1
|
Almarzooqi N, Alwan RA, AlMarzooqi F, Ghaffour N, Hong S, Arafat HA. Solar-driven surface-heating membrane distillation using Ti 3C 2T x MXene-coated spacers. CHEMOSPHERE 2024; 351:141129. [PMID: 38199497 DOI: 10.1016/j.chemosphere.2024.141129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The emergence of two-dimensional (2D) MXenes as efficient light-to-heat conversion materials offers significant potential for solar-based desalination, particularly in photothermal interfacial evaporation, enabling cost-effective solar-powered membrane distillation (MD). This study investigates solar-powered MD afforded by a photothermally functionalized spacer, which is built by spray-coating Ti3C2Tx MXene sheets on metallic spacers. 2D Ti3C2Tx MXene gives an ultrahigh photothermal conversion efficiency; thereby, by Ti3C2Tx MXene-coated metallic spacer, this rationally designed spacer allows for a localized photothermal conversion and interfacial feed heating effect on the membrane surface, especially for MD operation. As a feed spacer and a photothermal element, Ti3C2Tx MXene-coated metallic spacer exhibited stable enhanced water flux of up to 0.36 kg·m-2h-1 under one sun illumination for a feed salinity of 35 g·L-1, corresponding energy conversion efficiency of 28.3 %. Overall, the developed photothermal Ti3C2Tx MXene-coated spacers displayed great potential in enhancing the performance, scalability, and feasibility of solar-driven MD process, paving the way for further development of photothermal elements that can be implemented in solar MD applications.
Collapse
Affiliation(s)
- Noora Almarzooqi
- Department of Chemical & Petroleum Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Rawan Abu Alwan
- Department of Chemical & Petroleum Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Faisal AlMarzooqi
- Department of Chemical & Petroleum Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| | - Noreddine Ghaffour
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia; Environmental Science & Engineering Program, Biological & Environmental Science & Engineering Division, King Abdullah University of Science & Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Seunghyun Hong
- Department of Chemical & Petroleum Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| | - Hassan A Arafat
- Department of Chemical & Petroleum Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Research and Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| |
Collapse
|
2
|
Zhang X, Koirala R, Pramanik B, Fan L, Date A, Jegatheesan V. Challenges and advancements in membrane distillation crystallization for industrial applications. ENVIRONMENTAL RESEARCH 2023; 234:116577. [PMID: 37429399 DOI: 10.1016/j.envres.2023.116577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Membrane distillation crystallization (MDC) is an emerging hybrid thermal membrane technology that synergizes membrane distillation (MD) and crystallization, which can achieve both freshwater and minerals recovery from high concentrated solutions. Due to the outstanding hydrophobic nature of the membranes, MDC has been widely used in numerous fields such as seawater desalination, valuable minerals recovery, industrial wastewater treatment and pharmaceutical applications, where the separation of dissolved solids is required. Despite the fact that MDC has shown great promise in producing both high-purity crystals and freshwater, most studies on MDC remain limited to laboratory scale, and industrializing MDC processes is currently impractical. This paper summarizes the current state of MDC research, focusing on the mechanisms of MDC, the controls for membrane distillation (MD), and the controls for crystallization. Additionally, this paper categorizes the obstacles hindering the industrialization of MDC into various aspects, including energy consumption, membrane wetting, flux reduction, crystal yield and purity, and crystallizer design. Furthermore, this study also indicates the direction for future development of the industrialization of MDC.
Collapse
Affiliation(s)
- Xin Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ravi Koirala
- Mechanical and Automotive Engineering, School of Engineering, RMIT University, Bundoora, VIC, 3083, Australia
| | - Biplob Pramanik
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia
| | - Linhua Fan
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia
| | - Abhijit Date
- Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia; Mechanical and Automotive Engineering, School of Engineering, RMIT University, Bundoora, VIC, 3083, Australia
| | - Veeriah Jegatheesan
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
3
|
Khatri M, Francis L, Hilal N. Modified Electrospun Membranes Using Different Nanomaterials for Membrane Distillation. MEMBRANES 2023; 13:338. [PMID: 36984725 PMCID: PMC10059126 DOI: 10.3390/membranes13030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Obtaining fresh drinking water is a challenge directly related to the change in agricultural, industrial, and societal demands and pressure. Therefore, the sustainable treatment of saline water to get clean water is a major requirement for human survival. In this review, we have detailed the use of electrospun nanofiber-based membranes (ENMs) for water reclamation improvements with respect to physical and chemical modifications. Although membrane distillation (MD) has been considered a low-cost water reclamation process, especially with the availability of low-grade waste heat sources, significant improvements are still required in terms of preparing efficient membranes with enhanced water flux, anti-fouling, and anti-scaling characteristics. In particular, different types of nanomaterials have been explored as guest molecules for electrospinning with different polymers. Nanomaterials such as metallic organic frameworks (MOFs), zeolites, dioxides, carbon nanotubes (CNTs), etc., have opened unprecedented perspectives for the implementation of the MD process. The integration of nanofillers gives appropriate characteristics to the MD membranes by changing their chemical and physical properties, which significantly enhances energy efficiency without impacting the economic costs. Here, we provide a comprehensive overview of the state-of-the-art status, the opportunities, open challenges, and pitfalls of the emerging field of modified ENMs using different nanomaterials for desalination applications.
Collapse
|
4
|
Jeong S, Gu B, Choi S, Ahn SK, Lee J, Lee J, Jeong S. Engineered multi-scale roughness of carbon nanofiller-embedded 3D printed spacers for membrane distillation. WATER RESEARCH 2023; 231:119649. [PMID: 36702024 DOI: 10.1016/j.watres.2023.119649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Membrane distillation (MD) transfers heat and mass simultaneously through a hydrophobic membrane. Hence, it is sensitive to both concentration and temperature polarisation (CP and TP) effects. In this study, we fabricated feed spacers to improve MD efficiency by alleviating the polarisation effects. First, a 3D printed spacer design was optimised to show superior performance amongst the others tested. Then, to further enhance spacer performance, we incorporated highly thermally stable carbon nanofillers, including carbon nanotubes (CNT) and graphene, in the fabrication of filaments for 3D printing. All the fabricated spacers had a degree of engineered multi-scale roughness, which was relatively high compared to that of the polylactic acid (PLA) spacer (control). The use of nanomaterial-incorporated spacers increased the mean permeate flux significantly compared to the PLA spacer (27.1 L/m2h (LMH)): a 43% and 75% increase when using the 1% graphene-incorporated spacer (38.9 LMH) and 2% CNT incorporated spacer (47.5 LMH), respectively. This could be attributed to the locally enhanced turbulence owing to the multi-scale roughness formed on the spacer, which further increased the vaporisation rate through the membrane. Interestingly, only the CNT-embedded spacer markedly reduced the ion permeation through the membrane, which may be due to the effective reduction of CP. This further decreased with increasing CNT concentration, confirming that the CNT spacer can simultaneously reduce the CP and TP effects in the MD process. Finally, we successfully proved that the multi-scale roughness of the spacer surface induces micromixing near the membrane walls, which can improve the MD performance via computational fluid dynamics.
Collapse
Affiliation(s)
- Seongeom Jeong
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Boram Gu
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Subi Choi
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Suk-Kyun Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jaegeun Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Sanghyun Jeong
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Francis L, Hilal N. Electrosprayed CNTs on Electrospun PVDF-Co-HFP Membrane for Robust Membrane Distillation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4331. [PMID: 36500954 PMCID: PMC9740161 DOI: 10.3390/nano12234331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In this investigation, the electrospraying of CNTs on an electrospun PVDF-Co-HFP membrane was carried out to fabricate robust membranes for the membrane distillation (MD) process. A CNT-modified PVDF-Co-HFP membrane was heat pressed and characterized for water contact angle, liquid entry pressure (LEP), pore size distribution, tensile strength, and surface morphology. A higher water contact angle, higher liquid entry pressure (LEP), and higher tensile strength were observed in the electrosprayed CNT-coated PVDF-Co-HFP membrane than in the pristine membrane. The MD process test was conducted at varying feed temperatures using a 3.5 wt. % simulated seawater feed solution. The CNT-modified membrane showed an enhancement in the temperature polarization coefficient (TPC) and water permeation flux up to 16% and 24.6%, respectively. Field-effect scanning electron microscopy (FESEM) images of the PVDF-Co-HFP and CNT-modified membranes were observed before and after the MD process. Energy dispersive spectroscopy (EDS) confirmed the presence of inorganic salt ions deposited on the membrane surface after the DCMD process. Permeate water quality and rejection of inorganic salt ions were quantitatively analyzed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS). The water permeation flux during the 24-h continuous DCMD operation remained constant with a >99.8% inorganic salt rejection.
Collapse
|
6
|
Mustakeem M, El-Demellawi JK, Obaid M, Ming F, Alshareef HN, Ghaffour N. MXene-Coated Membranes for Autonomous Solar-Driven Desalination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5265-5274. [PMID: 35060695 PMCID: PMC8815036 DOI: 10.1021/acsami.1c20653] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Clean water supply in off-grid locations remains a stumbling stone for socio-economic development in remote areas where solar energy is abundant. In this regard, several technologies have already introduced various solutions to the off-grid freshwater predicament; however, most of them are either costly or complex to operate. Nonetheless, photothermal membrane distillation (PMD) has emerged as a promising candidate with great potential to be autonomously driven by solar energy. Instead of using energy-intensive bulk feed heating in conventional MD systems, PMD membranes can directly harvest the incident solar light at the membrane interface as an alternative driving energy resource for the desalination process. Because of its excellent photothermal properties and stability in ionic environments, herein, Ti3C2Tx MXene was coated onto commercial polytetrafluoroethylene (PTFE) membranes to allow for a self-heated PMD process. An average water vapor flux of 0.77 kg/m2 h with an excellent temporal response under intermitting lighting and a photothermal efficiency of 65.3% were achieved by the PMD membrane under one-sun irradiation for a feed salinity of 0.36 g/L. Naturally, the efficiency of the process decreased with higher feed concentrations due to the reduction of the evaporation rate and the scattering of incident sunlight toward the membrane photothermal surface, especially at rates above 10 g/L. Notably, with such performance, 1 m2 of the MXene-coated PMD membrane can fulfill the recommended daily potable water intake for a household, that is, ca. 6 L/day.
Collapse
Affiliation(s)
- Mustakeem Mustakeem
- Water
Desalination and Reuse Center (WDRC), Biological and Environmental
Science and Engineering Division (BESE), King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jehad K. El-Demellawi
- Physical
Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - M. Obaid
- Water
Desalination and Reuse Center (WDRC), Biological and Environmental
Science and Engineering Division (BESE), King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fangwang Ming
- Physical
Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Husam N. Alshareef
- Physical
Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Noreddine Ghaffour
- Water
Desalination and Reuse Center (WDRC), Biological and Environmental
Science and Engineering Division (BESE), King Abdullah University of Science and Technology, (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
7
|
Liu Y, Horseman T, Wang Z, Arafat HA, Yin H, Lin S, He T. Negative Pressure Membrane Distillation for Excellent Gypsum Scaling Resistance and Flux Enhancement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1405-1412. [PMID: 34941244 DOI: 10.1021/acs.est.1c07144] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane distillation (MD) has potential to become a competitive technology for managing hypersaline brine but not until the critical challenge of mineral scaling is addressed. The state-of-the-art approach for mitigating mineral scaling in MD involves the use of superhydrophobic membranes that are difficult to fabricate and are commercially unavailable. This study explores a novel operational strategy, namely, negative pressure direct contact membrane distillation (NP-DCMD) that can minimize mineral scaling with commercially available hydrophobic membranes and at the same time enhance the water vapor flux substantially. By applying a negative gauge pressure on the feed stream, NP-DCMD achieved prolonged resistance to CaSO4 scaling and a dramatic vapor flux enhancement up to 62%. The exceptional scaling resistance is attributable to the formation of a concave liquid-gas under a negative pressure that changes the position of the water-air interface to hinder interfacial nucleation and crystal growth. The substantial flux enhancement is caused by the reduced molecular diffusion resistance within the pores and the enhanced heat transfer kinetics across the boundary layer in NP-DCMD. Achieving substantial performance improvement in both the scaling resistance and vapor flux with commercial membranes, NP-DCMD is a significant innovation with vast potential for practical adoption due to its simplicity and effectiveness.
Collapse
Affiliation(s)
- Yongjie Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Thomas Horseman
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Zhangxin Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watershed, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hassan A Arafat
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
| | - Shihong Lin
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Tao He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
8
|
Francis L, Ahmed FE, Hilal N. Advances in Membrane Distillation Module Configurations. MEMBRANES 2022; 12:membranes12010081. [PMID: 35054607 PMCID: PMC8778876 DOI: 10.3390/membranes12010081] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023]
Abstract
Membrane Distillation (MD) is a membrane-based, temperature-driven water reclamation process. While research emphasis has been largely on membrane design, upscaling of MD has prompted advancements in energy-efficient module design and configurations. Apart from the four conventional configurations, researchers have come up with novel MD membrane module designs and configurations to improve thermal efficiency. While membrane design has been the focus of many studies, development of appropriate system configurations for optimal energy efficiency for each application has received considerable attention, and is a critical aspect in advancing MD configurations. This review assesses advancements in modified and novel MD configurations design with emphasis on the effects of upscaling and pilot scale studies. Improved MD configurations discussed in this review are the material gap MD, conductive gap MD, permeate gap MD, vacuum-enhanced AGMD/DCMD, submerged MD, flashed-feed MD, dead-end MD, and vacuum-enhanced multi-effect MD. All of these modified MD configurations are designed either to reduce the heat loss by mitigating the temperature polarization or to improve the mass transfer and permeate flux. Vacuum-enhanced MD processes and MD process with non-contact feed solution show promise at the lab-scale and must be further investigated. Hollow fiber membrane-based pilot scale modules have not yet been sufficiently explored. In addition, comparison of various configurations is prevented by a lack of standardized testing conditions. We also reflect on recent pilot scale studies, ongoing hurdles in commercialization, and niche applications of the MD process.
Collapse
|
9
|
Fortunato L, Elcik H, Blankert B, Ghaffour N, Vrouwenvelder J. Textile dye wastewater treatment by direct contact membrane distillation: Membrane performance and detailed fouling analysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Power effect of ultrasonically vibrated spacers in air gap membrane distillation: Theoretical and experimental investigations. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Impact of osmotic and thermal isolation barrier on concentration and temperature polarization and energy efficiency in a novel FO-MD integrated module. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Mustakeem M, Qamar A, Alpatova A, Ghaffour N. Dead-end membrane distillation with localized interfacial heating for sustainable and energy-efficient desalination. WATER RESEARCH 2021; 189:116584. [PMID: 33161326 DOI: 10.1016/j.watres.2020.116584] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/11/2020] [Accepted: 10/30/2020] [Indexed: 05/18/2023]
Abstract
Membrane distillation (MD) has the high potential to circumvent conventional desalination limitations in treating highly saline brines. However, the performance of MD is limited by its low thermal efficiencyand temperature polarization (TP) effect. Consequently, the driving force decreases when heat loss increases.In this study, we propose to minimize TP through localized heating where the thin feed channel was heated uniformly at the membrane-liquid interface without changing the properties of the membrane.This concept was further improved by implementing a new dead-end MD configuration. Investigated for the first time,this configuration eliminated circulation heat losses, which cannot be realized in conventional MD due to a rapid temperature stratification. In addition, the accumulation of foulants on the membrane surface was successfully controlled by intermittent flushing. 3-Dimensional conjugate heat transfer modeling revealedmore uniform heat transfer and temperature gradient across the membrane due to the increased feed water temperature over a larger membrane area. The increase of water vapor flux (45%) and the reduction of heat lossobserved in the new dead-end concept led to a decrease of the specific energy consumption by 57%, corresponding to a gain output ratio increase of about 132 %, compared to a conventional bulk heating, while preserving membrane integrity. A conjugate heat transfer model was deployed in ANSYS-Fluent framework to elucidate on the mechanism of flux enhancement associated with the proposed technique. This study provides a framework for future sustainable MD developmentby maintaining a stable vapor flux while minimizing energy consumption.
Collapse
Affiliation(s)
- Mustakeem Mustakeem
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), Thuwal23955-6900, Saudi Arabia
| | - Adnan Qamar
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), Thuwal23955-6900, Saudi Arabia
| | - Alla Alpatova
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), Thuwal23955-6900, Saudi Arabia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), Thuwal23955-6900, Saudi Arabia.
| |
Collapse
|
13
|
Bamasag A, Alqahtani T, Sinha S, Ghaffour N, Phelan P. Solar-heated submerged vacuum membrane distillation system with agitation techniques for desalination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117855] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Showerhead feed distribution for optimized performance of large scale membrane distillation modules. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Anvari A, Azimi Yancheshme A, Kekre KM, Ronen A. State-of-the-art methods for overcoming temperature polarization in membrane distillation process: A review. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118413] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Improving the performance of vacuum membrane distillation using a 3D-printed helical baffle and a superhydrophobic nanocomposite membrane. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117072] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Numerical study of desalination by vacuum membrane distillation – Transient three-dimensional analysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Song L, Huang Q, Huang Y, Bi R, Xiao C. An electro-thermal braid-reinforced PVDF hollow fiber membrane for vacuum membrane distillation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Choudhury MR, Anwar N, Jassby D, Rahaman MS. Fouling and wetting in the membrane distillation driven wastewater reclamation process - A review. Adv Colloid Interface Sci 2019; 269:370-399. [PMID: 31129338 DOI: 10.1016/j.cis.2019.04.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/22/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Fouling and wetting of membranes are significant concerns that can impede the widespread application of the membrane distillation (MD) process during high-salinity wastewater reclamation. Fouling, caused by the accumulation of undesirable materials on the membrane surface and pores, causes a decrease in permeate flux. Membrane wetting, the direct permeation of the feed solution through the membrane pores, results in reduced contaminant rejection and overall process failure. Lately, the application of MD for water recovery from various types of wastewaters has gained increased attention among researchers. In this review, we discuss fouling and wetting phenomena observed during the MD process, along with the effects of various mitigation strategies. In addition, we examine the interactions between contaminants and different types of MD membranes and the influence of different operating conditions on the occurrence of fouling and wetting. We also report on previously investigated feed pre-treatment options before MD, application of integrated MD processes, the performance of fabricated/modified MD membranes, and strategies for MD membrane maintenance during water reclamation. Energy consumption and economic aspects of MD for wastewater recovery is also discussed. Throughout the review, we engage in dialogues highlighting research needs for furthering the development of MD: the incorporation of MD in the overall wastewater treatment and recovery scheme (including selection of appropriate membrane material, suitable pre-treatment or integrated processes, and membrane maintenance strategies) and the application of MD in long-term pilot-scale studies using real wastewater.
Collapse
|
20
|
Alpatova A, Alsaadi A, Alharthi M, Lee JG, Ghaffour N. Co-axial hollow fiber module for air gap membrane distillation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Kim Y, Li S, Francis L, Li Z, Linares RV, Alsaadi AS, Abu-Ghdaib M, Son HS, Amy G, Ghaffour N. Osmotically and Thermally Isolated Forward Osmosis-Membrane Distillation (FO-MD) Integrated Module. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3488-3498. [PMID: 30848585 DOI: 10.1021/acs.est.8b05587] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we propose a novel module design to integrate forward osmosis (FO) and membrane distillation (MD). The two processes are sealed in one module and operated simultaneously, making the system compact and suitable for a wide range of applications. To evaluate the system under large-scale module operating conditions, FO and MD experiments were performed separately. The effect of draw solution (DS) temperature on the FO performance was first assessed in terms of flux, reverse salt flux (RSF), and specific RSF (SRSF). While a higher DS temperature resulted in an increased RSF, a higher FO flux was achieved, with a lower SRSF. The influence of DS concentration on the MD performance was then investigated in terms of flux and salt rejection. High DS concentration had a slightly negative impact on MD water vapor flux, but the MD membrane was a complete barrier for DS salts. The FO-MD integrated module was simulated based on mass balance equations. Results indicated that initial DS (MD feed) flow rate and concentration are the most important factors for stable operation of the integrated module. Higher initial DS flow rate and lower initial DS concentration can achieve a higher permeate rate of the FO-MD module.
Collapse
Affiliation(s)
- Youngjin Kim
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
| | - Sheng Li
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
- Guangzhou Institute of Advanced Technology , CAS , Haibin Road #1121 , Nansha district, Guangzhou 511458 , China
| | - Lijo Francis
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
- Qatar Environment and Energy Research Institute (QEERI) , Hamad Bin Khalifa University (HBKU) , Qatar Foundation. P.O. Box 34110, Doha , Qatar
| | - Zhenyu Li
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
- College of Food Science and Engineering , Northwest A&F University , Shaanxi 712100 , China
| | - Rodrigo Valladares Linares
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
- Renewable Energy Unit , Yucatan Center for Scientific Research (CICY) , 43 Street #130 , Chuburna de Hidalgo, 97205 , Merida , Yucatan , Mexico
| | - Ahmad S Alsaadi
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
- Department of Chemical Engineering , University of Jeddah , Jeddah 21959 , Saudi Arabia
| | - Muhannad Abu-Ghdaib
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
| | - Hyuk Soo Son
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
| | - Gary Amy
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
- College of Engineering and Science , Clemson University , Clemson , South Carolina 29634 , United States
- Chemical and Biomolecular Engineering , National University of Singapore , 119077 Singapore
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST) , Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|