1
|
Sun T, Yi W, Wang Y, Cheng P, Dong T, Yun X. Application of poly(L-lactic acid)-based films for equilibrium modified atmosphere packaging of "Kyoho" grapes and its favorable protection for anthocyanins. Food Chem 2024; 452:139573. [PMID: 38718454 DOI: 10.1016/j.foodchem.2024.139573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
Grapes were packaged by different Poly (L-lactic acid)-based packaging films (PLTL-PLEL) and stored at 5 °C for 35 days to investigate the effects of equilibrium modified atmosphere packaging on the quality of "Kyoho" grapes during storage. Changes in physiochemical quality, antioxidant content and senescence of grapes were studied. Furthermore, UPLC-Q-TOF-MS/MS was used to observe and identify key factors influencing the variation of grape anthocyanins under different atmosphere conditions. Alterations in gas components and enzyme activities significantly impacted anthocyanin levels, highlighting oxygen concentration as the primary influence on total anthocyanin levels. The PLTL-PLEL50 packaging resulted in an approximate 5.7% lower weight loss and increased soluble solids by approximately 14.4%, vitamin C, total phenols and flavonoids reaching 60.2 mg/100 g, 8.4 mg/100 g and 7.2 mg/100 g, respectively. This packaging also preserved higher anthocyanin levels, with malvidin-3-glucoside and peonidin-3-glucoside at 0.55 μg/mL and 1.62 μg/mL, respectively, on the 35th day of storage.
Collapse
Affiliation(s)
- Tao Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China
| | - WeiGuo Yi
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China
| | - Yangyang Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China; Hohhot Huimin District Center for Disease Control and Prevention, Hohhot, Inner Mongolia 010030, China
| | - Peifang Cheng
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China
| | - Tungalag Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China.
| |
Collapse
|
2
|
Kabir MH, Kannan S, Veetil KA, Sun EK, Kim TH. Enhancing CO 2 Transport Across the PEG/PPG-Based Crosslinked Rubbery Polymer Membranes with a Sterically Bulky Carbazole-Based ROMP Comonomer. Macromol Rapid Commun 2024; 45:e2400296. [PMID: 39058043 DOI: 10.1002/marc.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/29/2024] [Indexed: 07/28/2024]
Abstract
A series of poly(ethylene glycol)-block-poly(propylene glycol) (PEG/PPG)- and 5,6-di(9H-carbazol-9-yl)isoindoline-1,3-dione (2CZPImide)-based crosslinked rubbery polymer membranes, denoted as PEG/PPG-2CZPImide (x:y), are prepared from the norbornene-functionalized PEG/PPG oligomer (NB-PEG/PPG-NB) and 2-(bicyclo[2.2.1]hept-5-en-2-ylmethyl)-5,6-di(9H-carbazol-9-yl)isoindoline-1,3-dione (2CZPImide-NB) via ring-opening metathesis polymerization (ROMP). The molar ratio (x:y) of the NB-PEG/PPG-NB (x) to 2CZPImide-NB (y) monomers is varied from 10:1 to 6:1. X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and pure gas permeability studies reveal that the comonomer 2CZPImide-NB successfully increases the d-spacing among the crystalline PEG/PPG segments, hence enhancing the diffusivity of gases through the membranes. The synthesized membranes exhibit good CO2 separation performance, with CO2 permeabilities ranging from 311.1 to 418.1 Barrer and CO2/N2 and CO2/CH4 selectivities of 39.4-52.0 and 13.4-16.0, respectively, approaching the 2008 Robeson upper bound. Moreover, PEG/PPG-2CZPImide (6:1), displaying optimal CO2 permeability and CO2/N2 and CO2/CH4 selectivities, shows long-term stability against physical aging and plasticization resistance up to 20 days and 10 atm, respectively.
Collapse
Affiliation(s)
- Md Homayun Kabir
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon, 22012, South Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, South Korea
- Department of Chemistry, Pabna University of Science and Technology, Pabna, 6600, Bangladesh
| | - Senthil Kannan
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon, 22012, South Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, South Korea
| | - Kavya Adot Veetil
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon, 22012, South Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, South Korea
| | - Eun Kyu Sun
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon, 22012, South Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, South Korea
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon, 22012, South Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, South Korea
| |
Collapse
|
3
|
Hussain A, Gul H, Raza W, Qadir S, Rehan M, Raza N, Helal A, Shaikh MN, Aziz MA. Micro and Nanoporous Membrane Platforms for Carbon Neutrality: Membrane Gas Separation Prospects. CHEM REC 2024; 24:e202300352. [PMID: 38501854 DOI: 10.1002/tcr.202300352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Recently, carbon neutrality has been promoted as a potentially practical solution to global CO2 emissions and increasing energy-consumption challenges. Many attempts have been made to remove CO2 from the environment to address climate change and rising sea levels owing to anthropogenic CO2 emissions. Herein, membrane technology is proposed as a suitable solution for carbon neutrality. This review aims to comprehensively evaluate the currently available scientific research on membranes for carbon capture, focusing on innovative microporous material membranes used for CO2 separation and considering their material, chemical, and physical characteristics and permeability factors. Membranes from such materials comprise metal-organic frameworks, zeolites, silica, porous organic frameworks, and microporous polymers. The critical obstacles related to membrane design, growth, and CO2 capture and usage processes are summarized to establish novel membranes and strategies and accelerate their scaleup.
Collapse
Affiliation(s)
- Arshad Hussain
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| | - Hajera Gul
- Department of Chemistry, Shaheed Benazir Bhutto Women University, 25000, Peshawar, Pakistan
| | - Waseem Raza
- Institute for Advanced Study, Shenzhen University, 518060, Guangdong, China
- College of Civil and Transportation Engineering, Shenzhen University, 518060, Shenzhen, Guangdong, China
| | - Salman Qadir
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, PR China
| | - Muhammad Rehan
- Department of Chemical Engineering, Beijing Institute of Technology, 100000, Beijing, China
| | - Nadeem Raza
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Kingdom of Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
4
|
Fakhar A, Zarabadipoor M, Talakesh MM, Sadeghi M. Gas permeation through polyethylene glycol/polytetramethylene glycol based polyurethane–silica mixed matrix membranes and interfacial morphology study via modeling approach. J Appl Polym Sci 2023. [DOI: 10.1002/app.53831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Afsaneh Fakhar
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| | | | | | - Morteza Sadeghi
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
- Department of Science and Engineering Macquarie University Macquarie Park New South Wales Australia
| |
Collapse
|
5
|
Hong T, Li Y, Wang S, Li Y, Jing X. Polyurethane-based gas separation membranes: A review and perspectives. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
MOF-layer composite polyurethane membrane increasing both selectivity and permeability: Pushing commercial rubbery polymer membranes to be attractive for CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Norouzi A, Kojabad ME, Chapalaghi M, Hosseinkhani A, nareh AA, Lay EN. Polyester-based polyurethane mixed-matrix membranes incorporating carbon nanotube-titanium oxide coupled nanohybrid for carbon dioxide capture enhancement: molecular simulation and experimental study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Li S, Chang SM, Yin MJ, Zhang WH, Sun WS, Shiue A, An QF. Build up ‘highway’ in membrane via solvothermal annealing for high-efficient CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Duan R, Qi M. Amphiphilic triblock copolymer as the gas chromatographic stationary phase with high-resolution performance towards a wide range of isomers and the components of lemon essential oil. J Chromatogr A 2021; 1658:462611. [PMID: 34666270 DOI: 10.1016/j.chroma.2021.462611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 02/02/2023]
Abstract
This work presents the investigation of using the amphiphilic triblock copolymer composed of poly(ethylene oxide)(PEO)-poly(propylene oxide) (PPO)-poly(ethylene oxide) (PEO) (denoted as EPE) as the stationary phase for gas chromatographic (GC) analyses. The EPE capillary column exhibited moderate polarity and column efficiency of 4348 plates/m determined by naphthalene at 120 °C (k = 11.52). Different from the PEG and polysiloxane homopolymers, it showed high-resolution performance towards a wide range of aliphatic and aromatic isomers in terms of polarity and acid-base properties. Particularly, the EPE column displayed distinct advantages for separating the critical isomers of alkanes, anilines and phenols and the components of the lemon essential oil over the commercial PEG and polysiloxane columns. In addition, the EPE column exhibited excellent separation repeatability and reproducibility with the relative standard deviation (RSD) values in the range of 0.03% - 0.08% for run-to-run, 0.14% - 0.61% for day-to-day and 3.1% - 4.0% for column-to-column, respectively. Moreover, the EPE column was investigated in terms of thermal stability, the minimum allowable operating temperature (MiAOT) and sample loadability. Its application to GC-MS analysis of the essential oil demonstrated its feasibility for practical analyses. This work demonstrates the promising future of triblock copolymers as a new class of selective stationary phases for GC analyses, which is barely reported up to date. The findings of this work is of important value for fundamental researches and practical applications.
Collapse
Affiliation(s)
- Ruijuan Duan
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Meiling Qi
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
10
|
The prospect of synthesis of PES/PEG blend membranes using blend NMP/DMF for CO2/N2 separation. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02500-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractCarbon dioxide (CO2) emissions have been the root cause for anthropogenic climate change. Decarbonisation strategies, particularly carbon capture and storage (CCS) are crucial for mitigating the risk of global warming. Among all current CO2 separation technologies, membrane separation has the biggest potential for CCS as it is inexpensive, highly efficient, and simple to operate. Polymeric membranes are the preferred choice for the gas separation industry due to simpler methods of fabrication and lower costs compared to inorganic or mixed matrix membranes (MMMs). However, plasticisation and upper-bound trade-off between selectivity and permeability has limited the gas separation performance of polymeric membranes. Recently, researchers have found that the blending of glassy and rubbery polymers can effectively minimise trade-off between selectivity and permeability. Glassy poly(ethersulfone) (PES) and rubbery poly(ethylene) glycol (PEG) are polymers that are known to have a high affinity towards CO2. In this paper, PEG and PES are reviewed as potential polymer blend that can yield a final membrane with high CO2 permeance and CO2/nitrogen (N2) selectivity. Gas separation properties can be enhanced by using different solvents in the phase-inversion process. N-Methyl-2-Pyrrolidone (NMP) and Dimethylformamide (DMF) are common industrial solvents used for membrane fabrication. Both NMP and DMF are reviewed as prospective solvent blend that can improve the morphology and separation properties of PES/PEG blend membranes due to their effects on the membrane structure which increases permeation as well as selectivity. Thus, a PES/PEG blend polymeric membrane fabricated using NMP and DMF solvents is believed to be a major prospect for CO2/N2 gas separation.
Collapse
|
11
|
Pournaghshband Isfahani A, Shahrooz M, Yamamoto T, Muchtar A, Ito MM, Yamaguchi D, Takenaka M, Sivaniah E, Ghalei B. Influence of microstructural variations on morphology and separation properties of polybutadiene-based polyurethanes. RSC Adv 2021; 11:15449-15456. [PMID: 35424034 PMCID: PMC8698806 DOI: 10.1039/d1ra00764e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 12/01/2022] Open
Abstract
Polybutadiene-based polyurethanes with different cis/trans/1,2-vinyl microstructure contents are synthesized. The phase morphology and physical properties of the polymers are investigated using spectroscopic analysis (FTIR and Raman), differential scanning calorimetry (DSC), X-ray scattering (WAXD and SAXS) and atomic force microscopy (AFM). In addition, their gas transport properties are determined for different gases at 4 bar and 25 °C. Thermodynamic incompatibility and steric hindrance of pendant groups are the dominant factors affecting the morphology and properties of the PUs. FTIR spectra, DSC, and SAXS analysis reveal a higher extent of phase mixing in high vinyl-content PUs. Moreover, the SAXS analysis and AFM phase images indicate smaller microdomains by increasing the vinyl content. Smaller permeable soft domains as well as the lower phase separation of the PUs with higher vinyl content create more tortuous pathways for gas molecules and deteriorate the gas permeability of the membranes.
Collapse
Affiliation(s)
- Ali Pournaghshband Isfahani
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
| | - Mahdi Shahrooz
- Institute for Sustainable Industries and Liveable Cities, Victoria University 14428 Melbourne VIC Australia
| | - Takuma Yamamoto
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
| | - Ansori Muchtar
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
| | - Masateru M Ito
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
| | - Daisuke Yamaguchi
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
| | - Mikihito Takenaka
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Easan Sivaniah
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
| | - Behnam Ghalei
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
| |
Collapse
|
12
|
Changes in free volume and gas permeation properties of poly(vinyl alcohol) nanocomposite membranes modified using cage‐structured polyhedral oligomeric silsesquioxane. J Appl Polym Sci 2021. [DOI: 10.1002/app.49953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part I: Membrane Synthesis and Characterization. NANOMATERIALS 2021; 11:nano11030607. [PMID: 33671036 PMCID: PMC7997425 DOI: 10.3390/nano11030607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
In this work, polymeric membranes functionalized with ionic liquids (ILs) and exfoliated graphene nanoplatelets (xGnP) were developed and characterized. These membranes based on graphene ionanofluids (IoNFs) are promising materials for gas separation. The stability of the selected IoNFs in the polymer membranes was determined by thermogravimetric analysis (TGA). The morphology of membranes was characterized using scanning electron microscope (SEM) and interferometric optical profilometry (WLOP). SEM results evidence that upon the small addition of xGnP into the IL-dominated environment, the interaction between IL and xGnP facilitates the migration of xGnP to the surface, while suppressing the interaction between IL and Pebax®1657. Fourier transform infrared spectroscopy (FTIR) was also used to determine the polymer-IoNF interactions and the distribution of the IL in the polymer matrix. Finally, the thermodynamic properties and phase transitions (polymer-IoNF) of these functionalized membranes were studied using differential scanning calorimetry (DSC). This analysis showed a gradual decrease in the melting point of the polyamide (PA6) blocks with a decrease in the corresponding melting enthalpy and a complete disappearance of the crystallinity of the polyether (PEO) phase with increasing IL content. This evidences the high compatibility and good mixing of the polymer and the IoNF.
Collapse
|
14
|
Hafeez S, Safdar T, Pallari E, Manos G, Aristodemou E, Zhang Z, Al-Salem SM, Constantinou A. CO2 capture using membrane contactors: a systematic literature review. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1992-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractWith fossil fuel being the major source of energy, CO2 emission levels need to be reduced to a minimal amount namely from anthropogenic sources. Energy consumption is expected to rise by 48% in the next 30 years, and global warming is becoming an alarming issue which needs to be addressed on a thorough technical basis. Nonetheless, exploring CO2 capture using membrane contactor technology has shown great potential to be applied and utilised by industry to deal with post- and pre-combustion of CO2. A systematic review of the literature has been conducted to analyse and assess CO2 removal using membrane contactors for capturing techniques in industrial processes. The review began with a total of 2650 papers, which were obtained from three major databases, and then were excluded down to a final number of 525 papers following a defined set of criteria. The results showed that the use of hollow fibre membranes have demonstrated popularity, as well as the use of amine solvents for CO2 removal. This current systematic review in CO2 removal and capture is an important milestone in the synthesis of up to date research with the potential to serve as a benchmark databank for further research in similar areas of work. This study provides the first systematic enquiry in the evidence to research further sustainable methods to capture and separate CO2.
Collapse
|
15
|
Kim D, Hossain I, Kim Y, Choi O, Kim TH. PEG/PPG-PDMS-Adamantane-based Crosslinked Terpolymer Using the ROMP Technique to Prepare a Highly Permeable and CO 2-Selective Polymer Membrane. Polymers (Basel) 2020; 12:E1674. [PMID: 32727152 PMCID: PMC7464022 DOI: 10.3390/polym12081674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/02/2022] Open
Abstract
In this study, precursor molecules based on PEG/PPG and polydimethylsiloxane (PDMS), both widely used rubbery polymers, were copolymerized with bulky adamantane into copolymer membranes. Ring-opening metathesis polymerization (ROMP) was employed during the polymerization process to create a structure with both ends crosslinked. The precursor molecules and corresponding polymer membranes were characterized using various analytical methods. The polymer membranes were fabricated using different compositions of PDMS and adamantane, to determine how the network structure affected their gas separation performance. PEG/PPG, in which CO2 is highly soluble, was copolymerized with PDMS, which has high permeability, and adamantane, which controlled the crosslinking density with a rigid and bulky structure. It was confirmed that the resulting crosslinked polymer membranes exhibited high solubility and diffusivity for CO2. Further, their crosslinked structure using ROMP technique made it possible to form good films. The membranes fabricated in the present study exhibited excellent performance, i.e., CO2 permeability of up to 514.5 Barrer and CO2/N2 selectivity of 50.9.
Collapse
Affiliation(s)
- Dongyoung Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (D.K.); (I.H.)
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (Y.K.); (O.C.)
| | - Iqubal Hossain
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (D.K.); (I.H.)
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (Y.K.); (O.C.)
| | - Yeonho Kim
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (Y.K.); (O.C.)
| | - Ook Choi
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (Y.K.); (O.C.)
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (D.K.); (I.H.)
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (Y.K.); (O.C.)
| |
Collapse
|
16
|
State-of-the-art modification of polymeric membranes by PEO and PEG for carbon dioxide separation: A review of the current status and future perspectives. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Shamsabadi AA, Isfahani AP, Salestan SK, Rahimpour A, Ghalei B, Sivaniah E, Soroush M. Pushing Rubbery Polymer Membranes To Be Economic for CO 2 Separation: Embedment with Ti 3C 2T x MXene Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3984-3992. [PMID: 31874026 DOI: 10.1021/acsami.9b19960] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sustainable and energy-efficient molecular separation requires membranes with high gas permeability and selectivity. This work reports excellent CO2 separation performance of self-standing and thin-film mixed matrix membranes (MMMs) fabricated by embedding 2D Ti3C2Tx MXene nanosheets in Pebax-1657. The CO2/N2 and CO2/H2 separation performances of the free-standing membranes are above Robeson's upper bounds, and the performances of the thin-film composite (TFC) membranes are in the target area for cost-efficient CO2 capture. Characterization and molecular dynamics simulation results suggest that the superior performances of the Pebax-Ti3C2Tx membranes are due to the formation of hydrogen bonds between Ti3C2Tx and Pebax chains, leading to the creation of the well-formed galleries of Ti3C2Tx nanosheets in the hard segments of the Pebax. The interfacial interactions and selective Ti3C2Tx nanochannels enable fast and selective CO2 transport. Enhancement of the transport properties of Pebax-2533 and polyurethane when embedded with Ti3C2Tx further supports these findings. The ease of fabrication and high separation performance of the new TFC membranes point to their great potential for energy-efficient CO2 separation with the low cost of $29/ton separated CO2.
Collapse
Affiliation(s)
- Ahmad Arabi Shamsabadi
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | | | - Saeed Khoshhal Salestan
- Department of Chemical Engineering , Babol Noshirvani University of Technology , Babol 47148-71167 , Iran
| | - Ahmad Rahimpour
- Department of Chemical Engineering , Babol Noshirvani University of Technology , Babol 47148-71167 , Iran
| | - Behnam Ghalei
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , Kyoto 606-8504 , Japan
| | - Easan Sivaniah
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , Kyoto 606-8504 , Japan
| | - Masoud Soroush
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
18
|
Elucidating the effect of chain extenders substituted by aliphatic side chains on morphology and gas separation of polyurethanes. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Heo YJ, Seong DB, Park SJ. Synthesis of polyethylenimine-impregnated titanate nanotubes for CO2 capture: Influence of porosity and nitrogen content on amine-modified adsorbents. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Sadeghi M, Isfahani AP, Shamsabadi AA, Favakeh S, Soroush M. Improved gas transport properties of polyurethane–urea membranes through incorporating a cadmium‐based metal organic framework. J Appl Polym Sci 2019. [DOI: 10.1002/app.48704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Morteza Sadeghi
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 84156‐83111 Iran
| | | | | | - Sahar Favakeh
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 84156‐83111 Iran
| | - Masoud Soroush
- Department of Chemical and Biological EngineeringDrexel University Philadelphia USA
| |
Collapse
|
21
|
Jahid MA, Hu J, Thakur S. Novel approach of making porous polyurethane membrane and its properties for apparel application. J Appl Polym Sci 2019. [DOI: 10.1002/app.48566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Md Anwar Jahid
- Institute of Textiles and ClothingThe Hong Kong Polytechnic University, HKSAR, Hung Hom, Kowloon Hong Kong 999077 China
| | - Jinlian Hu
- Institute of Textiles and ClothingThe Hong Kong Polytechnic University, HKSAR, Hung Hom, Kowloon Hong Kong 999077 China
| | - Suman Thakur
- Institute of Textiles and ClothingThe Hong Kong Polytechnic University, HKSAR, Hung Hom, Kowloon Hong Kong 999077 China
| |
Collapse
|
22
|
Liu J, Zhang G, Clark K, Lin H. Maximizing Ether Oxygen Content in Polymers for Membrane CO 2 Removal from Natural Gas. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10933-10940. [PMID: 30794744 DOI: 10.1021/acsami.9b01079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Membrane materials for CO2 removal from natural gas are based on glassy polymers with a high CO2/CH4 diffusivity selectivity. However, these polymers suffer from competitive sorption by heavy hydrocarbons that decreases CO2 permeability and physical aging that reduces gas permeability with time. We circumvent these issues by designing rubbery, solubility-selective polymers with a ratio of ether/ester oxygen to carbon as high as 0.8 through the use of 1,3-dioxolane and 1,3,5-trioxane. The ether/ester oxygen groups interact favorably with CO2 but do not interact with CH4, leading to a high CO2/gas solubility selectivity that is unaffected by heavy hydrocarbons in the raw natural gas. These polar groups are incorporated in short branches to yield an amorphous and rubbery nature, leading to high gas permeability that is stable over time. A polymer with an O/C ratio of 0.71 (P71) shows a mixed-gas CO2 permeability of 320 Barrers and a CO2/CH4 selectivity of 21 in the simulated natural gas at 50 °C, which is independent of the hexane content and above the upper bound for CO2/CH4 separation at 50 °C.
Collapse
Affiliation(s)
- Junyi Liu
- Department of Chemical and Biological Engineering , University at Buffalo, The State University at New York , Buffalo , New York 14260 , United States
| | - Gengyi Zhang
- Department of Chemical and Biological Engineering , University at Buffalo, The State University at New York , Buffalo , New York 14260 , United States
| | - Krysta Clark
- Department of Chemical and Biological Engineering , University at Buffalo, The State University at New York , Buffalo , New York 14260 , United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering , University at Buffalo, The State University at New York , Buffalo , New York 14260 , United States
| |
Collapse
|
23
|
|
24
|
Cao X, Wang Z, Qiao Z, Zhao S, Wang J. Penetrated COF Channels: Amino Environment and Suitable Size for CO 2 Preferential Adsorption and Transport in Mixed Matrix Membranes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5306-5315. [PMID: 30607936 DOI: 10.1021/acsami.8b16877] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Developing mixed matrix membranes (MMMs) is challenging because the interface between different matrices often forms undesirable structures. Herein, we demonstrate a method of creating suitable CO2-selective channels based on interface regulation that greatly enhances membrane separation performance. The poly(vinylamine), which also acts as a polymer matrix, was immobilized onto covalent organic frameworks (COFs) to obtain polymer-COF hybrid materials (COFp). The COFp and polymer matrix are highly compatible because they have the same segment. The polymer matrix was induced to penetrate the oversized COFp, resulting in an amino-environmental pore wall and appropriately sized CO2-selective channels dispersed in MMMs. The MMMs exhibited satisfactory membrane performance for CO2/N2, CO2/CH4, and CO2/H2 separation. A CO2 transport model for preferential adsorption and transport is clearly presented for the first time. The membrane separation mechanism is also discussed. This work demonstrates potential applications for material, interface, and membrane investigations.
Collapse
|
25
|
Sadeghi M, Arabi Shamsabadi A, Ronasi A, Isfahani AP, Dinari M, Soroush M. Engineering the dispersion of nanoparticles in polyurethane membranes to control membrane physical and transport properties. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.08.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Huang G, Isfahani AP, Muchtar A, Sakurai K, Shrestha BB, Qin D, Yamaguchi D, Sivaniah E, Ghalei B. Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.026] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Luo XY, Lv XY, Shi GL, Meng Q, Li HR, Wang CM. Designing amino-based ionic liquids for improved carbon capture: One amine binds two CO2. AIChE J 2018. [DOI: 10.1002/aic.16420] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao Y. Luo
- Dept. of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education; Zhejiang University; Hangzhou China
| | - Xiao Y. Lv
- Dept. of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou China
| | - Gui L. Shi
- Dept. of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou China
| | - Qin Meng
- Dept. of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education; Zhejiang University; Hangzhou China
| | - Hao R. Li
- Dept. of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou China
| | - Cong M. Wang
- Dept. of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education; Zhejiang University; Hangzhou China
- Dept. of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou China
| |
Collapse
|
28
|
Wang Z, Isfahani AP, Wakimoto K, Shrestha BB, Yamaguchi D, Ghalei B, Sivaniah E. Tuning the Gas Selectivity of Tröger's Base Polyimide Membranes by Using Carboxylic Acid and Tertiary Base Interactions. CHEMSUSCHEM 2018; 11:2744-2751. [PMID: 29808569 DOI: 10.1002/cssc.201801002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Polyimide-based materials provide attractive chemistries for the development of gas-separation membranes. Modification of inter- and intra-chain interactions is a route to improve the separation performance. In this work, copolyimides with Tröger's base (TB) monomers are designed and synthesized. In particular, a series of copolyimides is synthesized with different contents of carboxylic acid groups (0-50 wt %) to alter the inter- and intra-chain interactions and enhance the basicity of the TB-polyimides. A detailed thermal and structural analysis is provided for the new copolyimides. Gas permeation data reveal a tunable trend in separation performance with increasing carboxylic acid group content. Importantly, this is one of the few examples of copolyimide membranes materials that show enhanced plasticization resistance to high-pressure gas feeds through physical cross-linking.
Collapse
Affiliation(s)
- Zhenggong Wang
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501, Kyoto, Japan
| | | | - Kazuki Wakimoto
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501, Kyoto, Japan
- Graduate School of Energy Science, Kyoto University, Kyoto, 606-8501, Japan
| | - Binod Babu Shrestha
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501, Kyoto, Japan
| | - Daisuke Yamaguchi
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501, Kyoto, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Behnam Ghalei
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501, Kyoto, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Easan Sivaniah
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501, Kyoto, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| |
Collapse
|
29
|
Pournaghshband Isfahani A, Sadeghi M, Wakimoto K, Shrestha BB, Bagheri R, Sivaniah E, Ghalei B. Pentiptycene-Based Polyurethane with Enhanced Mechanical Properties and CO 2-Plasticization Resistance for Thin Film Gas Separation Membranes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17366-17374. [PMID: 29708720 DOI: 10.1021/acsami.7b18475] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of thin film composite (TFC) membranes offers an opportunity to achieve the permeability/selectivity requirements for optimum CO2 separation performance. However, the durability and performance of thin film gas separation membranes are mostly challenged by weak mechanical properties and high CO2 plasticization. Here, we designed new polyurethane (PU) structures with bulky aromatic chain extenders that afford preferred mechanical properties for ultra-thin-film formation. An improvement of about 1500% in Young's modulus and 600% in hardness was observed for pentiptycene-based PUs compared to the typical PU membranes. Single (CO2, H2, CH4, and N2) and mixed (CO2/N2 and CO2/CH4) gas permeability tests were performed on the PU membranes. The resulting TFC membranes showed a high CO2 permeance up to 1400 GPU (10-6 cm3(STP) cm-2 s-1 cmHg-1) and the CO2/N2 and CO2/H2 selectivities of about 22 and 2.1, respectively. The enhanced mechanical properties of pentiptycene-based PUs result in high-performance thin membranes with the similar selectivity of the bulk polymer. The thin film membranes prepared from pentiptycene-based PUs also showed a twofold enhanced plasticization resistance compared to non-pentiptycene-containing PU membranes.
Collapse
Affiliation(s)
| | - Morteza Sadeghi
- Department of Chemical Engineering , Isfahan University of Technology , Isfahan 84156-83111 , Isfahan , Iran
| | - Kazuki Wakimoto
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , 606-8501 Kyoto , Japan
| | - Binod Babu Shrestha
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , 606-8501 Kyoto , Japan
| | - Rouhollah Bagheri
- Department of Chemical Engineering , Isfahan University of Technology , Isfahan 84156-83111 , Isfahan , Iran
| | - Easan Sivaniah
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , 606-8501 Kyoto , Japan
| | - Behnam Ghalei
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , 606-8501 Kyoto , Japan
| |
Collapse
|
30
|
Shrestha BB, Wakimoto K, Wang Z, Isfahani AP, Suma T, Sivaniah E, Ghalei B. A facile synthesis of contorted spirobisindane-diamine and its microporous polyimides for gas separation. RSC Adv 2018; 8:6326-6330. [PMID: 35540415 PMCID: PMC9078231 DOI: 10.1039/c7ra12719g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Microporous polyimides (PIM-PIs, KAUST-PIs) and polymers containing Tröger's base (TB) derivatives with improved permeability and selectivity have great importance for separation of environmental gas pairs. Despite the tremendous progress in this field, facile synthesis of microporous polymers at the industrial scale via designing new monomers is still lacking. In this study, a new potential approach for large scale synthesis of spirobisindane diamine (DAS) (3) has been reported from commercially available 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spirobisindane (TTSBI) and 3,4-difluoronitrobenzene. A series of DAS diamine based microporous polyimides were also synthesized. The resulting polymer membranes showed high mechanical and thermal properties with tunable gas separation performance.
Collapse
Affiliation(s)
- Binod Babu Shrestha
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University 606-8501 Kyoto Japan
| | - Kazuki Wakimoto
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University 606-8501 Kyoto Japan
| | - Zhenggong Wang
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University 606-8501 Kyoto Japan
| | | | - Tomoya Suma
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University 606-8501 Kyoto Japan
| | - Easan Sivaniah
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University 606-8501 Kyoto Japan
| | - Behnam Ghalei
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University 606-8501 Kyoto Japan
| |
Collapse
|
31
|
Bhawna, Pandey A, Pandey S. Superbase-Added Choline Chloride-Based Deep Eutectic Solvents for CO2
Capture and Sequestration. ChemistrySelect 2017. [DOI: 10.1002/slct.201702259] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bhawna
- Department of Chemistry; Indian Institute of Technology Delhi, Hauz Khas; New Delhi 110016 India
| | - Ashish Pandey
- Department of Chemistry; Indian Institute of Technology Delhi, Hauz Khas; New Delhi 110016 India
| | - Siddharth Pandey
- Department of Chemistry; Indian Institute of Technology Delhi, Hauz Khas; New Delhi 110016 India
| |
Collapse
|
32
|
Ghalei B, Pournaghshband Isfahani A, Sadeghi M, Vakili E, Jalili A. Polyurethane-mesoporous silica gas separation membranes. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Behnam Ghalei
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Yoshida-Honmachi, Sakayo-ku Kyoto 606-8501 Japan
| | - Ali Pournaghshband Isfahani
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Yoshida-Honmachi, Sakayo-ku Kyoto 606-8501 Japan
| | - Morteza Sadeghi
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Eshagh Vakili
- Polymer Group, Chemical Engineering Department; Tarbiat Modares University; Jalal Al Ahmad Highway Tehran 14155-143 Iran
| | - Alireza Jalili
- Department of Energy Science and Technology; Kyoto University; Yoshida-Honmachi, Sakayo-ku Kyoto 606-8501 Japan
| |
Collapse
|