1
|
Alavi F, Ciftci O. Purification and fractionation of bioactive peptides through membrane filtration: A critical and application review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
2
|
Mathematical Modeling of the Effect of Pulsed Electric Field Mode and Solution Flow Rate on Protein Fouling during Bipolar Membrane Electroacidificaiton of Caseinate Solution. MEMBRANES 2022; 12:membranes12020193. [PMID: 35207114 PMCID: PMC8877438 DOI: 10.3390/membranes12020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022]
Abstract
A one-dimensional non-stationary model was developed for a better understanding of the protein fouling formation mechanism during electroacidification of caseinate solution using electrodialysis with bipolar membranes (EDBM) in pulsed electric field (PEF) mode. Four different PEF modes were investigated with pulse–pause durations of 10 s–10 s, 10 s–20 s, 10 s–33 s, 10 s–50 s. For each current mode 3 different flow rates were considered, corresponding to Reynolds numbers, Re, equal to 187, 374 and 560. The processes are considered in the diffusion boundary layer between the surface of the cation-exchange layer of bipolar membrane and bulk solution of the desalination compartment. The Nernst–Planck and material balance equation systems describe the ion transport. The electroneutrality condition and equilibrium chemical reactions are taken into account. The calculation results using the developed model are in qualitative agreement with the experimental data obtained during the previous experimental part of the study. It is confirmed that both the electrical PEF mode and the flow rate have a significant effect on the thickness (and mass) of the protein fouling during EDBM. Moreover, the choice of the electric current mode has the main impact on the fouling formation rate; an increase in the PEF pause duration leads to a decrease in the amount of fouling. It was shown that an increase in the PEF pause duration from 10 s to 50 s, in combination with an increase in Reynolds number (the flow rate) from 187 to 560, makes it possible to reduce synergistically the mass of protein deposits from 6 to 1.3 mg/cm2, which corresponds to a 78% decrease.
Collapse
|
3
|
Geoffroy T, Bernier M, Thibodeau J, Francezon N, Beaulieu L, Mikhaylin S, Langevin M, Lutin F, Bazinet L. Semi-industrial scale-up of EDUF technology for the electroseparation of bioactive cationic peptides: Impact of process parameters and cell configurations on eco-efficiency. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Polezhaev P, Belloň T, Vobecká L, Slouka Z. Molecular sieving of alkyl sulfate anions on strong basic gel-type anion-exchange resins. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Dammak L, Fouilloux J, Bdiri M, Larchet C, Renard E, Baklouti L, Sarapulova V, Kozmai A, Pismenskaya N. A Review on Ion-Exchange Membrane Fouling during the Electrodialysis Process in the Food Industry, Part 1: Types, Effects, Characterization Methods, Fouling Mechanisms and Interactions. MEMBRANES 2021; 11:789. [PMID: 34677555 PMCID: PMC8539029 DOI: 10.3390/membranes11100789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Electrodialysis (ED) was first established for water desalination and is still highly recommended in this field for its high water recovery, long lifetime and acceptable electricity consumption. Today, thanks to technological progress in ED processes and the emergence of new ion-exchange membranes (IEMs), ED has been extended to many other applications in the food industry. This expansion of uses has also generated several problems such as IEMs' lifetime limitation due to different ageing phenomena (because of organic and/or mineral compounds). The current commercial IEMs show excellent performance in ED processes; however, organic foulants such as proteins, surfactants, polyphenols or other natural organic matters can adhere on their surface (especially when using anion-exchange membranes: AEMs) forming a colloid layer or can infiltrate the membrane matrix, which leads to the increase in electrical resistance, resulting in higher energy consumption, lower water recovery, loss of membrane permselectivity and current efficiency as well as lifetime limitation. If these aspects are not sufficiently controlled and mastered, the use and the efficiency of ED processes will be limited since, it will no longer be competitive or profitable compared to other separation methods. In this work we reviewed a significant amount of recent scientific publications, research and reviews studying the phenomena of IEM fouling during the ED process in food industry with a special focus on the last decade. We first classified the different types of fouling according to the most commonly used classifications. Then, the fouling effects, the characterization methods and techniques as well as the different fouling mechanisms and interactions as well as their influence on IEM matrix and fixed groups were presented, analyzed, discussed and illustrated.
Collapse
Affiliation(s)
- Lasâad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Julie Fouilloux
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Myriam Bdiri
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Christian Larchet
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Estelle Renard
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Lassaad Baklouti
- Department of Chemistry, College of Sciences and Arts at Al Rass, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| | - Anton Kozmai
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| | - Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| |
Collapse
|
6
|
Abou-Diab M, Thibodeau J, Fliss I, Dhulster P, Nedjar N, Bazinet L. Impact of conductivity on the performances of electro-acidification and enzymatic hydrolysis phases of bovine hemoglobin by electrodialysis with bipolar membranes for the production of bioactive peptides. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Special Issue "Membrane Technologies for Sustainable Biofood Production Lines". MEMBRANES 2021; 11:membranes11070485. [PMID: 34209656 PMCID: PMC8305472 DOI: 10.3390/membranes11070485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/29/2022]
|
8
|
Perreault V, Sarapulova V, Tsygurina K, Pismenskaya N, Bazinet L. Understanding of Adsorption and Desorption Mechanisms of Anthocyanins and Proanthocyanidins on Heterogeneous and Homogeneous Cation-Exchange Membranes. MEMBRANES 2021; 11:136. [PMID: 33669193 PMCID: PMC7919792 DOI: 10.3390/membranes11020136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/01/2023]
Abstract
The presence of membrane fouling is the main drawback in membrane processes, and it is related to the premature use and high cost for the replacement of membranes. Polyphenols in cranberry juice are associated with ion-exchange membrane fouling, and it results in a loss of these beneficial compounds in the juice when treated by membrane processes such as electrodialysis. In the present work, four heterogeneous or pseudohomogeneous cation-exchange membranes (CSE-fg, MK-40, CEM Type-II, and CJMC-5), different in terms of the polymer matrix (aromatic, aliphatic), exchange capacity, size, and location of meso and macropores, were studied to understand the impact of the membrane structure and physico-chemical properties on adsorption and desorption of phenolic compounds (anthocyanins and proanthocyanidins) from cranberry juice. It appeared from these results that MK-40, CEM Type-II, and CSE-fg were more prone to fouling due to their high ion-exchange capacity, their thickness, and the presence of meso and macropores in their structure. Indeed, electrostatic interactions occurred between fixed groups of membranes and polyphenolic ions. Desorption of the entire membrane and cryogenic grinding with pH adjusted to 10 allowed a better recovery of anthocyanins and proanthocyanidins (PACs), respectively, since hydroxide ions competed with polyphenols and membrane that induced desorption of polyphenols. In the future, this new knowledge will become the basis for a more sensible choice of membranes and for the development of protocols for extending their life cycle.
Collapse
Affiliation(s)
- Véronique Perreault
- Laboratoire de Transformation Alimentaire et Procédés Électromembranaires (LTAPEM, Laboratory of Food Processing and Electro-Membrane Processes), Food Science Department, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada;
| | - Veronika Sarapulova
- Membrane Institute, Kuban State University, Stavropolskaya 149, 350040 Krasnodar, Russia; (V.S.); (K.T.); (N.P.)
| | - Ksenia Tsygurina
- Membrane Institute, Kuban State University, Stavropolskaya 149, 350040 Krasnodar, Russia; (V.S.); (K.T.); (N.P.)
| | - Natalia Pismenskaya
- Membrane Institute, Kuban State University, Stavropolskaya 149, 350040 Krasnodar, Russia; (V.S.); (K.T.); (N.P.)
| | - Laurent Bazinet
- Laboratoire de Transformation Alimentaire et Procédés Électromembranaires (LTAPEM, Laboratory of Food Processing and Electro-Membrane Processes), Food Science Department, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada;
| |
Collapse
|
9
|
Review of Membrane Separation Models and Technologies: Processing Complex Food-Based Biomolecular Fractions. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02559-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Sun L, Chen Q, Lu H, Wang J, Zhao J, Li P. Electrodialysis with porous membrane for bioproduct separation: Technology, features, and progress. Food Res Int 2020; 137:109343. [DOI: 10.1016/j.foodres.2020.109343] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/26/2022]
|
11
|
Bovine Hemoglobin Enzymatic Hydrolysis by a New Ecoefficient Process-Part I: Feasibility of Electrodialysis with Bipolar Membrane and Production of Neokyotorphin (α137-141). MEMBRANES 2020; 10:membranes10100257. [PMID: 32992811 PMCID: PMC7600281 DOI: 10.3390/membranes10100257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022]
Abstract
Neokyotorphin (α137-141) is recognized as an antimicrobial peptide and a natural meat preservative. It is produced by conventional enzymatic hydrolysis of bovine hemoglobin, a major component of cruor, a by-product of slaughterhouses. However, during conventional hydrolysis, chemical agents are necessary to adjust and regulate the pH of the protein solution and the mineral salt content of the final hydrolysate is consequently high. To produce this peptide of interest without chemical agents and with a low salt concentration, electrodialysis with bipolar membrane (EDBM), an electromembrane process recognized as a green process, with two different membrane configurations (cationic (MCP) and anionic (AEM) membranes) was investigated. Hydrolysis in EDBM showed the same enzymatic mechanism, “Zipper”, and allowed the generation of α137-141 in the same concentration as observed in conventional hydrolysis (control). EDBM-MCP allowed the production of hydrolysates containing a low concentration of mineral salts but with fouling formation on MCP, while EDBM-AEM allowed the production of hydrolysates without fouling but with a similar salt concentration than the control. To the best of our knowledge, this was the first time that EDBM was demonstrated as a feasible and innovative technology to produce peptide hydrolysates from enzymatic hydrolysis.
Collapse
|
12
|
A Review on Ion-exchange Membranes Fouling and Antifouling During Electrodialysis Used in Food Industry: Cleanings and Strategies of Prevention. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00178-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Andreeva MA, Loza NV, Pis’menskaya ND, Dammak L, Larchet C. Influence of Surface Modification of MK-40 Membrane with Polyaniline on Scale Formation under Electrodialysis. MEMBRANES 2020; 10:membranes10070145. [PMID: 32646071 PMCID: PMC7407481 DOI: 10.3390/membranes10070145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022]
Abstract
A comprehensive study of the polyaniline influence on mineral scaling on the surface of the heterogeneous MK-40 sulfocationite membrane under electrodialysis has been conducted. Current-voltage curves and chronopotentiograms have been obtained and analyzed for the pristine MK-40 membrane and the MK-40 membrane which is surface-modified by polyaniline. The study of the electrochemical behavior of membranes has been accompanied by the simultaneous control of the pH of the solution outcoming from the desalination compartment. The mixture of Na2CO3, KCl, CaCl2, and MgCl2 is used as a model salt solution. Two limiting states are observed on the current-voltage curve of the surface-modified membrane. There is the first pseudo-limiting state in the range of small values of the potential drop. The second limiting current is comparable with that of the limiting current for the pristine membrane. It is shown that chronopotentiometry cannot be used as a self-sufficient method for membrane scaling identification on the surface-modified membrane at high currents. A mineral scale on the surfaces of the studied membranes has been found by scanning electron microscopy. The amount of precipitate is higher in the case of the surface-modified membrane compared with the pristine one.
Collapse
Affiliation(s)
- Marina A. Andreeva
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia; (N.V.L.); (N.D.P.)
- Correspondence:
| | - Natalia V. Loza
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia; (N.V.L.); (N.D.P.)
| | - Natalia D. Pis’menskaya
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia; (N.V.L.); (N.D.P.)
| | - Lasaad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) UMR 7182 CNRS, Université Paris-Est, 2 Rue Henri Dunant, 94320 Thiais, France; (L.D.); (C.L.)
| | - Christian Larchet
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) UMR 7182 CNRS, Université Paris-Est, 2 Rue Henri Dunant, 94320 Thiais, France; (L.D.); (C.L.)
| |
Collapse
|
14
|
Concentration Dependencies of Diffusion Permeability of Anion-Exchange Membranes in Sodium Hydrogen Carbonate, Monosodium Phosphate, and Potassium Hydrogen Tartrate Solutions. MEMBRANES 2019; 9:membranes9120170. [PMID: 31835564 PMCID: PMC6950726 DOI: 10.3390/membranes9120170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 11/24/2022]
Abstract
The concentration dependencies of diffusion permeability of homogeneous (AMX-Sb and AX) and heterogeneous (MA-41 and FTAM-EDI) anion-exchange membranes (AEMs) is obtained in solutions of ampholytes (sodium bicarbonate, NaHCO3; monosodium phosphate, NaH2PO4; and potassium hydrogen tartrate, KHT) and a strong electrolyte (sodium chloride, NaCl). It is established that the diffusion permeability of AEMs increases with dilution of the ampholyte solutions, while it decreases in the case of the strong electrolyte solution. The factors causing the unusual form of concentration dependencies of AEMs in the ampholyte solutions are considered: (1) the enrichment of the internal AEM solution with multiply charged counterions and (2) the increase in the pore size of AEMs with dilution of the external solution. The enrichment of the internal solution of AEMs with multiply charged counterions is caused by the Donnan exclusion of protons, which are the products of protolysis reactions. The increase in the pore size is conditioned by the stretching of the elastic polymer matrix due to the penetration of strongly hydrated anions of carbonic, phosphoric, and tartaric acids into the AEMs.
Collapse
|
15
|
Haddad M, Bazinet L, Barbeau B. Eco-efficient treatment of ion exchange spent brine via electrodialysis to recover NaCl and minimize waste disposal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:400-409. [PMID: 31302538 DOI: 10.1016/j.scitotenv.2019.06.539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Natural organic matter (NOM) is removed from potable water for aesthetic, operational and indirect health concerns. NOM removal via ion exchange (IX) resins is receiving increasing attention owing to its simple operation. However, production of a spent brine during IX regeneration is the main drawback due to strict discharge regulations and limited and costly brine management options. In this study, the viability of desalinating the IX brine was assessed via electrodialysis (ED). ED desalination of the IX brine led to the production of highly pure NaCl and NOM-rich solutions which can be used for the IX regeneration and agricultural applications, respectively. Of particular interests were the impacts of the membrane permselectivity and implementation of pulsed electric field (PEF) on membrane fouling, desalination, purity of the NaCl solution and energy consumption. Our results demonstrated that ED desalination with monovalent ion permselective membranes consumed approximately 2 Wh per g of produced NaCl, achieved 88.8% desalination, produced pure NaCl solution with negligible membrane fouling. Furthermore, for the first time, we demonstrated that the PEF-ED intensified the process and decreased membrane fouling only when the conventional ion-exchange membranes were used; while no significant difference was detected when the PEF-ED was operated with the monovalent ion permselective membranes.
Collapse
Affiliation(s)
- Maryam Haddad
- NSERC-Industrial Chair on Drinking Water, Department of Civil, Geological and Mining Engineering (CGM), Polytechnique de Montréal, Canada.
| | - Laurent Bazinet
- NSERC-Industrial Chair on Electromembrane Processes Aiming the Ecoefficiency Improvement of Biofood Production Lines, Department of Food Sciences and Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Universite Laval, Canada
| | - Benoit Barbeau
- NSERC-Industrial Chair on Drinking Water, Department of Civil, Geological and Mining Engineering (CGM), Polytechnique de Montréal, Canada
| |
Collapse
|
16
|
Huettner C, Hagemann D, Troschke E, Hippauf F, Borchardt L, Oswald S, Henle T, Kaskel S. Tailoring the Adsorption of ACE-Inhibiting Peptides by Nitrogen Functionalization of Porous Carbons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9721-9731. [PMID: 31280571 DOI: 10.1021/acs.langmuir.9b00996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bioactive peptides, such as isoleucyl-tryptophan (IW), exhibit a high potential to inhibit the angiotensin-converting enzyme (ACE). Adsorption on carbon materials provides a beneficial method to extract these specific molecules from the complex mixture of an α-lactalbumin hydrolysate. This study focuses on the impact of nitrogen functionalization of porous carbon adsorbents, either via pre- or post-treatment, on the adsorption behavior of the ACE-inhibiting peptide IW and the essential amino acid tryptophan (W). The commercially activated carbon Norit ROX 0.8 is compared with pre- and postsynthetically functionalized N-doped carbon in terms of surface area, pore size, and surface functionality. For prefunctionalization, a covalent triazine framework was synthesized by trimerization of an aromatic nitrile under ionothermal conditions. For the postsynthetic approach, the activated carbon ROX 0.8 was functionalized with the nitrogen-rich molecule melamine. The batch adsorption results using model mixtures containing the single components IW and W could be transferred to a more complex mixture of an α-lactalbumin hydrolysate containing a huge number of various peptides. For this purpose, reverse-phase high-pressure liquid chromatography with fluorescence detection was used for identification and quantification. The treatment with the three different carbon materials leads to an increase in the ACE-inhibiting effect in vitro. The modified surface structure of the carbon via pre- or post-treatment allows separation of IW and W due to the certain selectivity for either the amino acid or the dipeptide.
Collapse
Affiliation(s)
| | | | | | - Felix Hippauf
- Fraunhofer Institute for Material and Beam Technology (IWS) , Winterbergstraße 28 , 01277 Dresden , Germany
| | - Lars Borchardt
- Inorganic Chemistry , Ruhr Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany
| | - Steffen Oswald
- Leibniz Institute for Solid State and Materials Research Dresden (IFW) , Helmholtzstraße 20 , 01069 Dresden , Germany
| | | | | |
Collapse
|
17
|
Belloň T, Polezhaev P, Vobecká L, Slouka Z. Fouling of a heterogeneous anion-exchange membrane and single anion-exchange resin particle by ssDNA manifests differently. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|