1
|
Liang Y, Zhang Z, Chen A, Yu C, Sun Y, Du J, Qiao Z, Wang Z, Guiver MD, Zhong C. Large-Area Ultrathin Metal-Organic Framework Membranes Fabricated on Flexible Polymer Supports for Gas Separations. Angew Chem Int Ed Engl 2024; 63:e202404058. [PMID: 38528771 DOI: 10.1002/anie.202404058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Ultrathin continuous metal-organic framework (MOF) membranes have the potential to achieve high gas permeance and selectivity simultaneously for otherwise difficult gas separations, but with few exceptions for zeolitic-imidazolate frameworks (ZIF) membranes, current methods cannot conveniently realize practical large-area fabrication. Here, we propose a ligand back diffusion-assisted bipolymer-directed metal ion distribution strategy for preparing large-area ultrathin MOF membranes on flexible polymeric support layers. The bipolymer directs metal ions to form a cross-linked two-dimensional (2D) network with a uniform distribution of metal ions on support layers. Ligand back diffusion controls the feed of ligand molecules available for nuclei formation, resulting in the continuous growth of large-area ultrathin MOF membranes. We report the practical fabrication of three representative defect-free MOF membranes with areas larger than 2,400 cm2 and ultrathin selective layers (50-130 nm), including ZIFs and carboxylate-linker MOFs. Among these, the ZIF-8 membrane displays high gas permeance of 3,979 GPU for C3H6, with good mixed gas selectivity (43.88 for C3H6/C3H8). To illustrate its scale-up practicality, MOF membranes were prepared and incorporated into spiral-wound membrane modules with an active area of 4,800 cm2. The ZIF-8 membrane module presents high gas permeance (3,930 GPU for C3H6) with acceptable ideal gas selectivity (37.45 for C3H6/C3H8).
Collapse
Affiliation(s)
- Yueyao Liang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang, 050018, China
| | - Caijiao Yu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Yuxiu Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang, 050018, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Zhi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
2
|
Yu C, Cen X, Zhang Z, Sun Y, Xue W, Qiao Z, Guiver MD, Zhong C. Step-Nucleation In Situ Self-Repair to Prepare Rollable Large-Area Ultrathin MOF Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307013. [PMID: 37643466 DOI: 10.1002/adma.202307013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Ultrathin membranes with ultrahigh permeance and good gas selectivity have the potential to greatly decrease separation process costs, but it requires the practical preparation of large area membranes for implementation. Metal-organic frameworks (MOFs) are very attractive for membrane gas separation applications. However, to date, the largest MOF membrane area reported in the literature is only about 100 cm2 . In the present study, a new step-nucleation in situ self-repair strategy is proposed that enables the preparation of large-area (2400 cm2 ) ultrathin and rollable MOF membranes deposited on an inexpensive flexible polymer membrane support layer for the first time, combining a polyvinyl alcohol (PVA)-metal-ion layer and a pure metal-ion layer. The main role of the pure metal-ion layer is to act as the main nucleation sites for MOF membrane growth, while the PVA-metal-ion layer acts as a slow-release metal-ion source, which supplements MOF crystal nucleation to repair any defects occurring. Membrane modules are necessary components for membrane applications, and spiral-wound modules are among the most common module formats that are widely applied in gas separation. A 4800 cm2 spiral-wound membrane module was successfully prepared, demonstrating the practical implementation of large-area MOF membranes.
Collapse
Affiliation(s)
- Caijiao Yu
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xixi Cen
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Yuxiu Sun
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Wenjuan Xue
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
3
|
Da Conceicao M, Nemetz L, Rivero J, Hornbostel K, Lipscomb G. Gas Separation Membrane Module Modeling: A Comprehensive Review. MEMBRANES 2023; 13:639. [PMID: 37505005 PMCID: PMC10384872 DOI: 10.3390/membranes13070639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Membrane gas separation processes have been developed for diverse gas separation applications that include nitrogen production from air and CO2 capture from point sources. Membrane process design requires the development of stable and robust mathematical models that can accurately quantify the performance of the membrane modules used in the process. The literature related to modeling membrane gas separation modules and model use in membrane gas separation process simulators is reviewed in this paper. A membrane-module-modeling checklist is proposed to guide modeling efforts for the research and development of new gas separation membranes.
Collapse
Affiliation(s)
- Marcos Da Conceicao
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Leo Nemetz
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Joanna Rivero
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Katherine Hornbostel
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Glenn Lipscomb
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
4
|
Foo K, Liang YY, Lau WJ, Khan MMR, Ahmad AL. Performance of Hypersaline Brine Desalination Using Spiral Wound Membrane: A Parametric Study. MEMBRANES 2023; 13:248. [PMID: 36837751 PMCID: PMC9958817 DOI: 10.3390/membranes13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Desalination of hypersaline brine is known as one of the methods to cope with the rising global concern on brine disposal in high-salinity water treatment. However, the main problem of hypersaline brine desalination is the high energy usage resulting from the high operating pressure. In this work, we carried out a parametric analysis on a spiral wound membrane (SWM) module to predict the performance of hypersaline brine desalination, in terms of mass transfer and specific energy consumption (SEC). Our analysis shows that at a low inlet pressure of 65 bar, a significantly higher SEC is observed for high feed concentration of brine water compared with seawater (i.e., 0.08 vs. 0.035) due to the very low process recovery ratio (i.e., 1%). Hence, an inlet pressure of at least 75 bar is recommended to minimise energy consumption. A higher feed velocity is also preferred due to its larger productivity when compared with a slightly higher energy requirement. This study found that the SEC reduction is greatly affected by the pressure recovery and the pump efficiencies for brine desalination using SWM, and employing them with high efficiencies (ηR ≥ 95% and ηpump ≥ 50%) can reduce SEC by at least 33% while showing a comparable SEC with SWRO desalination (<5.5 kWh/m3).
Collapse
Affiliation(s)
- Kathleen Foo
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, Kuantan 26300, Malaysia
| | - Yong Yeow Liang
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, Kuantan 26300, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Md Maksudur Rahman Khan
- Petroleum and Chemical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong BE1410, Brunei
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| |
Collapse
|
5
|
Wu H, Li Q, Guo B, Sheng M, Wang D, Mao S, Ye N, Qiao Z, Kang G, Cao Y, Wang J, Zhao S, Wang Z. Industrial-scale spiral-wound facilitated transport membrane modules for post-combustion CO2 capture: Development, investigation and optimization. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Towards large-scale application of nanoporous materials in membranes for separation of energy-relevant gas mixtures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Lu X, Huang J, Pinelo M, Chen G, Wan Y, Luo J. Modelling and optimization of pervaporation membrane modules: A critical review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Chen TY, Deng X, Lin LC, Ho WW. 13C NMR study of amino acid salts in facilitated transport membranes for post-combustion carbon capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Yuan Y, Pan Y, Sheng M, Xing G, Wang M, Wang J, Wang Z. Synthesis and optimization of high-performance amine-based polymer for CO2 separation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Kunalan S, Palanivelu K. Polymeric composite membranes in carbon dioxide capture process: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38735-38767. [PMID: 35275372 DOI: 10.1007/s11356-022-19519-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Carbon dioxide (CO2) emission to the atmosphere is the prime cause of certain environmental issues like global warming and climate change, in the present day scenario. Capturing CO2 from various stationary industrial emission sources is one of the initial steps to control the aforementioned problems. For this concern, a variety of resources, such as liquid absorbents, solid adsorbents, and membranes, have been utilized for CO2 capturing from various emission sources. Focused on membrane-based CO2 capture, polymeric membranes with composite structure (polymeric composite membrane) offer a better performance in CO2 capturing process than other membranes, due to the composite structure it offers higher gas flux and less material usage, thus facile to use high performed expensive material for membrane fabrication and achieved good efficacy in CO2 capture. This compressive review delivers the utilization of different polymeric composite membranes in CO2 capturing applications. Further, the types of polymeric materials used and the different physicochemical modifications of those membrane materials and their CO2 capturing ability are briefly discussed in the text. In conclusion, the current status and possible perspective ways to improve the CO2 capture process in industrial CO2 gas separation applications are described in this review.
Collapse
Affiliation(s)
- Shankar Kunalan
- Centre for Environmental Studies, Anna University, Chennai, 600 025, India
| | - Kandasamy Palanivelu
- Centre for Environmental Studies, Anna University, Chennai, 600 025, India.
- Centre for Climate Change and Disaster Management, Anna University, Chennai, 600 025, India.
| |
Collapse
|
11
|
Lee YY, Gurkan B. Graphene oxide reinforced facilitated transport membrane with poly(ionic liquid) and ionic liquid carriers for CO2/N2 separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Multicomponent Spiral Wound Membrane Separation Model for CO 2 Removal from Natural Gas. MEMBRANES 2021; 11:membranes11090654. [PMID: 34564471 PMCID: PMC8468781 DOI: 10.3390/membranes11090654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
A spiral wound membrane (SWM) is employed to separate acid gases (mainly CO2) from natural gas due to its robustness, lower manufacturing cost, and moderate packing density compared to hollow fiber membranes. Various mathematical models are available to describe the separation performance of SWMs under different operating conditions. Nevertheless, most of the mathematical models deal with only binary gas mixtures (CO2 and CH4) that may lead to an inaccurate assessment of separation performance of multicomponent natural gas mixtures. This work is aimed to develop an SWM separation model for multicomponent natural gas mixtures. The succession stage method is employed to discretize the separation process within the multicomponent SWM module for evaluating the product purity, hydrocarbon loss, stage cut, and permeate acid gas composition. Our results suggest that multicomponent systems tend to generate higher product purity, lower hydrocarbon loss, and augmented permeate acid gas composition compared to the binary system. Furthermore, different multicomponent systems yield varied separation performances depending on the component of the acid gas. The developed multicomponent SWM separation model has the potential to design and optimize the spiral wound membrane system for industrial application.
Collapse
|
13
|
Chen KK, Han Y, Zhang Z, Ho WW. Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
|
15
|
Wu H, Li Q, Sheng M, Wang Z, Zhao S, Wang J, Mao S, Wang D, Guo B, Ye N, Kang G, Li M, Cao Y. Membrane technology for CO2 capture: From pilot-scale investigation of two-stage plant to actual system design. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119137] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
|
17
|
Amusa AA, Ahmad AL, Adewole JK. Mechanism and Compatibility of Pretreated Lignocellulosic Biomass and Polymeric Mixed Matrix Membranes: A Review. MEMBRANES 2020; 10:E370. [PMID: 33255866 PMCID: PMC7760533 DOI: 10.3390/membranes10120370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
In this paper, a review of the compatibility of polymeric membranes with lignocellulosic biomass is presented. The structure and composition of lignocellulosic biomass which could enhance membrane fabrications are considered. However, strong cell walls and interchain hindrances have limited the commercial-scale applications of raw lignocellulosic biomasses. These shortcomings can be surpassed to improve lignocellulosic biomass applications by using the proposed pretreatment methods, including physical and chemical methods, before incorporation into a single-polymer or copolymer matrix. It is imperative to understand the characteristics of lignocellulosic biomass and polymeric membranes, as well as to investigate membrane materials and how the separation performance of polymeric membranes containing lignocellulosic biomass can be influenced. Hence, lignocellulosic biomass and polymer modification and interfacial morphology improvement become necessary in producing mixed matrix membranes (MMMs). In general, the present study has shown that future membrane generations could attain high performance, e.g., CO2 separation using MMMs containing pretreated lignocellulosic biomasses with reachable hydroxyl group radicals.
Collapse
Affiliation(s)
- Abiodun Abdulhameed Amusa
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| | - Jimoh Kayode Adewole
- Process Engineering Department, International Maritime College, Sohar 322, Oman;
| |
Collapse
|
18
|
Han Y, Yang Y, Ho WSW. Recent Progress in the Engineering of Polymeric Membranes for CO 2 Capture from Flue Gas. MEMBRANES 2020; 10:E365. [PMID: 33238418 PMCID: PMC7709046 DOI: 10.3390/membranes10110365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/01/2022]
Abstract
CO2 capture from coal- or natural gas-derived flue gas has been widely considered as the next opportunity for the large-scale deployment of gas separation membranes. Despite the tremendous progress made in the synthesis of polymeric membranes with high CO2/N2 separation performance, only a few membrane technologies were advanced to the bench-scale study or above from a highly idealized laboratory setting. Therefore, the recent progress in polymeric membranes is reviewed in the perspectives of capture system energetics, process synthesis, membrane scale-up, modular fabrication, and field tests. These engineering considerations can provide a holistic approach to better guide membrane research and accelerate the commercialization of gas separation membranes for post-combustion carbon capture.
Collapse
Affiliation(s)
- Yang Han
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210-1350, USA; (Y.H.); (Y.Y.)
| | - Yutong Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210-1350, USA; (Y.H.); (Y.Y.)
| | - W. S. Winston Ho
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210-1350, USA; (Y.H.); (Y.Y.)
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210-1178, USA
| |
Collapse
|
19
|
Modeling of spiral wound membranes for gas separations. Part I: An iterative 2D permeation model. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
|
21
|
Klemm A, Lee YY, Mao H, Gurkan B. Facilitated Transport Membranes With Ionic Liquids for CO 2 Separations. Front Chem 2020; 8:637. [PMID: 33014986 PMCID: PMC7461956 DOI: 10.3389/fchem.2020.00637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
In recent years, significant development milestones have been reached in the areas of facilitated transport membranes and ionic liquids for CO2 separations, making the combination of these materials an incredibly promising technology platform for gas treatment processes, such as post-combustion and direct CO2 capture from air in buildings, submarines, and spacecraft. The developments in facilitated transport membranes involve consistently surpassing the Robeson upper bound for dense polymer membranes, demonstrating a high CO2 flux across the membrane while maintaining very high selectivity. This mini review focuses on the recent developments of facilitated transport membranes, in particular discussing the challenges and opportunities associated with the incorporation of ionic liquids as fixed and mobile carriers for separations of CO2 at low partial pressures (<1 atm).
Collapse
Affiliation(s)
| | | | | | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
22
|
Han Y, Ho WSW. Recent advances in polymeric facilitated transport membranes for carbon dioxide separation and hydrogen purification. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Han
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University Columbus Ohio USA
| | - W. S. Winston Ho
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University Columbus Ohio USA
- Department of Materials Science and Engineering The Ohio State University Columbus Ohio USA
| |
Collapse
|
23
|
DeJaco RF, Loprete K, Pennisi K, Majumdar S, Siepmann JI, Daoutidis P, Murnen H, Tsapatsis M. Modeling and simulation of gas separations with
spiral‐wound
membranes. AIChE J 2020. [DOI: 10.1002/aic.16274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Robert F. DeJaco
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Minneapolis Minnesota USA
- Department of Chemistry and Chemical Theory CenterUniversity of Minnesota Minneapolis Minnesota USA
| | | | | | | | - J. Ilja Siepmann
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Minneapolis Minnesota USA
- Department of Chemistry and Chemical Theory CenterUniversity of Minnesota Minneapolis Minnesota USA
| | - Prodromos Daoutidis
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Minneapolis Minnesota USA
| | | | - Michael Tsapatsis
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Minneapolis Minnesota USA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins University Baltimore Maryland USA
- Department of Research and Exploratory Development, Applied Physics LaboratoryJohns Hopkins University Laurel Maryland USA
| |
Collapse
|
24
|
Dong S, Wang Z, Sheng M, Qiao Z, Wang J. Scaling up of defect-free flat membrane with ultra-high gas permeance used for intermediate layer of multi-layer composite membrane and oxygen enrichment. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Fabrication and scale-up of multi-leaf spiral-wound membrane modules for CO2 capture from flue gas. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117504] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Han Y, Ho WSW. Design of Amine-Containing CO2-Selective Membrane Process for Carbon Capture from Flue Gas. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04839] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Han
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210-1350, United States
| | - W. S. Winston Ho
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210-1350, United States
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, Ohio 43210-1178, United States
| |
Collapse
|
27
|
Kentish SE. 110th Anniversary: Process Developments in Carbon Dioxide Capture Using Membrane Technology. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandra E. Kentish
- Peter Cook Centre for Carbon Capture and Storage Research, Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
28
|
Han Y, Salim W, Chen KK, Wu D, Ho WW. Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Simultaneous effects of temperature and vacuum and feed pressures on facilitated transport membrane for CO2/N2 separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Salim W, Han Y, Vakharia V, Wu D, Wheeler DJ, Ho WW. Scale-up of amine-containing membranes for hydrogen purification for fuel cells. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Hydrophilic and morphological modification of nanoporous polyethersulfone substrates for composite membranes in CO2 separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
|
33
|
|
34
|
Wu D, Han Y, Zhao L, Salim W, Vakharia V, Ho WW. Scale-up of zeolite-Y/polyethersulfone substrate for composite membrane fabrication in CO2 separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
35
|
Salim W, Ho WW. Hydrogen purification with CO2-selective facilitated transport membranes. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|