1
|
Kürzl C, Hartinger M, Ong P, Schopf R, Schiffer S, Kulozik U. Increasing Performance of Spiral-Wound Modules (SWMs) by Improving Stability against Axial Pressure Drop and Utilising Pulsed Flow. MEMBRANES 2023; 13:791. [PMID: 37755213 PMCID: PMC10535890 DOI: 10.3390/membranes13090791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Spacer-induced flow shadows and limited mechanical stability due to module construction and geometry are the main obstacles to improving the filtration performance and cleanability of microfiltration spiral-wound membranes (SWMs), applied to milk protein fractionation in this study. The goal of this study was first to improve filtration performance and cleanability by utilising pulsed flow in a modified pilot-scale filtration plant. The second goal was to enhance membrane stability against module deformation by flow-induced friction in the axial direction ("membrane telescoping"). This was accomplished by stabilising membrane layers, including spacers, at the membrane inlet by glue connections. Pulsed flow characteristics similar to those reported in previous lab-scale studies could be achieved by establishing an on/off bypass around the membrane module, thus enabling a high-frequency flow variation. Pulsed flow significantly increased filtration performance (target protein mass flow into the permeate increased by 26%) and cleaning success (protein removal increased by 28%). Furthermore, adding feed-side glue connections increased the mechanical membrane stability in terms of allowed volume throughput by ≥100% compared to unmodified modules, thus allowing operation with higher axial pressure drops, flow velocities and pulsation amplitudes.
Collapse
Affiliation(s)
- Christian Kürzl
- Food and Bioprocess Engineering, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany
- Food Process Engineering, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany
| | - Martin Hartinger
- Food and Bioprocess Engineering, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany
| | - Patrick Ong
- Food and Bioprocess Engineering, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany
| | - Roland Schopf
- Food and Bioprocess Engineering, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany
| | - Simon Schiffer
- Food and Bioprocess Engineering, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany
| | - Ulrich Kulozik
- Food and Bioprocess Engineering, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany
| |
Collapse
|
2
|
Koyama H, Mori T, Nagai K, Shimamoto S. Exploration of advanced cellulosic material for membrane filtration with outstanding antifouling property. RSC Adv 2023; 13:7490-7502. [PMID: 36908546 PMCID: PMC9993463 DOI: 10.1039/d2ra08165b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Membranes, at times, have issues due to membrane fouling. The membrane fouling leads to performance deterioration and poses a potential to clog the membrane. Here we present experimental works carried out with emphasis on the antifouling properties, chlorine resistance, and mechanical properties of cellulose triacetate (CTA) and cellulose esters. We present that antifouling performance of cellulose esters evaluated by means of the VCG theory decreases with increasing carbon number in the substituent because of the high electron-donating nature of short aliphatic ester groups. When a long aliphatic ester group is required in terms of other properties such as resistance to chlorine, introducing it together with another substituent with an electron-donating nature such as an ethylene glycol moiety may strike a balance between antifouling and other performances.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Business Development Center, Innovation and Business Development Headquarters, Daicel Corporation Japan
- Graduate School of Natural Science and Technology, Kanazawa University Japan
| | - Taro Mori
- Graduate School of Natural Science and Technology, Kanazawa University Japan
- Biomass Innovation Center, Daicel Corporation Japan
| | - Kanji Nagai
- Graduate School of Natural Science and Technology, Kanazawa University Japan
- Life Sciences R&D Center, CPI Company, Daicel Corporation Japan
| | - Shu Shimamoto
- Business Development Center, Innovation and Business Development Headquarters, Daicel Corporation Japan
- Graduate School of Natural Science and Technology, Kanazawa University Japan
| |
Collapse
|
3
|
Improved quantitative evaluation of the fouling potential in spacer-filled membrane filtration channels through a biofouling index based on the relative pressure drop. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Sutariya B, Sargaonkar A, Raval H. Methods of visualizing hydrodynamics and fouling in membrane filtration systems: recent trends. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2089585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bhaumik Sutariya
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aabha Sargaonkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Cleaner Technology and Modelling Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Hiren Raval
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Pratofiorito G, Horn H, Saravia F. Differentiating fouling on the membrane and on the spacer in low-pressure reverse-osmosis under high organic load using optical coherence tomography. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Permeation Increases Biofilm Development in Nanofiltration Membranes Operated with Varying Feed Water Phosphorous Concentrations. MEMBRANES 2022; 12:membranes12030335. [PMID: 35323810 PMCID: PMC8950030 DOI: 10.3390/membranes12030335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023]
Abstract
Nutrient limitation has been proposed as a biofouling control strategy for membrane systems. However, the impact of permeation on biofilm development under phosphorus-limited and enriched conditions is poorly understood. This study analyzed biofilm development in membrane fouling simulators (MFSs) with and without permeation supplied with water varying dosed phosphorus concentrations (0 and 25 μg P·L−1). The MFSs operated under permeation conditions were run at a constant flux of 15.6 L·m2·h−1 for 4.7 days. Feed channel pressure drop, transmembrane pressure, and flux were used as performance indicators. Optical coherence tomography (OCT) images and biomass quantification were used to analyze the developed biofilms. The total phosphorus concentration that accumulated on the membrane and spacer was quantified by using microwave digestion and inductively coupled plasma atomic emission spectroscopy (ICP-OES). Results show that permeation impacts biofilm development depending on nutrient condition with a stronger impact at low P concentration (pressure drop increase: 282%; flux decline: 11%) compared to a higher P condition (pressure drop increase: 206%; flux decline: 2%). The biofilm that developed at 0 μg P·L−1 under permeation conditions resulted in a higher performance decline due to biofilm localization and spread in the MFS. A thicker biofilm developed on the membrane for biofilms grown at 0 μg P·L−1 under permeation conditions, causing a stronger effect on flux decline (11%) compared to non-permeation conditions (5%). The difference in the biofilm thickness on the membrane was attributed to a higher phosphorus concentration in the membrane biofilm under permeation conditions. Permeation has an impact on biofilm development and, therefore, should not be excluded in biofouling studies.
Collapse
|
7
|
Schopf R, Schmidt F, Linner J, Kulozik U. Comparative Assessment of Tubular Ceramic, Spiral Wound, and Hollow Fiber Membrane Microfiltration Module Systems for Milk Protein Fractionation. Foods 2021; 10:692. [PMID: 33805098 PMCID: PMC8064107 DOI: 10.3390/foods10040692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/02/2022] Open
Abstract
The fractionation efficiency of hollow fiber membranes (HFM) for milk protein fractionation was compared to ceramic tubular membranes (CTM) and spiral wound membranes (SWM). HFM combine the features of high membrane packing density of SWM and the more defined flow conditions and better control of membrane fouling in the open flow channel cross-sections of CTM. The aim was to comparatively analyze the effect of variations in local pressure and flow conditions while using single industrially sized standard modules with similar dimensions and module footprints (module diameter and length). The comparative assessment with varied transmembrane pressure was first applied for a constant feed volume flow rate of 20 m3 h-1 and, secondly, with the same axial pressure drop along the modules of 1.3 bar m-1, similar to commonly applied crossflow velocity and wall shear stress conditions at the industrial level. Flux, transmission factor of proteins (whey proteins and serum caseins), and specific protein mass flow per area membrane and per volume of module installed were determined as the evaluation criteria. The casein-to-whey protein ratios were calculated as a measure for protein fractionation effect. Results obtained show that HFM, which so far are under-represented as standard module types in industrial dairy applications, appear to be a competitive alternative to SWM and CTM for milk protein fractionation.
Collapse
Affiliation(s)
- Roland Schopf
- Chair of Food and Bioprocess Engineering, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany; (F.S.); (J.L.); (U.K.)
| | | | | | | |
Collapse
|
8
|
Javier L, Farhat NM, Vrouwenvelder JS. Enhanced hydraulic cleanability of biofilms developed under a low phosphorus concentration in reverse osmosis membrane systems. WATER RESEARCH X 2021; 10:100085. [PMID: 33385157 PMCID: PMC7770974 DOI: 10.1016/j.wroa.2020.100085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 05/08/2023]
Abstract
A critical problem in seawater reverse osmosis (RO) filtration processes is biofilm accumulation, which reduces system performance and increases energy requirements. As a result, membrane systems need to be periodically cleaned by combining chemical and physical protocols. Nutrient limitation in the feed water is a strategy to control biofilm formation, lengthening stable membrane system performance. However, the cleanability of biofilms developed under various feed water nutrient conditions is not well understood. This study analyzes the removal efficiency of biofilms grown in membrane fouling simulators (MFSs) supplied with water varying in phosphorus concentrations (3 and 6 μg P·L-1 and with constant biodegradable carbon concentration) by applying hydraulic cleaning after a defined 140% increase in the feed channel pressure drop, through increasing the cross-flow velocity from 0.18 m s-1 to 0.35 m s-1 for 1 h. The two phosphorus concentrations (3 and 6 μg P·L-1) simulate the RO feed water without and with the addition of a phosphorus-based antiscalant, respectively, and were chosen based on measurements at a full-scale seawater RO desalination plant. Biomass quantification parameters performed after membrane autopsies such as total cell count, adenosine triphosphate, total organic carbon, and extracellular polymeric substances were used along with feed channel pressure drop measurements to evaluate biofilm removal efficiency. The outlet water during hydraulic cleaning (1 h) was collected and characterized as well. Optical coherence tomography images were taken before and after hydraulic cleaning for visualization of biofilm morphology. Biofilms grown at 3 μg P·L-1 had an enhanced hydraulic cleanability compared to biofilms grown at 6 μg P·L-1. The higher detachment for biofilms grown at a lower phosphorus concentration was explained by more soluble polymers in the EPS, resulting in a lower biofilm cohesive and adhesive strength. This study confirms that manipulating the feed water nutrient composition can engineer a biofilm that is easier to remove, shifting research focus towards biofilm engineering and more sustainable cleaning strategies.
Collapse
Affiliation(s)
- Luisa Javier
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Nadia M. Farhat
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
- Corresponding author.
| | - Johannes S. Vrouwenvelder
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
- Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
| |
Collapse
|
9
|
Gu J, Luo J, Li M, Huang C, Heng Y. Modeling of pressure drop in reverse osmosis feed channels using multilayer artificial neural networks. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Siebdrath N, Farhat N, Ding W, Kruithof J, Vrouwenvelder JS. Impact of membrane biofouling in the sequential development of performance indicators: Feed channel pressure drop, permeability, and salt rejection. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Farhat NM, Javier L, Van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS. Role of feed water biodegradable substrate concentration on biofouling: Biofilm characteristics, membrane performance and cleanability. WATER RESEARCH 2019; 150:1-11. [PMID: 30508707 DOI: 10.1016/j.watres.2018.11.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Biofouling severely impacts operational performance of membrane systems increasing the cost of water production. Understanding the effect of critical parameters of feed water such as biodegradable substrate concentration on the developed biofilm characteristics enables development of more effective biofouling control strategies. In this study, the effect of substrate concentration on the biofilm characteristics was examined using membrane fouling simulators (MFSs). A feed channel pressure drop (PD) increase of 200 mbar was used as a benchmark to study the developed biofilm. The amount and characteristics of the formed biofilm were analysed in relation to membrane performance indicators: feed channel pressure drop and permeate flux. The effect of the characteristics of the biofilm developed at three substrate concentrations on the removal efficiency of the different biofilms was evaluated applying acid/base cleaning. Results showed that a higher feed water substrate concentration caused a higher biomass amount, a faster PD increase, but a lower permeate flux decline. The permeate flux decline was affected by the spatial location and the physical characteristics of the biofilm rather than the total amount of biofilm. The slower growing biofilm developed at the lowest substrate concentration was harder to remove by NaOH/HCl cleanings than the biofilm developed at the higher substrate concentrations. Effective biofilm removal is essential to prevent a fast biofilm regrowth after cleaning. While substrate limitation is a generally accepted biofouling control strategy delaying biofouling, development of advanced cleaning methods to remove biofilms formed under substrate limited conditions is of paramount importance.
Collapse
Affiliation(s)
- N M Farhat
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - L Javier
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - M C M Van Loosdrecht
- Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - J C Kruithof
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - J S Vrouwenvelder
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia; Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| |
Collapse
|