractionation of the phenolic compounds. The permeate flux was 50.2 ± 0.2 L·h-1·m-2, working at 15 bar. Hydroxytyrosol and some phenolic acids (such as vanillic acid, caffeic acid, and ferulic acid) were recovered in the permeate, which was later concentrated by reverse osmosis employing an NF90 membrane. The permeate flux obtained with this membrane was 15.3 ± 0.3 L·h-1·m-2. The concentrated phenolic mixture that was obtained may have important applications as a powerful antioxidant and for the prevention of diabetes and neurodegenerative diseases.
Collapse
Affiliation(s)
- Carmen M. Sánchez-Arévalo
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.M.S.-A.); (F.A.); (M.C.V.-V.)
| | - Fausto Aldegheri
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.M.S.-A.); (F.A.); (M.C.V.-V.)
| | - M. Cinta Vincent-Vela
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.M.S.-A.); (F.A.); (M.C.V.-V.)
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Silvia Álvarez-Blanco
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.M.S.-A.); (F.A.); (M.C.V.-V.)
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
2
|
Romeu MFC, Bernardo J, Daniel CI, Costa N, Crespo JG, Silva Pinto L, Nunes da Ponte M, Nunes AVM. Hydroxytyrosol recovery from olive pomace: a simple process using olive mill industrial equipment and membrane technology. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:161-168. [PMID: 38192711 PMCID: PMC10771484 DOI: 10.1007/s13197-023-05832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 01/10/2024]
Abstract
In this work, pilot-scale nanofiltration was used to obtain aqueous solutions rich in hydroxytyrosol and tyrosol from olive oil by-products. A large-scale simple process involving olive mill standard machinery (blender and decanter) was used for the olive pomace pre-treatment with water. The aqueous extract was then directly fed to a nanofiltration unit and concentrated by reverse osmosis. Final concentration factors ranged between 7 and 9 for hydroxytyrosol and between 4 and 7 for tyrosol. The final aqueous solution, obtained as retentate stream of reverse osmosis, was highly concentrated in hydroxytyrosol and tyrosol and their concentrations remained stable over at least 14 months.
Collapse
Affiliation(s)
- Maria F. C. Romeu
- Zeyton Nutraceuticals, Parque Industrial do Penique, Estrada Nacional 2, Km 585, Odivelas, Ferreira do Alentejo, Portugal
| | - Jorge Bernardo
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carla I. Daniel
- Zeyton Nutraceuticals, Parque Industrial do Penique, Estrada Nacional 2, Km 585, Odivelas, Ferreira do Alentejo, Portugal
| | - Nuno Costa
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - João G. Crespo
- Zeyton Nutraceuticals, Parque Industrial do Penique, Estrada Nacional 2, Km 585, Odivelas, Ferreira do Alentejo, Portugal
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Luís Silva Pinto
- Azal Azeites do Alentejo, Estrada Nacional 254, 7170-107 Redondo, Portugal
| | - Manuel Nunes da Ponte
- Zeyton Nutraceuticals, Parque Industrial do Penique, Estrada Nacional 2, Km 585, Odivelas, Ferreira do Alentejo, Portugal
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana V. M. Nunes
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
3
|
Ramanathan S, Kasemchainan J, Chuang HC, Sobral AJFN, Poompradub S. Rhodamine B dye degradation using used face masks-derived carbon coupled with peroxymonosulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121386. [PMID: 36868547 DOI: 10.1016/j.envpol.2023.121386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Catalytic carbon materials from used face masks (UFM) activated by peroxymonosulfate (PMS) were developed for the degradation of rhodamine B (RhB) dye in aqueous solution. The UFM-derived carbon (UFMC) catalyst had a relatively large surface area as well as active functional groups and promoted the generation of singlet 1O2 and radicals from PMS, giving a high RhB degradation performance (98.1% after 3 h) in the presence of 3 mM PMS. The UFMC could degrade only 13.7% at a minimal RhB dose of 10-5 M. The principal reactive oxygen species of sulphate (SO4•), hydroxyl radicals (•OH), and singlet 1O2 were discovered using electron paramagnetic resonance and radical scavenger studies. Finally, a toxicological plant and bacterial study was performed to demonstrate the potential non-toxicity of the degraded RhB water sample.
Collapse
Affiliation(s)
- Subramaninan Ramanathan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jitti Kasemchainan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | | | - Sirilux Poompradub
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Green Materials for Industrial Application, Faculty of Science, Chulanongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Mondor M, Plamondon P, Drolet H. Valorization of Agri-Food By-Products from Plant Sources Using Pressure-Driven Membrane Processes to Recover Value-Added Compounds: Opportunities and Challenges. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2094405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Martin Mondor
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, St-Hyacinthe, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
| | - Philippe Plamondon
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, St-Hyacinthe, Quebec, Canada
| | - Hélène Drolet
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
5
|
Teodoro JA, Arend GD, Proner MC, Verruck S, Rezzadori K. A review on membrane separation processes focusing on food industry environment-friendly processes. Crit Rev Food Sci Nutr 2022; 63:11275-11289. [PMID: 35758250 DOI: 10.1080/10408398.2022.2092057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food processing industries have led to several environmental impacts due to their high water and energy consumption, as well as soil and water bodies' contamination through improper waste disposal. Membrane Separation Processes (MSP) emerge as an important alternative to enable the adoption of sustainable processes by food industries, since satisfying the requests of innovative processes and equipment design, such as smaller, cleaner, more energy-efficient processes (mild conditions) without the usage of chemical agents. Membrane-based processes fulfill these requirements, and their potential has been broadly recognized in the last few years. This review provides a comprehensive and up-to-date overview of the application of MSP in sustainable processes in the different segments of the food industry over the last 10 years. Waste and wastewater treatment, recovery of valuable compounds and water for reuse, and alternatives to high energy consumption processes were identified as sustainable processes in this context. One trend found is the potential for adding value to production chains by obtaining valuable compounds that have not been explored yet. As a perspective for future research, this review showed that it is advisable to implement MSP in different industrial environments in order to make current processes environmentally sustainable and less polluting.
Collapse
Affiliation(s)
- Jessica A Teodoro
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Giordana D Arend
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Mariane C Proner
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Silvani Verruck
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Katia Rezzadori
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
6
|
López-Borrell A, López-Pérez MF, Cardona SC, Lora-García J. Experimental Study and Mathematical Modeling of a Nanofiltration Membrane System for the Recovery of Polyphenols from Wine Lees. MEMBRANES 2022; 12:membranes12020240. [PMID: 35207161 PMCID: PMC8880071 DOI: 10.3390/membranes12020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
The winemaking process in Spain generates a significant amount of wastes such as wine lees. Currently, the nanofiltration process is a viable technique for the revalorization of compounds from wastes. In this aspect, this technique can be used for the recovery of compounds, such as polyphenols, as well as active principles widely used in industries, such as pharmaceuticals or cosmetics. Polyphenols are found in acceptable amounts in wine lees wastes and it is interesting to study the nanofiltration process viability to recover them. In order to study this possibility, it is necessary to determine the choice of the best membrane to use and the effect of operational parameters such as pressure, temperature, cross-flow rates, and concentration. In addition, it is important to be able to develop a mathematical model that can help in the future design of lees treatment plants. The treatment of red wine lees to concentrate polyphenols has been studied in a laboratory plant using different membranes (RO and NF) at different pressures (4.5, 9.5, and 14.5 bar), different temperatures (293, 303, and 308 K), and two concentrations (2100 and 1100 mg tyrosol eq·L−1). The results have been encouraging to consider nanofiltration as a viable technique for the treatment and revalorization of this waste. The most suitable membrane has been the NF270, in which 96% rejection rates have been obtained, with a flux of 30 L·h−1·m−2. Moreover, in this study, the Spiegler–Kedem model (SKM) was used to calculate mass transfer constants and permeabilities. Suitable adjustments of these parameters were obtained to validate this mathematical model. For this reason, the SKM might be used in future studies to continue in the research work of the treatment of wine lees wastes.
Collapse
|
7
|
Wang J, Ma X, Su L, Zhang C, Dong X, Teng C, Jiang L, Yu C. Eco-friendly perforated kelp membrane with high strength for efficient oil/water separation in a complex environment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Agri-Food Industry Waste as Resource of Chemicals: The Role of Membrane Technology in Their Sustainable Recycling. SUSTAINABILITY 2022. [DOI: 10.3390/su14031483] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The agri-food sector generates substantial quantities of waste material on farm and during the processing of these commodities, creating serious social and environmental problems. However, these wastes can be resources of raw material for the production of valuable chemicals with applications in various industrial sectors (e.g., food ingredients, nutraceuticals, bioderived fine chemicals, biofuels etc.). The recovery, purification and biotransformation of agri-food waste phytochemicals from this microbial spoilage-prone, complex agri-food waste material, requires appropriate fast pre-treatment and integration of various processes. This review provides a brief summary and discussion of the unique advantages and the importance of membrane technology in sustainable recycling of phytochemicals from some of the main agri-food sectors. Membrane-based pressure -driven processes present several advantages for the recovery of labile compounds from dilute streams. For example, they are clean technologies that can operate at low temperature (20–60 °C), have low energy requirements, there is no need for additional chemicals, can be quite automated and electrifiable, and have low space requirements. Based on their permselective properties based on size-, shape-, and charge-exclusion mechanisms, membrane-based separation processes have unpaired efficiency in fractionating biological components while presenting their properties. Pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF), as well as other advanced membrane-based processes such as membrane bioreactors (MBR), membrane emulsification (ME) and membrane distillation (MD), are presented. The integration of various membrane technologies from the initial recovery of these phytochemicals (MF, UF, NF) to the final formulation (by ME) of commercial products is described. A good example of an extensively studied agri-food stream is the olive processing industry, where many different alternatives have been suggested for the recovery of biophenols and final product fabrication. Membrane process integration will deliver in the near future mature technologies for the efficient treatment of these streams in larger scales, with direct impact on the environmental protection and society (production of compounds with positive health effects, new job creation, etc.). It is expected that integration of these technologies will have substantial impact on future bio-based societies over forthcoming decades and change the way that these chemicals are currently produced, moving from petrochemical-based linear product fabrication to a sustainable circular product design based in agri-food waste biomass.
Collapse
|
9
|
Khwaldia K, Attour N, Matthes J, Beck L, Schmid M. Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:1218-1253. [DOI: 10.1111/1541-4337.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Nouha Attour
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Julia Matthes
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Luisa Beck
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Markus Schmid
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| |
Collapse
|
10
|
Castro-Muñoz R, Díaz-Montes E, Gontarek-Castro E, Boczkaj G, Galanakis CM. A comprehensive review on current and emerging technologies toward the valorization of bio-based wastes and by products from foods. Compr Rev Food Sci Food Saf 2021; 21:46-105. [PMID: 34957673 DOI: 10.1111/1541-4337.12894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 01/07/2023]
Abstract
Industries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed foods (e.g., jams, sauces, and canned fruits/vegetables), dairy derivatives (e.g., cheese and yogurt), and alcoholic (e.g., wine and beer) and nonalcoholic beverages (e.g., juices and soft drinks). Current research is committed not only to the usage of agro-food wastes and by products as a potential source of high-value bioactive compounds (e.g., phenolic compounds, anthocyanins, and organic acids) but also to the implementation of emerging and innovative technologies that can compete with conventional extraction methods for the efficient extraction of such biomolecules from the residues. Herein, specific valorization technologies, such as membrane-based processes, microwave, ultrasound, pulsed electric-assisted extraction, supercritical/subcritical fluids, and pressurized liquids, have emerged as advanced techniques in extracting various added-value biomolecules, showing multiple advantages (improved extraction yields, reduced process time, and protection to the bioactive properties of the compounds). Hence, this comprehensive review aims to analyze the ongoing research on applying such techniques in valorization protocols. A last-five-year review, together with a featured analysis of the relevant findings in the field, is provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, San Antonio Buenavista, Toluca de Lerdo, Mexico.,Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Barrio La Laguna Ticoman, Ciudad de México, Mexico
| | - Emilia Gontarek-Castro
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Charis M Galanakis
- Research and Innovation Department, Galanakis Laboratories, Chania, Greece.,Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
11
|
Ryazantseva K, Agarkova E, Fedotova O. Continuous hydrolysis of milk proteins in membrane reactors of various configurations. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-271-281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. The article provides a review of technologies for membrane fractionation of various hydrolyzed food substrates in membrane bioreactors (MBR). In food industry, MBRs are popular in functional food production, especially in the processing of whey, which is a very promising raw material due to its physicochemical composition.
Study objects and methods. The research was based on a direct validated analysis of scientific publications and featured domestic and foreign experience in MBR hydrolysis of protein raw material.
Results and discussion. The MBR hydrolysis of proteins combines various biocatalytic and membrane processes. This technology makes it possible to intensify the biocatalysis, optimize the use of the enzyme preparation, and regulate the molecular composition of hydrolysis products. The paper reviews MBRs based on batch or continuous stirring, gradient dilution, ceramic capillary, immobilized enzyme, etc. Immobilized enzymes reduce losses that occur during the production of fractionated peptides. Continuous MBRs are the most economically profitable type, as they are based on the difference in molecular weight between the enzyme and the hydrolysis products.
Conclusion. Continuous stirred tank membrane reactors have obvious advantages over other whey processing reactors. They provide prompt separation of hydrolysates with the required biological activity and make it possible to reuse enzymes.
Collapse
Affiliation(s)
| | | | - Olga Fedotova
- All-Russian Scientific Research Institute of the Dairy Industry
| |
Collapse
|
12
|
Abstract
Enzymes are the highly efficient biocatalyst in modern biotechnological industries. Due to the fragile property exposed to the external stimulus, the application of enzymes is highly limited. The immobilized enzyme by polymer has become a research hotspot to empower enzymes with more extraordinary properties and broader usage. Compared with free enzyme, polymer immobilized enzymes improve thermal and operational stability in harsh environments, such as extreme pH, temperature and concentration. Furthermore, good reusability is also highly expected. The first part of this study reviews the three primary immobilization methods: physical adsorption, covalent binding and entrapment, with their advantages and drawbacks. The second part of this paper includes some polymer applications and their derivatives in the immobilization of enzymes.
Collapse
|
13
|
|
14
|
Guerras L, Sengupta D, Martín M, El-Halwagi MM. Multilayer Approach for Product Portfolio Optimization: Waste to Added-Value Products. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:6410-6426. [PMID: 34796044 PMCID: PMC8592024 DOI: 10.1021/acssuschemeng.1c01284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Indexed: 06/13/2023]
Abstract
A multistage multilayer systematic procedure has been developed for the selection of the optimal product portfolio from waste biomass as feedstock for systems involving water-energy-food nexus. It consists of a hybrid heuristic, metric-based, and optimization methodology that evaluates the economic and environmental performance of added-value products from a particular raw material. The first stage preselects the promising products. Next, a superstructure optimization problem is formulated to valorize or transform waste into the optimal set of products. The methodology has been applied within the waste to power and chemicals initiative to evaluate the best use of the biomass residue from the olive oil industry toward food, chemicals, and energy. The heuristic stage is based on the literature review to analyze the feasible products and techniques. Next, simple metrics have been developed and used to preselect products that are promising. Finally, a superstructure optimization approach is used to design the facility that processes leaves, wood chips, and olives into final products. The best technique to recover phenols from "alperujo", a wet solid waste/byproduct of the process, consists of the use of membranes, while the adsorption technique is used for the recovery of phenols from olive leaves and branches. The investment required to process waste adds up to €110.2 million for a 100 kt/yr for the olive production facility, while the profit depends on the level of integration. If the facility is attached to an olive oil production, the generated profit ranges between 14.5 MM €/yr (when the waste is purchased at prices of €249 per ton of alperujo and €6 per ton of olive leaves and branches) and 34.3 MM €/yr when the waste material is obtained for free.
Collapse
Affiliation(s)
- Lidia
S. Guerras
- Department
of Chemical Engineering, University of Salamanca, Plz. Caídos 1-5, 37008 Salamanca, Spain
| | - Debalina Sengupta
- Gas
and Fuels Research Center, Texas A&M
Engineering Experiment Station, 7607 Eastmark Drive, College
Station, Texas 77840, United States
| | - Mariano Martín
- Department
of Chemical Engineering, University of Salamanca, Plz. Caídos 1-5, 37008 Salamanca, Spain
| | - Mahmoud M. El-Halwagi
- Gas
and Fuels Research Center, Texas A&M
Engineering Experiment Station, 7607 Eastmark Drive, College
Station, Texas 77840, United States
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, 100 Spence Street, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Tundis R, Conidi C, Loizzo MR, Sicari V, Romeo R, Cassano A. Concentration of Bioactive Phenolic Compounds in Olive Mill Wastewater by Direct Contact Membrane Distillation. Molecules 2021; 26:molecules26061808. [PMID: 33806935 PMCID: PMC8004892 DOI: 10.3390/molecules26061808] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
Olive mill wastewater (OMW), generated as a by-product of olive oil production, is considered one of the most polluting effluents produced by the agro-food industry, due to its high concentration of organic matter and nutrients. However, OMW is rich in several polyphenols, representing compounds with remarkable biological properties. This study aimed to analyze the chemical profile as well as the antioxidant and anti-obesity properties of concentrated fractions obtained from microfiltered OMW treated by direct contact membrane distillation (DCMD). Ultra-high performance liquid chromatography (UHPLC) analyses were applied to quantify some phenols selected as phytochemical markers. Moreover, α-Amylase, α-glucosidase, and lipase inhibitory activity were investigated together with the antioxidant activity by means of assays, namely β-carotene bleaching, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid (ABTS) diammonium salts, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and Ferric Reducing Activity Power (FRAP) tests. MD retentate—which has content of about five times greater of hydroxytyrosol and verbascoside and about 7 times greater of oleuropein than the feed—was more active as an antioxidant in all applied assays. Of interest is the result obtained in the DPPH test (an inhibitory concentration 50% (IC50) of 9.8 μg/mL in comparison to the feed (IC50 of 97.2 μg/mL)) and in the ABTS assay (an IC50 of 0.4 μg/mL in comparison to the feed (IC50 of 1.2 μg/mL)).
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (R.T.); (M.R.L.)
| | - Carmela Conidi
- Institute on Membrane Technology, ITM-CNR, 87036 Rende, CS, Italy;
| | - Monica R. Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (R.T.); (M.R.L.)
| | - Vincenzo Sicari
- Department of Agricultural Science, Mediterranean University of Reggio Calabria, 89123 Reggio Calabria, Italy; (V.S.); (R.R.)
| | - Rosa Romeo
- Department of Agricultural Science, Mediterranean University of Reggio Calabria, 89123 Reggio Calabria, Italy; (V.S.); (R.R.)
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, 87036 Rende, CS, Italy;
- Correspondence: ; Tel.: +39-0984-492067
| |
Collapse
|
16
|
Shabbir MA, Ahmed W, Khan MR, Ahmad T, Aadil RM. Revitalization of wastewater from the edible oil industry. VALORIZATION OF AGRI-FOOD WASTES AND BY-PRODUCTS 2021:645-663. [DOI: 10.1016/b978-0-12-824044-1.00028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Treatment of Olive Mill Wastewater through Integrated Pressure-Driven Membrane Processes. MEMBRANES 2020; 10:membranes10110334. [PMID: 33187114 PMCID: PMC7697980 DOI: 10.3390/membranes10110334] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023]
Abstract
The disposal of wastewater resulting from olive oil production (olive mill wastewater, OMW) is a major issue for olive oil producers. This wastewater is among the most polluting due to the very high concentration of organic substances and the presence of hardly degradable phenolic compounds. The systems proposed for OMW treatment are essentially based either on conventional chemical-physical, biological and thermal processes, or on membrane processes. With respect to conventional methods, membrane processes allow to separate different species without the use of chemicals or heat. This work deals with the use of the integrated pressure-driven membrane processes for the treatment of OMW. They consist of a first stage (microfiltration, MF) in which a porous multichannel ceramic membrane retains suspended materials and produces a clarified permeate for a second stage (reverse osmosis, RO), in order to separate (and concentrate) dissolved substances from water. Laboratory scale experiments with different small flat sheet RO membranes were first carried out in order to select the most appropriate one for the successive bench scale tests with a spiral wound module having a large membrane surface. The aim of this test was to concentrate the dissolved substances and to produce water with low salinity, chemical oxygen demand (COD), and reduced phytotoxicity due to a low content of phenolic compounds. The trend of the permeate flux and membrane retention as a function of the volume concentration ratio was investigated. The influence of OMW origin and its aging on the membrane performance was also studied.
Collapse
|
18
|
Zhao C, Zhang T, Hu G, Ma J, Song R, Li J. Efficient removal of perfluorooctane sulphonate by nanofiltration: Insights into the effect and mechanism of coexisting inorganic ions and humic acid. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Olive Mill Wastewater Polyphenol-Enriched Fractions by Integrated Membrane Process: A Promising Source of Antioxidant, Hypolipidemic and Hypoglycaemic Compounds. Antioxidants (Basel) 2020; 9:antiox9070602. [PMID: 32664218 PMCID: PMC7402138 DOI: 10.3390/antiox9070602] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022] Open
Abstract
The valorisation of food wastes is a challenging opportunity for the green, sustainable, and competitive development of industry. The recovery of phenols contributes to the sustainability of olive waste sector, reducing its environmental impact and promoting the development of innovative formulations of interest for pharmaceutical, nutraceutical, and cosmeceutical applications. In this work, olive mill wastewater was treated through a combination of microfiltration (MF), nanofiltration (NF), and reverse osmosis (RO) in a sequential design to produce polyphenol-enriched fractions that have been investigated for their chemical profile using ultra-high-performance liquid chromatography (UHPLC), and their potential antioxidant, hypolipidemic, and hypoglycaemic activities. RO retentate exhibited the highest content of hydroxytyrosol, tyrosol, oleuropein, verbascoside, vanillic acid, and luteolin. In particular, a content of hydroxytyrosol of 1522.2 mg/L, about five times higher than the MF feed, was found. RO retentate was the most active extract in all in vitro tests. Interestingly, this fraction showed a 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS) radicals scavenging activity with an IC50 value of 6.9 μg/mL and a potential inhibition of lipid peroxidation evaluated by the β-carotene bleaching test with IC50 values of 25.1 μg/mL after 30 min of incubation. Moreover, RO retentate inhibited α-amylase and α-glucosidase with IC50 values of 65.3 and 66.2 μg/mL, respectively.
Collapse
|
20
|
Utilization of wastewater from edible oil industry, turning waste into valuable products: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Barbera M. Reuse of Food Waste and Wastewater as a Source of Polyphenolic Compounds to Use as Food Additives. J AOAC Int 2020; 103:906-914. [DOI: 10.1093/jaocint/qsz025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Indexed: 01/18/2023]
Abstract
Abstract
The problem of waste and byproducts generated from agro-industrial activities worldwide is an increasing concern in terms of environmental sustainability. In this ambit, the quantity of food wastes—produced in all steps of the whole food chain—is enormous, and it may be forecasted that food waste could amount to more than 120 billion tonnes by 2020. The reuse of food waste and wastewater as source of polyphenolic compounds could be an interesting discussion in this ambit. In fact, polyphenols obtained in this way might be used for food and non-food purposes by means of new, improved, and safe extraction methods. In light of the opportunity represented by the treatment of agro-industrial waste, different systems concerning the winemaking and olive oil production industries have also been discussed as describing approaches applicable to other sectors. More research is needed before considering recovery of phenolic compounds from wastewater as an economically convenient choice for the food sector.
Collapse
Affiliation(s)
- Marcella Barbera
- University of Palermo, Department of Environmental and Agricultural Sciences, Palermo 90100, Italy
| |
Collapse
|
22
|
Olive mill wastewater treatment using infiltration percolation in column followed by aerobic biological treatment. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2481-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
23
|
Courbalay M, Villain-Gambier M, Klem A, Dumarcay S, Trebouet D. Fractionation of polyphenols from thermomechanical pulp mill process water by flotation and membrane integrated process. ENVIRONMENTAL TECHNOLOGY 2019; 40:3240-3251. [PMID: 29683398 DOI: 10.1080/09593330.2018.1468826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Fractionation of phenolic compounds in thermomechanical pulp mills was performed with a coupling of a prior treatment realized by flotation and a ceramic membrane process. Two lines of membranes filtration were tested. After a common 150 kDa clarification, 1 kDa filtration was performed with or without previous 5 kDa filtration. Flotation was shown to be inevitable to retain lipophilic compounds which cause severe membrane fouling. 150 kDa permeate flux was 20% higher when process water was firstly floated and was around 260 L h-1 m-2. 1 kDa membrane was fouled with 31% of irreversible fouling without previous 5 kDa filtration and phenolic compounds purity reached only 26% in this 1 kDa permeate. Phenolic compounds as lignin-like substances which might be attached to hemicelluloses were recovered in 5 kDa retentate. Retentate of 1 kDa might contain a major fraction of lignin derivatives with molecular weights around 1 kDa free or linked with phenolic acids. Permeate of 1 kDa contained 14% of phenolic compounds such as lignans and free phenolic acids purified at 50%.
Collapse
Affiliation(s)
- M Courbalay
- Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR CNRS 7178 , Strasbourg Cedex 2 , France
- Laboratoire d'Etudes et de Recherche sur le Matériau Bois, EA 4370 USC INRA , Vandoeuvre lès Nancy , France
| | - M Villain-Gambier
- Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR CNRS 7178 , Strasbourg Cedex 2 , France
| | - A Klem
- Norske Skog Golbey, Route Jean-Charles Pellerin , Golbey , France
| | - S Dumarcay
- Laboratoire d'Etudes et de Recherche sur le Matériau Bois, EA 4370 USC INRA , Vandoeuvre lès Nancy , France
| | - D Trebouet
- Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR CNRS 7178 , Strasbourg Cedex 2 , France
| |
Collapse
|
24
|
Piacentini E, Mazzei R, Bazzarelli F, Ranieri G, Poerio T, Giorno L. Oleuropein Aglycone Production and Formulation by Integrated Membrane Process. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. Piacentini
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87036 Rende (Cosenza), Italy
| | - R. Mazzei
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87036 Rende (Cosenza), Italy
| | - F. Bazzarelli
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87036 Rende (Cosenza), Italy
| | - G. Ranieri
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87036 Rende (Cosenza), Italy
| | - T. Poerio
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87036 Rende (Cosenza), Italy
| | - L. Giorno
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87036 Rende (Cosenza), Italy
| |
Collapse
|
25
|
Aher A, Sarma R, Crocker M, Bhattacharyya D. Selective molecular separation of lignin model compounds by reduced graphene oxide membranes from solvent-water mixture. Sep Purif Technol 2019; 230. [PMID: 31903045 DOI: 10.1016/j.seppur.2019.115865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Selective separation of lignin depolymerization products is key to fractionating and isolating high-value aromatic compounds from the depolymerization process. The primary aim of this study was to synthesis graphene oxide (GO) membranes for selective separations of lignin oligomeric units from polar organic solvent-water media. GO membranes were synthesized on a polymeric substrate by a shear assisted casting of aqueous GO dispersion using a wire-wound rod. Deposited GO was then reduced to different extents by controlled thermal incubation, and the impact on membrane performance was investigated. The extent of reduction of GO was established by extensive characterization with FTIR, XPS, Raman Spectroscopy, XRD, and contact angle measurements. Impressive performance with the rejection of over 70% for the model compound trimer BMP (2,6-bis[(2-hydroxy-5-methyl phenyl) methyl]-4-methylphenol) was achieved compared to only 20% rejection for the dimer GGE (guaiacylglycerol-β-guaiacylether) with isopropanol-water (90-10% by volume) as a solvent. This corresponds to an encouraging selective separation with selective permeation of dimer (GGE) 3.5 times higher compared to trimer (BMP). rGO membranes exhibited a stable performance over 84 h of operation at a shear rate of 1.1 Pa in a cross-flow mode of operation. Selective separation of GO can be effectively modulated by controlling the O/C ratio by the extent of reduction of GO; indeed, the retention of trimeric compounds increased with increasing GO reduction. The remarkable performance of GO membranes could enable energy-efficient fractionation of lignin oligomeric compounds from polar organic solvents.
Collapse
Affiliation(s)
- Ashish Aher
- Dept. Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Rupam Sarma
- Dept. Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Mark Crocker
- Center for Applied Energy Research, Lexington, KY 40511, USA.,Dept. of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Dept. Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
26
|
Volpe M, Wüst D, Merzari F, Lucian M, Andreottola G, Kruse A, Fiori L. One stage olive mill waste streams valorisation via hydrothermal carbonisation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 80:224-234. [PMID: 30455003 DOI: 10.1016/j.wasman.2018.09.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 05/22/2023]
Abstract
An olive waste stream mixture, coming from a three phase-continuous centrifugation olive oil mill industry, with a typical wet basis mass composition of olive pulp 39 wt%, kernels 5 wt% and olive mill waste water 56 wt%, was subjected to hydrothermal carbonisation (HTC) at 180, 220 and 250 °C for a 3-hour residence time in a 2-litre stainless steel electrically heated batch reactor. The raw feedstock and corresponding hydrochars were characterised in terms of proximate and ultimate analyses, higher heating values and energy properties. Results showed an increase in carbonisation of samples with increasing HTC severity and an energy densification ratio up to 142% (at 250 °C). Hydrochar obtained at 250 °C was successfully pelletised using a lab scale pelletiser without binders or expensive drying procedures. Energy characterisation (HHV, TGA), ATR-FTIR analysis, fouling index evaluation and pelletisation results suggested that olive mill waste hydrochars could be used as energy dense and mechanical stable bio-fuels. Characterisation of HTC residues in terms of mineral content via induced coupled plasma optical emission spectroscopy (ICP-OES) as well as Total and Dissolved Organic Carbon enabled to evaluate their potential use as soil improvers. Nutrients and polyphenolic compounds in HTC liquid fractions were evaluated for the estimation of their potential use as liquid fertilisers. Results showed that HTC could represent a viable route for the valorisation of olive mill industry waste streams.
Collapse
Affiliation(s)
- Maurizio Volpe
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy.
| | - Dominik Wüst
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy; University of Hohenheim, Institute of Agricultural Engineering, Department of Conversion Technologies and of Biobased Resources, Garbenstrasse 9, 70599 Stuttgart, Germany.
| | - Fabio Merzari
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy.
| | - Michela Lucian
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy.
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy.
| | - Andrea Kruse
- University of Hohenheim, Institute of Agricultural Engineering, Department of Conversion Technologies and of Biobased Resources, Garbenstrasse 9, 70599 Stuttgart, Germany.
| | - Luca Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy.
| |
Collapse
|
27
|
Ochando-Pulido JM, Martinez-Ferez A. Novel micro/ultra/nanocentrifugation membrane process assessment for revalorization and reclamation of agricultural wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:447-453. [PMID: 29894948 DOI: 10.1016/j.jenvman.2018.05.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/18/2017] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
The concentration and recovery of the high-added value phenolic fraction from two-phase olive mill wastewater and the simultaneous effluent treatment by a novel micro/ultra/nanocentrifugation membrane process assessment is addressed, permitting to gather information for a correct and effective screening procedure for the adequate membrane election (MF-UF-loose NF) for the target. Phenolic compounds are the major factor of phytotoxicity of these effluents, but on the other hand they present high antioxidant properties that makes them very relevant for food, cosmetic, pharmaceutical and biotechnological industries. The selection of a membrane MWCO between 100 kDa and 0.45 μm permitted the complete transfer of the phenolic fraction to the permeate, whereas below 3 kDa they would be transferred to the concentrate stream instead, with ∼60% COD reduction and EC lowered to 551-662 μS cm-1 in the final treated stream ensured, sensibly improving the effluent quality. This would provide a purified effluent with good salinity standards according to the indications given by the FAO for irrigation reuse. This procedure could be quick and reliable for the assessment of the adequate membrane needed for a particular purification process, in contrast with long-term, time consuming common bench-scale procedures.
Collapse
Affiliation(s)
- J M Ochando-Pulido
- Department of Chemical Engineering, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain.
| | - A Martinez-Ferez
- Department of Chemical Engineering, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
28
|
Bioconversion of p-Tyrosol into Hydroxytyrosol under Bench-Scale Fermentation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7390751. [PMID: 30105240 PMCID: PMC6076966 DOI: 10.1155/2018/7390751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022]
Abstract
Tyrosol hydroxylating Pseudomonas strain was previously isolated from olive mill wastewaters-irrigated soil. In the present work, experimental design was used to study the bioconversion of tyrosol in laboratory fermenters aiming at the recovery of the highest yields of hydroxytyrosol. The effects of biocatalyst loading and tyrosol concentration were studied. The bioconversion yield reached 86.9% (37.3 mM hydroxytyrosol) starting from a tyrosol concentration of 43 mM. Under these conditions, the specific productivity relative to the biocatalyst was 4.78 μM/min/g. The established model to predict bioconversion yield was validated in two bench-scale fermenters. At the downstream stage, the reaction product was recovered as a hydroxytyrosol rich solution after microfiltration and concentration under vacuum. Subsequent to this operation, hydroxytyrosol composition yielded 73.8% of the total dry matter.
Collapse
|
29
|
Shao H, Wei F, Luo D, Zhang K, Liang S, Tian Q, Qin S, Yu J. Improving the antifouling property of polypropylene hollow fiber membranes by in situ
ultrasonic wave-assisted polymerization of styrene and maleic anhydride. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huiju Shao
- College of Materials Science and Metallurgy; Guizhou University; Guiyang, 550025 People's Republic of China
- National Engineering Research Center for Compounding and Modification of Polymer Materials; Guiyang, 550014 People's Republic of China
| | - Fujian Wei
- National Engineering Research Center for Compounding and Modification of Polymer Materials; Guiyang, 550014 People's Republic of China
| | - Dajun Luo
- College of Materials Science and Metallurgy; Guizhou University; Guiyang, 550025 People's Republic of China
| | - Kaizhou Zhang
- National Engineering Research Center for Compounding and Modification of Polymer Materials; Guiyang, 550014 People's Republic of China
| | - Songmiao Liang
- Vontron Membrane Technology Co., Ltd; Guiyang, 550018 People's Republic of China
| | - Qin Tian
- College of Materials Science and Metallurgy; Guizhou University; Guiyang, 550025 People's Republic of China
- National Engineering Research Center for Compounding and Modification of Polymer Materials; Guiyang, 550014 People's Republic of China
| | - Shuhao Qin
- College of Materials Science and Metallurgy; Guizhou University; Guiyang, 550025 People's Republic of China
- National Engineering Research Center for Compounding and Modification of Polymer Materials; Guiyang, 550014 People's Republic of China
| | - Jie Yu
- College of Materials Science and Metallurgy; Guizhou University; Guiyang, 550025 People's Republic of China
- National Engineering Research Center for Compounding and Modification of Polymer Materials; Guiyang, 550014 People's Republic of China
| |
Collapse
|
30
|
Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products. Int J Mol Sci 2018; 19:ijms19020351. [PMID: 29364859 PMCID: PMC5855573 DOI: 10.3390/ijms19020351] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/12/2018] [Accepted: 01/22/2018] [Indexed: 11/16/2022] Open
Abstract
Pressure-driven membrane-based technologies represent a valid approach to reduce the environmental pollution of several agro-food by-products. Recently, in relation to the major interest for natural compounds with biological activities, their use has been also addressed to the recovery, separation and fractionation of phenolic compounds from such by-products. In particular, tight ultrafiltration (UF) and nanolfiltration (NF) membranes have been recognized for their capability to recover phenolic compounds from several types of agro-food by-products. The separation capability of these membranes, as well as their productivity, depends on multiple factors such as membrane material, molecular weight cut-off (MWCO) and operating conditions (e.g., pressure, temperature, feed flow rate, volume reduction factor, etc.). This paper aims at providing a critical overview of the influence of these parameters on the recovery of phenolic compounds from agro-food by-products by using tight UF and NF membranes. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and other phenomena occurring in the process. Current extraction methodologies of phenolic compounds from raw materials are also introduced in order to drive the implementation of integrated systems for the production of actractive phenolic formulations of potential interest as food antioxidants.
Collapse
|
31
|
Cassano A, De Luca G, Conidi C, Drioli E. Effect of polyphenols-membrane interactions on the performance of membrane-based processes. A review. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
|
33
|
Thue PS, dos Reis GS, Lima EC, Sieliechi JM, Dotto GL, Wamba AGN, Dias SLP, Pavan FA. Activated carbon obtained from sapelli wood sawdust by microwave heating for o-cresol adsorption. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2683-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Microencapsulation by Membrane Emulsification of Biophenols Recovered from Olive Mill Wastewaters. MEMBRANES 2016; 6:membranes6020025. [PMID: 27171115 PMCID: PMC4931520 DOI: 10.3390/membranes6020025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 11/17/2022]
Abstract
Biophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs) are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds. Applications for the encapsulation have increased in the food industry as well as the pharmaceutical and cosmetic fields, among others. Advancements in micro-fabrication methods are needed to design new functional particles with target properties in terms of size, size distribution, and functional activity. This paper describes the use of the membrane emulsification method for the fine-tuning of microparticle production with biofunctional activity. In particular, in this pioneering work, membrane emulsification has been used as an advanced method for biophenols encapsulation. Catechol has been used as a biophenol model, while a biophenols mixture recovered from OMWWs were used as a real matrix. Water-in-oil emulsions with droplet sizes approximately 2.3 times the membrane pore diameter, a distribution span of 0.33, and high encapsulation efficiency (98% ± 1% and 92% ± 3%, for catechol and biophenols, respectively) were produced. The release of biophenols was also investigated.
Collapse
|
35
|
Gebreyohannes AY, Mazzei R, Giorno L. Trends and current practices of olive mill wastewater treatment: Application of integrated membrane process and its future perspective. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|