1
|
Kim HJ, Nam JY, Kim HW, Jwa E. Evaluation of a mixture of livestock wastewater and food waste as a substrate in a continuous-flow microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176884. [PMID: 39414052 DOI: 10.1016/j.scitotenv.2024.176884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
While the efficiency of microbial electrolysis cell (MEC) systems has improved remarkably, their application in continuous reactors and wastewater treatment remains poorly understood. This study evaluated the performance of a continuous-flow MEC using livestock wastewater and food waste as substrates. The MEC system achieved a hydrogen production rate of 5.2 L/L/day using acetate as a substrate, and a rate of 2.9-4.6 L/L/day when real wastewater mixtures were used. In terms of chemical oxygen demand (COD) removal, the system demonstrated high efficiency, with values ranging from 42.3 % to 62.2 % depending on the wastewater composition. Volatile fatty acid (VFA) removal reached up to 72.8 %. The current density averaged 9.9 A/m2 with acetate and decreased to 7.0 and 6.1 A/m2 in phases using wastewater, reflecting the adaptation of the microbial community to the more complex substrates. The microbial community was dominated by Firmicutes, Bacteroidetes, Proteobacteria, and Synergistetes, with Proteobacteria showing a particularly high abundance near the anion exchange membrane (AEM) on the anode. The MEC process demonstrates substantial promise as a sustainable technology for both biohydrogen production and wastewater treatment. With further optimization and scaling, MECs could play a crucial role in the circular economy by converting waste into clean energy while simultaneously treating wastewater, offering a pathway toward more sustainable industrial and environmental practices.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Department of Integrated Water Management, Jeonbuk State Office, 225 Hyoja-ro, Wansan-gu, Jeonju-si 54968, Republic of Korea
| | - Joo-Youn Nam
- Convergence Research Center of Sector Coupling & Integration, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea; School of Civil and Environmental Engineering, Hankyong National University, 327 Jungang-ro, Anseong 17579, Republic of Korea; Institute of Environment, Hankyong National University, 327 Jungang-ro, Anseong 17579, Republic of Korea.
| | - Hyun-Woo Kim
- Department of Environmental Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Republic of Korea
| | - Eunjin Jwa
- Convergence Research Center of Sector Coupling & Integration, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea.
| |
Collapse
|
2
|
Luotong R, Gongsong L, Bin D, Zhenxi W, Sheng X, Siyu C, Danping H, Xiaoguang C. Temporal and spatial variations in the physical and chemical properties of anaerobic granular sludge within a Pilot Spiral Symmetry Stream Anaerobic Bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168390. [PMID: 37952660 DOI: 10.1016/j.scitotenv.2023.168390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Anaerobic granular sludge (AGS) determines the high performance of the bioreactor. To study the regionalization of granular sludge in the bioreactor, a Pilot Spiral Symmetry Stream Anaerobic Bioreactor (P-SSSAB) was established over 216 days, divided into three zones (I, II, and III) from bottom to top. AGS at the bottom of P-SSSAB had a higher porosity (60.35 %-83.27 %) and more suitable settling velocity (60 m/h) when the particle size range was 1.0-2.0 mm. This proved the better metabolic activity and superior settling performance in zone I than in zones II and III. In addition, the elemental composition of AGS in various zones was analyzed. The relative content of iron (5.66 %, 3.36 %, and 1.38 %, respectively) and sulfur (2.47 %, 2.19 %, and 1.49 %, respectively) in zone I, II, and III tended to decrease with the height of P-SSSAB. This also verified the better mass transfer performance and operational stability in lower zone than in upper zone. However, the monitoring of bed temperature in various zones revealed that the microbial activity in zone I was 6.7×10-12~3.5×10-2 times and 1.8×10-15~1.4×10-3 times that in zones II and III, respectively, which indicated that the unit activity of AGS in zone I was the worst. It indicated that AGS in lower zone had poor unit activity but had the highest unit capacity due to the high sludge concentration. Besides, the unit capacity of the upper zone was too weak to produce enough alkalinity to neutralize acid produced by excessive hydrolysis and acidification in lower zone, resulting in the worst treatment efficiency of the upper zone. Therefore, temperature and concentration ratios under various spatial distributions in bioreactors are vital to the overall sewage treatment stability and efficiency of bioreactors in actual engineering applications.
Collapse
Affiliation(s)
- Ren Luotong
- Shanghai Frontier Science Research Center for Modern Textiles, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Li Gongsong
- Shanghai Frontier Science Research Center for Modern Textiles, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Dong Bin
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wang Zhenxi
- College of Science, Nanchang Institute of Technology, Nanchang 330099, China
| | - Xu Sheng
- College of Science, Nanchang Institute of Technology, Nanchang 330099, China
| | - Chen Siyu
- Sichuan Provincial Key Lab of Process Equipment and Control, School of Mechanical Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Huang Danping
- Sichuan Provincial Key Lab of Process Equipment and Control, School of Mechanical Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Chen Xiaoguang
- Shanghai Frontier Science Research Center for Modern Textiles, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Jiang M, Huang J, Li P, Ataa B, Gu J, Wu Z, Qiao W. Optimization of membrane filtration and cleaning strategy in a high solid thermophilic AnMBR treating food waste. CHEMOSPHERE 2023; 342:140151. [PMID: 37714478 DOI: 10.1016/j.chemosphere.2023.140151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Anaerobic membrane bioreactor is advantageous over traditional processes for food waste treatment, i.e. short retention time, high loading rate, and particulate clean permeate. However, establishing a sustainable membrane filtration is a long-standing challenge because of its high viscosity and solids concentration characteristics. Therefore, this study investigated the changes in the membrane permeability before and after the cleaning during a 130-day thermophilic anaerobic experiment. Results show that the AnMBR system could maintain high stability even under a short HRT of 10 days and OLR of 9.0 kg-COD/(m3·d) with low volatile fatty acid of 50 mg/L. The membrane filtration deteriorates with the concurrence of a sharp increase of viscosity when the volatile solids reached 23 g/L. A critical flux was achieved at 5.5 L/(m2·h) under optimized operation conditions, membrane filtration/relaxing ratio with less than 4:1 at a hydraulic retention time of 15 d. Membrane fouling can be removed by soaking the membrane in NaClO (1 g/L, 15 h) and citric acid (2 g/L, 2 h). Conclusively, this work provides insight to establish the operation strategy for a thermophilic AnMBR treating food waste.
Collapse
Affiliation(s)
- Mengmeng Jiang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Jiu Huang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Peng Li
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Bridget Ataa
- College of Engineering, China Agricultural University, Beijing, 100083, China; Sanya Institute, China Agricultural University, Sanya, 572024, China
| | - Jinheng Gu
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhiyue Wu
- College of Engineering, China Agricultural University, Beijing, 100083, China; Sanya Institute, China Agricultural University, Sanya, 572024, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing, 100083, China; Sanya Institute, China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
4
|
Bhattacharyya A, Liu L, Walsh M, Lee K. Membrane technology for treating decanted oily wastewater from marine oil spill operations: Comparison between membrane filtration and membrane bioreactor. MARINE POLLUTION BULLETIN 2023; 194:115397. [PMID: 37573669 DOI: 10.1016/j.marpolbul.2023.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Canadian oil spill response regulations require collection of all liquids from a response operation, this involves many vessels and frequent trips to shore to dispose of collected liquids, which mainly comprise of water. Onsite treatment of decanted oily seawater would benefit operations by addressing vessel storage and trip frequency issues. Membrane technology has proven effective at treating oily wastewater from various industries; therefore, is a good candidate for onsite treatment of wastewater generated from response operations. In this study, oily seawater treatment efficiency of a pilot-scale physical membrane filtration and a bench-scale membrane bioreactor (MBR) were compared. Three main parameters were considered, total petroleum hydrocarbon, petroleum hydrocarbon fractions, and polycyclic aromatic hydrocarbons. 99.1 % and 98.2 % TPH removal efficiency were achieved by MBR (93.1 ppm initial oil concentration) and membrane filtration (28.3 ppm initial oil concentration), respectively. The MBR showed more promise than membrane filtration for onsite treatment of decanted wastewater.
Collapse
Affiliation(s)
- Anisha Bhattacharyya
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Lei Liu
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Margaret Walsh
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON K1A 0E6, Canada
| |
Collapse
|
5
|
Jiang M, Qiao W, Jiang P, Wu Z, Lin M, Sun Y, Dong R. Mitigating membrane fouling in a high solid food waste thermophilic anaerobic membrane bioreactor by incorporating fixed bed bio-carriers. CHEMOSPHERE 2022; 292:133488. [PMID: 34995632 DOI: 10.1016/j.chemosphere.2021.133488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Hybrid anaerobic membrane bioreactor (Hy-AnMBR) was developed by incorporating polyurethane sponge carriers to mitigate membrane fouling. The results showed that the membrane fouling was well controlled in Hy-AnMBR from the aspects of sludge property and membrane filtration performance. The solid concentration, including TS and MLSS in the Hy-AnMBR was reduced after introducing the fixed bed carrier, which was 13% and 20% lower than the control AnMBR (Con-AnMBR), and this resulted in improved filtration performance. The scanning electron microscope (SEM) photograph showed that membrane pores could still be observed on the Hy-AnMBR surface, indicating that the cake layer fouling of the Hy-AnMBR was less than the Con-AnMBR. The increase of the EPS and SMP promoted the acceleration of the membrane fouling rate. Analysis through confocal laser scanning microscopy (CLSM) and membrane cleaning revealed that adding sponge carriers mitigated 3.3%-9% pore-blocking, and the total membrane resistance in the Hy-AnMBR was reduced by 52% compared to the Con-AnMBR. Chemical cleaning was essential for pollutant removal, and membrane permeability recovery was more than 97%.
Collapse
Affiliation(s)
- Mengmeng Jiang
- College of Engineering, China Agricultural University, Beijing, 100083, China; R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BGFuels), Beijing, 100083, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing, 100083, China; R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BGFuels), Beijing, 100083, China.
| | - Pengwu Jiang
- College of Engineering, China Agricultural University, Beijing, 100083, China; R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BGFuels), Beijing, 100083, China
| | - Zhiyue Wu
- College of Engineering, China Agricultural University, Beijing, 100083, China; R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BGFuels), Beijing, 100083, China
| | - Min Lin
- College of Engineering, China Agricultural University, Beijing, 100083, China; R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BGFuels), Beijing, 100083, China
| | - Yibo Sun
- College of Engineering, China Agricultural University, Beijing, 100083, China; R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BGFuels), Beijing, 100083, China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, 100083, China; R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BGFuels), Beijing, 100083, China
| |
Collapse
|
6
|
Song Q, Chen X, Tang L, Zhou W. Treatment of polyvinyl alcohol containing wastewater in two stage spiral symmetrical stream anaerobic bioreactors coupled a sequencing batch reactor. BIORESOURCE TECHNOLOGY 2021; 340:125702. [PMID: 34385128 DOI: 10.1016/j.biortech.2021.125702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
This work aimed to study the treatment of polyvinyl alcohol containing wastewater (PVA-containing wastewater) discharged from textile industry. The batch experiment verified the feasibility of anaerobic treatment and determined that the optimal substrate COD was around 3000 mg/L. The single spiral symmetrical stream anaerobic bioreactor (SSSAB) was used for treating PVA-containing wastewater, which shows the stability of SSSAB and the improvement of biodegradability of wastewater. Finally, two stage SSSABs coupled SBR was proposed. By this scheme, under the influent COD of 3014 mg/L and PVA of 413 mg/L, the COD and PVA removal reached 89.4% and 90.7%, respectively, which were higher than the values obtained by other schemes. Contribution rates of reactors show that each reactor plays an essential role, and SEM images show the unique of microbial flora in each SSSAB. The SSSAB-SSSAB-SBR process can provide an alternative to the chemical methods for treating PVA-containing wastewater.
Collapse
Affiliation(s)
- Qi Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| | - Lijuan Tang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Weizhu Zhou
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Song Q, Sun Z, Chang Y, Zhang W, Lv Y, Wang J, Sun F, Ma Y, Li Y, Wang F, Chen X. Efficient degradation of polyacrylate containing wastewater by combined anaerobic-aerobic fluidized bed bioreactors. BIORESOURCE TECHNOLOGY 2021; 332:125108. [PMID: 33845320 DOI: 10.1016/j.biortech.2021.125108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Polyacrylate containing wastewater (PCW) is the typical sewage discharged by the textile industry. It has extremely poor biodegradability, and chemical methods were used conventionally as the only way for treating PCW. This study is demonstrating a novel biological method. In batch experiment monod kinetics was applied to the experimental data, which indicated that anaerobic treatment used for PCW is feasible. The pilot-scale experiment combined a Spiral Symmetry Stream Anaerobic Bioreactor (SSSAB) and an air-lift external circulation vortex enhancement nitrogen removal fluidized bed bioreactor (AFB). The COD and NH4+-N removal reached up to 95.2% and 96.6%, respectively, which were higher than the value obtained by other chemical methods. High-throughput sequencing analysis indicated that the relative abundance of Proteobacteria, Firmicutes and Bacteroidetes increased, which contribute to the degradation of PCW. Therefore, PCW can be degraded efficiently by using a SSSAB-AFB technique and thus provides an alternative to the chemical methods.
Collapse
Affiliation(s)
- Qi Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Zheng Sun
- Bashan Weaving Group Co., Ltd, Zibo 255000, China
| | - Yong Chang
- Bashan Weaving Group Co., Ltd, Zibo 255000, China
| | - Weifeng Zhang
- China Filament Weaving Association, Beijing 100742, China
| | - Yingzhi Lv
- Bashan Weaving Group Co., Ltd, Zibo 255000, China
| | - Jiayi Wang
- China Filament Weaving Association, Beijing 100742, China
| | - Fenghao Sun
- Bashan Weaving Group Co., Ltd, Zibo 255000, China
| | - Yanxue Ma
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuling Li
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Fengbo Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
Chen X, Zhou W, Li G, Song Q, Ismail M, Wang Y, Ren L, Cheng C. Anaerobic biodegradation of soybean-process wastewater: Operation strategy and sludge bed characteristics of a high-performance Spiral Symmetric Stream Anaerobic Bioreactor. WATER RESEARCH 2021; 197:117095. [PMID: 33862392 DOI: 10.1016/j.watres.2021.117095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
A 300m3/d demonstration project of soybean-process wastewater has been established recently with a Spiral Symmetric Stream Anaerobic Bioreactor (SSSAB) as the core. In order to obtain the optimal operation strategy for a full-scale SSSAB and to make it run efficiently and stably in a demonstration project, a Pilot-scale SSSAB (P-SSSAB, effective volume 100 L) was performed for the treatment of soybean-process wastewater over 216 days. The volumetric load rate (VLR) range of the P-SSSAB was 0.32~27.17 kg COD/(m3·d), where the highest VLR [27.17 kg COD/(m3·d)] was 2.01 times to the highest value [13.5 kg COD/(m3·d)] reported. The pH and VFA/ALK of the effluent from the P-SSSAB were in the range of 6.9 up to 9.2 and 0.03 up to 0.17, respectively. The methane yield of the P-SSSAB increased from 0.03 m3/kg COD to 0.47 m3/kg COD, which was 3.36 times to the maximum value (0.14 m3/kg COD) reported. To meet the influent requirement of the aerobic biological treatment in demonstration project (influent COD ≤ 1.5 g/L), the maximum VLR of SSSAB was optimal at about 22 kg COD/(m3·d). By analyzing the sludge bed characteristics of the P-SSSAB, it was obvious that zone I (the bottom of the bed) was the major contributor of the COD removal, while zone III (the upper part of the bed) was the major contributor for the NH4+-N increase. The anaerobic granular sludge (AGS) in the bed showed a good granulation. The average MLVSS/MLSS value in sludge bed was about 0.7, and PN/PS in TB-EPS (zone I, II and III) increased to 6.830, 4.257, and 3.747, respectively. SMA and coenzyme F420 values of zone III were the maximum [666.35 ml CH4/(g VSS·d) and 0.690 mol/g VSS, respectively]. According to the analysis obtained from the 16S rRNA high-throughput sequencing, the microbial community in the AGS had been more specific to the soybean-process wastewater since the bacteria Firmicutes were increased. The relative abundance of microbe which perform direct interspecies electron transfer (DIET) for the syntrophic degradation of VFAs and production of the methane has been increased significantly, such as the bacteria Syntrophomonas and archaea Methanosaeta.
Collapse
Affiliation(s)
- Xiaoguang Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| | - Weizhu Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gongsong Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qi Song
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhammad Ismail
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiqi Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Luotong Ren
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chen Cheng
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
9
|
A Review on the Mechanism, Impacts and Control Methods of Membrane Fouling in MBR System. MEMBRANES 2020; 10:membranes10020024. [PMID: 32033001 PMCID: PMC7073750 DOI: 10.3390/membranes10020024] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/26/2022]
Abstract
Compared with the traditional activated sludge process, a membrane bioreactor (MBR) has many advantages, such as good effluent quality, small floor space, low residual sludge yield and easy automatic control. It has a promising prospect in wastewater treatment and reuse. However, membrane fouling is the biggest obstacle to the wide application of MBR. This paper aims at summarizing the new research progress of membrane fouling mechanism, control, prediction and detection in the MBR systems. Classification, mechanism, influencing factors and control of membrane fouling, membrane life prediction and online monitoring of membrane fouling are discussed. The research trends of relevant research areas in MBR membrane fouling are prospected.
Collapse
|
10
|
Cheng H, Li Y, Kato H, Li YY. Enhancement of sustainable flux by optimizing filtration mode of a high-solid anaerobic membrane bioreactor during long-term continuous treatment of food waste. WATER RESEARCH 2020; 168:115195. [PMID: 31639590 DOI: 10.1016/j.watres.2019.115195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Membrane fouling or flux limitation is the major bottleneck that hinders anaerobic membrane bioreactor (AnMBR) application. An AnMBR with a working volume of 15 L was operated for 180 days to investigate the maximum sustainable flux at different high solid concentrations during the anaerobic treatment of food waste. A total of eight filtration-to-relaxation (F/R) ratios were incorporated, with a fixed filtration time of 3 min and varied relaxation times (decreased from 12 to 1 min). Besides, a total of five instantaneous fluxes were applied: 12, 14, 16, 18 and 20 L/m2/h (LMH). Results showed that sustainable flux was greatly enhanced by filtration mode optimization. The optimal F/R ratios were 3:1, 3:1, 3:1 and 3:6 at mixed liquor total solid (MLTS) concentrations of 10, 15, 20 and 25 g/L, respectively. The corresponding sustainable flux values were 13.2 ± 0.3, 10.1 ± 0.4, 9.3 ± 0.2 and 4.0 ± 0.3 LMH, respectively. These values were 29%, 35%, 52% and 21% higher than the critical flux determined by the flux-stepping technique. The results of this study were used to perform a mathematical simulation. The obtained regression equation between the maximum sustainable flux and MLTS concentration can be used to predict the sustainable flux at other MLTS concentrations. This work provides valuable insight into the design and operation of high-solid AnMBRs, and is expected to contribute to further advances in the application of AnMBRs in industry.
Collapse
Affiliation(s)
- Hui Cheng
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi, 980-8579, Japan
| | - Yemei Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi, 980-8579, Japan
| | - Hiroyuki Kato
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki-Aza, Sendai, Miyagi, 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi, 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi, 980-8579, Japan.
| |
Collapse
|
11
|
Li C, Guo X, Wang X, Fan S, Zhou Q, Shao H, Hu W, Li C, Tong L, Kumar RR, Huang J. Membrane fouling mitigation by coupling applied electric field in membrane system: Configuration, mechanism and performance. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.150] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Schmitt F, Do KU. Prediction of membrane fouling using artificial neural networks for wastewater treated by membrane bioreactor technologies: bottlenecks and possibilities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22885-22913. [PMID: 28871555 DOI: 10.1007/s11356-017-0046-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Membrane fouling is a major concern for the optimization of membrane bioreactor (MBR) technologies. Numerous studies have been led in the field of membrane fouling control in order to assess with precision the fouling mechanisms which affect membrane resistance to filtration, such as the wastewater characteristics, the mixed liquor constituents, or the operational conditions, for example. Worldwide applications of MBRs in wastewater treatment plants treating all kinds of influents require new methods to predict membrane fouling and thus optimize operating MBRs. That is why new models capable of simulating membrane fouling phenomenon were progressively developed, using mainly a mathematical or numerical approach. Faced with the limits of such models, artificial neural networks (ANNs) were progressively considered to predict membrane fouling in MBRs and showed great potential. This review summarizes fouling control methods used in MBRs and models built in order to predict membrane fouling. A critical study of the application of ANNs in the prediction of membrane fouling in MBRs was carried out with the aim of presenting the bottlenecks associated with this method and the possibilities for further investigation on the subject.
Collapse
Affiliation(s)
- Félix Schmitt
- School of Environmental Science and Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
- Energy and Environmental Department, National Institute of Applied Sciences of Lyon, 69621, Villeurbanne Cedex, France
| | - Khac-Uan Do
- School of Environmental Science and Technology, Hanoi University of Science and Technology, Hanoi, Vietnam.
| |
Collapse
|