1
|
Sandoval-García V, Ruano MV, Alliet M, Brepols C, Comas J, Harmand J, Heran M, Mannina G, Rodriguez-Roda I, Smets I, Robles A. Modeling MBR fouling: A critical review analysis towards establishing a framework for good modeling practices. WATER RESEARCH 2025; 268:122611. [PMID: 39579635 DOI: 10.1016/j.watres.2024.122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 11/25/2024]
Abstract
This study critically analyses filtration process modeling in membrane bioreactor (MBR) technology. More specifically, the variety of approaches and assumptions considered within a curated selection of resistance-in-series (RIS) filtration models found in the literature is critically assessed. Aimed to move towards good filtration process modeling practices, the basis for establishing a unified framework rooted in the fundamentals of membrane fouling is defined in this work, considering fouling classifications, process dynamics, and underlying processes used by different authors for elucidating membrane fouling phenomena. Systematically analyzing these factors should be considered as a basic step for efficiently comparing the performance of different models. This involves a detailed examination of the processes applied within each model and their interplay with the involved resistances and fouling types. A lack of homogeneity in RIS-based filtration modeling has been observed. To address this, basic guidelines towards good modeling practices are proposed aimed at balancing model accuracy and complexity. Specifically, seven model processes, six resistances, and three subgroups for types of fouling, further divided into four or five categories are proposed to guide the selection of processes and state variables in the model structure. Hence, this study facilitates the understanding of different approaches to be used during the modeling exercise of membrane filtration processes within the MBR field, not only to enhance the comprehensibility of available filtration models, but also to help the comparison, implementation, and adaptation of available models and the comprehensive development of new ones.
Collapse
Affiliation(s)
- V Sandoval-García
- Departament d'Enginyeria Química, ETSE-UV, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia 46100, Spain
| | - M V Ruano
- Departament d'Enginyeria Química, ETSE-UV, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia 46100, Spain
| | - M Alliet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - C Brepols
- Erftverband, Am Erftverband 6, Bergheim 50126, Germany
| | - J Comas
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, Girona 17003, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, Girona 17071, Spain
| | - J Harmand
- LBE, INRAE, University Montpellier, Narbonne, France
| | - M Heran
- IEM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - G Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, Palermo 90128, Italy
| | - I Rodriguez-Roda
- LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, Girona 17071, Spain
| | - I Smets
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F box 2424, Heverlee 3001, Belgium
| | - A Robles
- Departament d'Enginyeria Química, ETSE-UV, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia 46100, Spain.
| |
Collapse
|
2
|
Song W, Ma J, Miao S, Zhao Q, Chu H, Zhou X, Zhang Y. Unveiling the role of stratified extracellular polymeric substances in membrane-based microalgae harvesting: Thermodynamic and computational insights. WATER RESEARCH 2024; 273:123079. [PMID: 39756225 DOI: 10.1016/j.watres.2024.123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Membrane separation technology has emerged as a highly energy-efficient method for microalgae enrichment and harvesting in wastewater treatment. However, membrane fouling caused by algal cells and stratified extracellular polymeric substances (EPS) remains a critical barrier to its industrial-scale application. This study meticulously investigates the micro process of algae-derived pollutants stacking to the membrane surface affected by stratified EPS. The fouling process resulting from algal cell particle deposition and cake layer formation are clearly simulated using a semi-coupled computational method of Computational Fluid Dynamics (CFD)-Discrete Element Method (DEM) for the first time. The results reveal that the hydrophilic component and spatial network structure of soluble EPS (S-EPS) effectively impede the algae-membrane adhesion, and enable the algal cake layer exhibit "dynamic membrane" characteristic to enhance the organic matter retention. In contrast, bound EPS (B-EPS) with higher protein content exhibits a stronger fouling potential and adhesion tendency of algal cells. The influence of stratified EPS on the variation of thermodynamic interaction with contact scale in the sphere-plane/sphere-sphere model is inventively conducted. Based on different algal cell filtration modes, a sequential increase in the eigenvalue n was observed by delaminating EPS layer by layer, indicative of a more severe membrane pore blockage. The semi-coupled CFD-DEM method provides a quantitative analysis of the deposition process, offering spatial resolution and force analysis for algal-derived pollutants. Additionally, we propose a novel calculation method to reverse the deposition process based on the particle stress, providing a valuable reference for simulating membrane-based microalgae harvesting under the influence of stratified EPS.
Collapse
Affiliation(s)
- Wenxin Song
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jiaying Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Shiyong Miao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Qipeng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
3
|
Nourafkan E, Kenyon C, Nair A, Loveday KA, Welbourne EN, Tao M, Ahmed M, Middleton J, Dickman MJ, Brown SF, Maamra M, Cordiner J, Kis Z. An Experimental and Modeling Approach to Study Tangential Flow Filtration Performance for mRNA Drug Substance Purification. Biotechnol J 2024; 19:e202400473. [PMID: 39513347 DOI: 10.1002/biot.202400473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Following the recent COVID-19 pandemic, mRNA manufacturing processes are being actively developed and optimized to produce the next generation of mRNA vaccines and therapeutics. Herein, the performance of the tangential flow filtration (TFF) was evaluated for high-recovery, and high-purity separation of mRNA from unreacted nucleoside triphosphates (NTPs) from the in vitro transcription (IVT) reaction mixture. For the first time, the fouling model was successfully validated with TFF experimental data to describe the adsorption of mRNA on filtration membrane. The fouling model enables monitoring of the mRNA purification processes, designing an appropriate strategy for filter clean-up, replacing the column at the right time and reducing the process cost. Recovery greater than 70% mRNA without degradation was obtained by implementing a capacity load of ∼19 g/m2, <2.5 psi transmembrane pressure (TMP) and feed flux of 300 LMH. This approach also enables the purification of multiple mRNA drug substance sequences for the treatment of a wide range of different diseases.
Collapse
Affiliation(s)
- Ehsan Nourafkan
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Charlotte Kenyon
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Adithya Nair
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Kate A Loveday
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Emma N Welbourne
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Min Tao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Mahdi Ahmed
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Joseph Middleton
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Solomon F Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Mabrouka Maamra
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Joan Cordiner
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Zoltán Kis
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
- Department of Chemical Engineering, Imperial College London, Roderic Hill Building, South Kensington Campus, SW7 2AZ, London, UK
| |
Collapse
|
4
|
Homayoonfal M, Hajhashemi Z, Hajheidari M, Rezaei F, Nadali MS. Modeling and simulation-assisted strategies for effective membrane-fouling mitigation during membrane bioreactor operation. Heliyon 2024; 10:e38953. [PMID: 39492913 PMCID: PMC11531625 DOI: 10.1016/j.heliyon.2024.e38953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
This research principally aimed to present a suitable strategy for membrane-fouling mitigation in membrane-bioreactors (MBRs). The current strategies for membrane-fouling mitigation before initiating the process in many cases, are unmodifiable for a specific MBR system along the operations. Thus, membrane-fouling strategies during filtration should be applied. To select the best and most economical method for controlling fouling during the operations, the quality (site and mechanism) as well as quantity (thickness, mass, and porosity of the cake layer, and pore resistances) of fouling should be predicted. Accordingly, in this research, two powerful tools, i.e. modeling and simulation, have been used for predicting the quality and quantity of fouling, respectively. Through modeling, the best model describing the site and mechanism of fouling was chosen. Through simulation, the thickness, mass and porosity of the cake layer, along with resistance of cake and pores were calculated. In addition, the match between the results of modeling, simulation, and experimental results confirmed the accuracy of the performed predictions. Ultimately, to achieve the minimum membrane-fouling during filtration, based on the modeling results, the general solution of washing (physical or chemical), and based on the simulation results, its intensity (low, medium, and high) were proposed.
Collapse
Affiliation(s)
- Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Zohre Hajhashemi
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Maryam Hajheidari
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Fateme Rezaei
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Mohammad Saber Nadali
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| |
Collapse
|
5
|
Gu Y, Chen W, Chen L, Liu M, Zhao K, Wang Z, Yu H. Electrochemical coalescence of oil-in-water droplets in microchannels of TiO 2-x/Ti anode via polarization eliminating electrostatic repulsion and ·OH oxidation destroying oil-water interface film. WATER RESEARCH 2024; 255:121550. [PMID: 38579590 DOI: 10.1016/j.watres.2024.121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Electrochemistry is a sustainable technology for oil-water separation. In the common flat electrode scheme, due to a few centimeters away from the anode, oil droplets have to undergo electromigration to and electrical neutralization at the anodic surface before they coalesce into large oil droplets and rise to water surface, resulting in slow demulsification and easy anode fouling. Herein, a novel strategy is proposed on basis of a TiO2-x/Ti anode with microchannels to overcome these problems. When oil droplets with several microns in diameter flow through channels with tens of microns in diameter, the electromigration distance is shortened by three orders of magnitude, electrical neutralization is replaced by polarization coupling ·OH oxidation. The new strategy was supported by experimental results and theoretical analysis. Taking the suspension containing emulsified oil as targets, COD value dropped from initial 500 mg/L to 117 mg/L after flowing through anodic microchannels in only 58 s of running time, and the COD removal was 21 times higher than that for a plate anode. At similar COD removal, the residence time was 48 times shorter than that of reported flat electrodes. Coalescences of oil droplets in microchannels were observed by a confocal laser scanning microscopy. This new strategy opens a door for using microchannel electrodes to accelerate electrochemical coalescence of oil-in-water droplets.
Collapse
Affiliation(s)
- Yuwei Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Weiqiang Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Li Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Kun Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichen Wang
- Suzhou Guolong Technology Development Co., Ltd, Suzhou 215217, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
6
|
Im HR, Kim CM, Choi PJ, Jang A. Non-destructive monitoring and prediction of fouling by organic matters and residual anionic coagulant during membrane process. CHEMOSPHERE 2024; 356:141778. [PMID: 38554864 DOI: 10.1016/j.chemosphere.2024.141778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Physical fouling characteristics on silicon carbide (SiC) membranes induced by various organic matter compounds vary depending on the presence of calcium ions (Ca2+). Both destructive techniques (morphological surface analysis) and non-destructive techniques (fouling properties monitoring) were used to determine the fouling mechanisms and behavior during the membrane filtration systems. Destructive analysis and a modified Hermia model were employed to assess the fouling mechanisms. Fouling behavior was also analyzed through non-destructive monitoring techniques including optical coherence tomography (OCT) and three-dimensional laser scanning confocal microscopy (3D-LSM). At concentrations of 10, 30, and 100 mg/L without Ca2+, the flux decreased by 57-95% for humic acid (HA) and anionic polyacrylamide (APAM). APAM exhibited a notable removal rate of up to 56% without Ca2+. At concentration of 10, 30, and 100 mg/L in the absence of Ca2+, the flux decreased by 6-8% for sodium alginate (SA). However, the addition of Ca2+ led to a reduction in the flux for SA by up to 91% and resulted in a removal rate of 40%. Furthermore, addition of Ca2+ led to an alteration of the fouling characteristics of HA and SA. In the case of HA, higher concentrations resulted in elevated thickness and roughness with correlation coefficients of 0.991 and 0.992, respectively. For SA, increased SA concentration led to a thicker (correlation coefficient of 0.999) but smoother surfaces (correlation coefficients of 0.502). Monitoring of these physical characteristics of the fouling layer through non-destructive analysis is crucial for effective fouling management, optimization of the system performance and extending the lifespan of the membrane. By continuously assessing the fouling layer thickness and surface roughness, we expect to be able to provide insights on the fouling behavior, identify trends, that can help scientists and engineers to make informed decisions regarding fouling control strategies in future.
Collapse
Affiliation(s)
- Hong Rae Im
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Chang-Min Kim
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea; Future and Fusion Lab of Architectural, Civil and Environmental Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Paula Jungwon Choi
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
7
|
Wang L, Li Z, Fan J, Han Z. The intelligent prediction of membrane fouling during membrane filtration by mathematical models and artificial intelligence models. CHEMOSPHERE 2024; 349:141031. [PMID: 38145849 DOI: 10.1016/j.chemosphere.2023.141031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Recently, membrane separation technology has been widely utilized in filtration process intensification due to its efficient performance and unique advantages, but membrane fouling limits its development and application. Therefore, the research on membrane fouling prediction and control technology is crucial to effectively reduce membrane fouling and improve separation performance. This review first introduces the main factors (operating condition, material characteristics, and membrane structure properties) and the corresponding principles that affect membrane fouling. In addition, mathematical models (Hermia model and Tandem resistance model), artificial intelligence (AI) models (Artificial neural networks model and fuzzy control model), and AI optimization methods (genetic algorithm and particle swarm algorithm), which are widely used for the prediction of membrane fouling, are summarized and analyzed for comparison. The AI models are usually significantly better than the mathematical models in terms of prediction accuracy and applicability of membrane fouling and can monitor membrane fouling in real-time by working in concert with image processing technology, which is crucial for membrane fouling prediction and mechanism studies. Meanwhile, AI models for membrane fouling prediction in the separation process have shown good potential and are expected to be further applied in large-scale industrial applications for separation and filtration process intensification. This review will help researchers understand the challenges and future research directions in membrane fouling prediction, which is expected to provide an effective method to reduce or even solve the bottleneck problem of membrane fouling, and to promote the further application of AI modeling in environmental and food fields.
Collapse
Affiliation(s)
- Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China; Research Institute, Jilin University, Yibin, 644500, People's Republic of China
| | - Zonghao Li
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Jianhua Fan
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, People's Republic of China.
| | - Zhiwu Han
- Key Laboratory of Bionics Engineering of Ministry of Education, Jilin University, Changchun, 130022, People's Republic of China
| |
Collapse
|
8
|
Magalhães FDS, Ribeiro SRFL, Dos Santos SS, Boffito DC, Cardoso VL, Reis MHM. Tailored ethylenediamine-functionalized graphene oxide membrane on kaolin hollow fibers for pectin concentration. Int J Biol Macromol 2024; 254:127896. [PMID: 37931862 DOI: 10.1016/j.ijbiomac.2023.127896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Pectin is a valuable product that can be extracted from waste fruit peels. Here we propose the use of graphene oxide (GO)-based membranes for pectin concentration. The synthesized GO was functionalized with ethylenediamine (EDA) to molecularly design the GO framework. Kaolin hollow fibers with asymmetric pore distribution were used as a porous substrate for GO/EDA deposition. A GO/EDA layer with a thickness of 2.86 ± 0.24 μm was assembled on the substrate by the simple vacuum-assisted deposition method. After GO/EDA depositions, the water permeance of the pristine kaolin hollow fibers reduced from 8.46 ± 0.17 to 0.52 ± 0.03 L h-1·m-2·kPa-1. A pectin aqueous extract from orange peels was filtered at cross-flow mode through the prepared membranes and the steady-state fluxes through pristine and GO/EDA-coated hollow fibers were 56 ± 2 and 20 ± 3 L h-1 m-2, respectively. The GO/EDA-coated membrane presented greater pectin selectivity than the pristine hollow fiber. The GO/EDA-coated hollow fiber concentrated the galacturonic acid, phenolic, and methoxyl contents in 19.5, 17.4, and 29.2 %, respectively. Thus, filtration through the GO/EDA-based membrane is a suitable alternative for pectin concentration.
Collapse
Affiliation(s)
- Flávia de Santana Magalhães
- Faculdade de Engenharia Química, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, 38400-902 Uberlândia, Minas Gerais, Brazil
| | | | - Suelen Siqueira Dos Santos
- Faculdade de Engenharia Química, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Daria Camilla Boffito
- Department of Chemical Engineering, Polytechnique Montreal, C.P. 6079, Succ., CV Montréal, H3C 3A7, Québec, Canada
| | - Vicelma Luiz Cardoso
- Faculdade de Engenharia Química, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Miria Hespanhol Miranda Reis
- Faculdade de Engenharia Química, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, 38400-902 Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Qasim M, Akbar A, Khan IA, Ali M, Lee EJ, Lee KH. Evaluation of Organic and Inorganic Foulant Interaction Using Modified Fouling Models in Constant Flux Dead-End Operation with Microfiltration Membranes. MEMBRANES 2023; 13:853. [PMID: 37999339 PMCID: PMC10673472 DOI: 10.3390/membranes13110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
The goal of this study was to elucidate the interaction of complex feed solutions under modified membrane fouling models for constant flux operation. The polyvinylidene fluoride membrane (PVDF) was tested for three types of solutions containing inorganic foulants (Al, Mn, and Fe), organic foulants, and suspended solids at 0.5 mM Ca2+ ionic strength. The membrane's performance was evaluated by measuring the increase in transmembrane pressure (TMP) during two different filtration scenarios: continuous filtration lasting 1 h and cyclic filtration lasting 12 min, with 3 min backwashing cycles included. Statistical analysis (linear regression results (R2), p-value) was used to verify the fouling model propagation along with the determination of the contributing constant of each fouling model. An increasing TMP percentage of 164-302%, 155-300%, and 208-378% for S1 (HA + Ca2+), S2 (inorganics + kaolin + Ca2+), and S3 (HA + inorganics + kaolin + Ca2+) was recorded for 1 h filtration, respectively. Furthermore, a five percent increase in irreversible resistance was noted for the S3 solution due to the strong adsorption potential of foulants for the PVDF membrane caused by the electrostatic and hydration forces of foulants. In addition to that, the participation equation elucidated the contribution of the fouling model and confirmed that complete blocking and cake layer contribution were dominant for the S1 and S3 solutions, while standard blocking was dominant for the S2 solution with a high significance ratio. Moreover, R2 and cyclic filtration analysis also confirmed the propagation of these fouling models. The statistical confirmation and regression results analysis of the modified model gave comparative results and satisfied the filtration mechanism and can be used for the constant flux dead filtration analysis of water treatment.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Civil Engineering, The University of Lahore, Lahore Campus, 1-Km Defense Road, Lahore 54590, Pakistan;
| | - Ali Akbar
- Department of Mechanical Engineering, University of Engineering and Technology Lahore (Rachna Campus), Lahore 54890, Pakistan;
| | - Imtiaz Afzal Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
| | - Mumtaz Ali
- Department of Textile Engineering, National Textile University, Faislabad 37610, Pakistan;
| | - Eui-Jong Lee
- Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si 38453, Republic of Korea;
| | - Kang Hoon Lee
- Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Republic of Korea
| |
Collapse
|
10
|
Men Y, Li Z, Zhu L, Wang X, Cheng S, Lyu Y. New insights into membrane fouling during direct membrane filtration of municipal wastewater and fouling control with mechanical strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161775. [PMID: 36706998 DOI: 10.1016/j.scitotenv.2023.161775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Direct membrane filtration (DMF) technology achieves energy self-sufficiency through carbon recovery and utilization from municipal wastewater. To control its severe membrane fouling and improve DMF technology, targeted research on fouling behaviour and mechanisms is essential. In this study, a DMF reactor equipped with a flat-sheet ceramic membrane was conducted under three scenarios: without control, with intermittent aeration, and with periodic backwash. This system achieved efficient carbon concentration with chemical oxygen demand below 50 mg/L in permeate. Membrane fouling was dominated by intermediate blocking and cake filtration. And reversible external resistance accounted for over 85 % of total resistance. Predominant membrane foulants were free proteins, whose deposition underlies the attachment of cells and biopolymers. Backwash decreased the fouling rate and increased fouling layer porosity by indiscriminately detaching foulants from the membrane surface. While aeration enhanced the back transport of large particles and microbial activity, causing a relatively thin and dense fouling layer containing more microorganisms and β-d-glucopyranose polysaccharides, which implies a higher biofouling potential during long-term operation. In addition, aeration combined with backwash enhanced fouling control fivefold over either one alone. Therefore, simultaneous operation of backwash and other mechanical methods that can provide shear without stimulating aerobic microbial activity is a preferred strategy for minimizing membrane fouling during DMF of municipal wastewater.
Collapse
Affiliation(s)
- Yu Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China; Nanjing Yanjiang Academy of Resources and Ecology Science, Nanjing 210047, PR China.
| | - Lixin Zhu
- Nanjing Yanjiang Academy of Resources and Ecology Science, Nanjing 210047, PR China
| | - Xuemei Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Shikun Cheng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yaping Lyu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
11
|
Deng E, Chen X, Rub D, Lin H. Modeling and Mitigating Fouling of Microfiltration Membranes for Microalgae Dewatering. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Tomczak W, Gryta M. Long-Term Performance of Ultrafiltration Membranes: Corrosion Fouling Aspect. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041673. [PMID: 36837302 PMCID: PMC9959295 DOI: 10.3390/ma16041673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 05/14/2023]
Abstract
The past decade has seen a rise in the importance of the ultrafiltration (UF) technique in the separation of various complex solutions. However, the fouling phenomenon is the main limitation to faster process development. To the best of the authors' knowledge, the present paper is the first to aim to identify the role of corrosion fouling in long-term UF. For this purpose, polyvinylidene fluoride (PVDF) and polyethersulfone (PES) membranes were used. The investigations were carried out with the use of both pilot-scale and laboratory-scale units. Results obtained in the present study have clearly demonstrated that the oil concentration has a significant impact on the process performance. Indeed, it has been noted that a reduction in oil concentration from 160 to 100 mg/L resulted in an increase in the PVDF membrane flux from 57 to 77 L/m2h. In addition, it has been shown that the feed temperature has a significant influence on the UF performance. Importantly, it has been shown that corrosion fouling is of vital importance in UF membranes. Indeed, corrosion products such as iron oxides contaminated the membrane surface leading to an irreversible decrease in the UF process performance. In addition, it has been found that repeating the chemical cleaning of the membrane units significantly reduced the intensity of the fouling phenomenon. However, the complete elimination of its effects was not achieved. Therefore, it has been indicated that cleaning agents recommended by membrane manufacturers do not remove corrosion products deposited on the membrane surface. Undoubtedly, the obtained results can be used in the design of UF units leading to the extension of membrane installation lifetime.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland
- Correspondence:
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| |
Collapse
|
13
|
Sanchis-Perucho P, Aguado D, Ferrer J, Seco A, Robles Á. Direct Membrane Filtration of Municipal Wastewater: Studying the Most Suitable Conditions for Minimizing Fouling Rate in Commercial Porous Membranes at Demonstration Scale. MEMBRANES 2023; 13:membranes13010099. [PMID: 36676906 PMCID: PMC9866899 DOI: 10.3390/membranes13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 05/12/2023]
Abstract
This study aimed to evaluate the feasibility of applying a commercial porous membrane to direct filtration of municipal wastewater. The effects of membrane pore size (MF and UF), treated influent (raw wastewater and the primary settler effluent of a municipal wastewater treatment plant) and operating solids concentration (about 1 and 2.6 g L-1) were evaluated on a demonstration plant. Filtration periods of 2-8 h were achieved when using the MF membrane, while these increased to 34-69 days with the UF membrane. This wide difference was due to severe fouling when operating the MF membrane, which was dramatically reduced by the UF membrane. Use of raw wastewater and higher solids concentration showed a significant benefit in the filtration performance when using the UF module. The physical fouling control strategies tested (air sparging and backwashing) proved to be ineffective in controlling UF membrane fouling, although these strategies had a significant impact on MF membrane fouling, extending the operating period from some hours to 5-6 days. The fouling evaluation showed that a cake layer seemed to be the predominant reversible fouling mechanism during each independent filtration cycle. However, as continuous filtration advanced, a large accumulation of irreversible fouling appeared, which could have been related to intermediate/complete pore blocking in the case of the MF membrane, while it could have been produced by standard pore blocking in the case of the UF membrane. Organic matter represented more than 70% of this irreversible fouling in all the experimental conditions evaluated.
Collapse
Affiliation(s)
- Pau Sanchis-Perucho
- CALAGUA–Unidad Mixta UV-UPV, Departament d’Enginyeria Química, Universitat de València, 46100 Burjassot, Spain
- Correspondence:
| | - Daniel Aguado
- CALAGUA–Unidad Mixta UV-UPV, Institut Universitari d’Investigació d’Enginyeria de l’Aigua i Medi Ambient–IIAMA, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - José Ferrer
- CALAGUA–Unidad Mixta UV-UPV, Institut Universitari d’Investigació d’Enginyeria de l’Aigua i Medi Ambient–IIAMA, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - Aurora Seco
- CALAGUA–Unidad Mixta UV-UPV, Departament d’Enginyeria Química, Universitat de València, 46100 Burjassot, Spain
| | - Ángel Robles
- CALAGUA–Unidad Mixta UV-UPV, Departament d’Enginyeria Química, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
14
|
Saeid P, Zeinolabedini M, Khamforoush M. Simulation of a crossflow ultrafiltration polysulfone/polyvinylpyrrolidone membrane separation using finite element analysis to separate oil/water emulsion. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-022-01134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Ultrafiltration-based diafiltration for post-delignification fractionation of lignin from a deep eutectic solvent comprised of lactic acid and choline chloride. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Shams H, Alavi Moghaddam MR, Maknoon R, Mąkinia J, Hasani Zonoozi M. Fouling mechanisms in anoxic-aerobic sequencing batch membrane bioreactor based on adapted Hermia models and main foulant characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116146. [PMID: 36099869 DOI: 10.1016/j.jenvman.2022.116146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Various derivatives of Hermia models (complete pore blocking, intermediate pore blocking, cake layer formation, and standard pore blocking) and different assessments of foulant characteristics have long been used to determine the membrane fouling mechanisms. Accordingly, this study aims to adapt Hermia models and their combination according to the operating conditions of an anoxic-aerobic sequencing batch membrane bioreactor (A/O-SBMBR). In addition, fouling mechanisms of the A/O-SBMBR were assessed using these models along with the main foulant characteristics. Models fitting with the transmembrane pressure (TMP) data indicated that the intermediate-standard model was accounting for the increased fouling during the whole regular operating period, with the residual sum of squares (RSS) of 58.3. A more detailed study on the distinct stages of TMP curve showed that the intermediate-standard model had the best fit in stages of 2 and 3, with the RSS equal to 2.6 and 2.8, respectively. Also, the complete-standard model provided the best description of the fouling mechanism in stage 4, with the RSS of 12.5. Different analyzes revealed how the main foulant characteristics affect the occurrence of intermediate, complete and standard fouling mechanisms in the A/O-SBMBR, which is consistent with the fitting results of the adapted Hermia models. The modeling and experimental methods used in the presented study provided a valuable basis to prevent and control membrane fouling in membrane bioreactors.
Collapse
Affiliation(s)
- Hossein Shams
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (AUT), Hafez St, Tehran, 15875-4413, Iran.
| | - Mohammad Reza Alavi Moghaddam
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (AUT), Hafez St, Tehran, 15875-4413, Iran.
| | - Reza Maknoon
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (AUT), Hafez St, Tehran, 15875-4413, Iran.
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233, Gdansk, Poland.
| | - Maryam Hasani Zonoozi
- Department of Civil Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846, Iran.
| |
Collapse
|
17
|
Cheng YH, Kirschner AY, Chang CC, He Z, Nassr M, Emrick T, Freeman BD. Surface Modification of Ultrafiltration Membranes with 1,4-Benzoquinone and Polyetheramines to Improve Fouling Resistance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52390-52401. [PMID: 36346915 DOI: 10.1021/acsami.2c14884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Membrane fouling remains a key challenge for membrane separations. Hydrophilic membrane surface modification can mitigate irreversible foulant deposition, thereby improving fouling resistance. We report new hydrophilic membrane coatings based on 1,4-benzoquinone and various commercially available polyetheramines. These coatings, prepared from 1,4-benzoquinone and Jeffamine EDR 148, poly(benzoquinone-Jeffamine EDR 148) (p(BQ-EDR 148)), were used to modify polysulfone (PS) ultrafiltration membranes. In fouling experiments using an oil/water emulsion, membranes exhibited comparable fouling resistance to that of polydopamine (pDA)-modified membranes. Based on contact angle measurements, p(BQ-EDR 148) and pDA-modified membranes have similar levels of hydrophilicity, and both exhibited higher threshold flux values than those of their unmodified analogues. Based on their similar threshold flux values, p(BQ-EDR 148)-modified (76 LMH) and pDA-modified membranes (74 LMH) should have similar fouling resistance. Moreover, the mean pore size of p(BQ-EDR 148)-modified membranes can be tuned, while keeping the pure water permeance constant, by changing the deposition time and molar ratio of benzoquinone to EDR 148 in the modification solution.
Collapse
Affiliation(s)
- Yu-Heng Cheng
- McKetta Department of Chemical Engineering, Engineering Education and Research Center, University of Texas at Austin, 2501 Speedway, Austin, Texas78712, United States
| | - Alon Y Kirschner
- McKetta Department of Chemical Engineering, Engineering Education and Research Center, University of Texas at Austin, 2501 Speedway, Austin, Texas78712, United States
| | - Chia-Chih Chang
- Polymer Science and Engineering Department, University of Massachusetts at Amherst, 120 Governors Drive, Amherst, Massachusetts01003, United States
| | - Zhengwang He
- McKetta Department of Chemical Engineering, Engineering Education and Research Center, University of Texas at Austin, 2501 Speedway, Austin, Texas78712, United States
| | - Mostafa Nassr
- McKetta Department of Chemical Engineering, Engineering Education and Research Center, University of Texas at Austin, 2501 Speedway, Austin, Texas78712, United States
| | - Todd Emrick
- Polymer Science and Engineering Department, University of Massachusetts at Amherst, 120 Governors Drive, Amherst, Massachusetts01003, United States
| | - Benny D Freeman
- McKetta Department of Chemical Engineering, Engineering Education and Research Center, University of Texas at Austin, 2501 Speedway, Austin, Texas78712, United States
| |
Collapse
|
18
|
Zhang S, Deng J, Li J, Tian F, Liu C, Fang L, Sun J. Advanced microfluidic technologies for isolating extracellular vesicles. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Xu YQ, Wu YH, Tong X, Song KY, Chen GQ, Bai Y, Luo LW, Wang HB, Zhang ZW, Ikuno N, Hu HY. Exploring the pressure change of reverse osmosis filtration: Time-course pressure curves and a novel model for mechanism study and NEWater application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Energy-efficient Membranes for Microalgae Dewatering: Fouling Challenges and Mitigation Strategies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Huang Y, Liu H, Wang Y, Song G, Zhang L. Industrial application of ceramic ultrafiltration membrane in cold-rolling emulsion wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Li X, Lan H, Zhang G, Tan X, Liu H. Systematic Design of a Flow-Through Titanium Electrode-Based Device with Strong Oil Droplet Rejection Property for Superior Oil-in-Water Emulsion Separation Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4151-4161. [PMID: 35266701 DOI: 10.1021/acs.est.1c07403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oily wastewater treatment has been restricted by the existence of stable oil-in-water (O/W) emulsions containing micrometer-sized oil droplets. However, the strong adhesion and stacking of emulsified oil droplets on the surface of current separation media cause serious fouling of the treatment unit and the rapid decline of treatment efficiency. Herein, a novel flow-through titanium (Ti) electrode-based filtration device with remarkable oil droplet rejection property was well designed for the continuously separating O/W emulsion. In contrast to the pristine Ti foam, the permeance of the TiO2 nanoarray-coated Ti foam (NATF) increased from 2538 to 4364 L m-2 h-1 bar-1 through gravity-driven flow. Further, more than ∼70% permeability can be maintained after 6 h of O/W emulsion filtration using the current device, the value of which was markedly higher than that of conventional oil/water separation filters (less than 5%). According to the results of wettability test, the super-oil-repellent surface endowed by this nanoarray structure primarily avoided the formation of a compact oil fouling layer. When the voltage was applied, accompanied by the electrophoresis effect, redistribution of surfactant molecules on the surface of oil droplets induced by an electric field made them readily captured by the microbubbles continuously generated from the electrode, thereby rapidly migrating these bubble-adhered oil droplets far from the filtration medium.
Collapse
Affiliation(s)
- Xi Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao Tan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
Dual-objective for the mechanism of membrane fouling in the early stage of filtration and determination of cleaning frequency: A novel combined model. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Heo S, Nam K, Woo T, Yoo C. Digitally-transformed early-warning protocol for membrane cleaning based on a fouling-cumulative sum chart: Application to a full-scale MBR plant. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Field RW, Wu JJ. Permeate Flux in Ultrafiltration Processes-Understandings and Misunderstandings. MEMBRANES 2022; 12:187. [PMID: 35207108 PMCID: PMC8875253 DOI: 10.3390/membranes12020187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022]
Abstract
Concentration polarization refers to the rapid emergence of concentration gradients at a membrane/solution interface resulting from selective transfer through the membrane. It is distinguishable from fouling in at least two ways: (1) the state of the molecules involved (in solution for concentration polarization, although no longer in solution for fouling); and (2) by the timescale, normally less than a minute for concentration polarization, although generally at least two or more orders of magnitude more for fouling. Thus the phenomenon of flux decline occurring over a timescale of tens of minutes should not be attributed to concentration polarization establishing itself. This distinction and a number of questions surrounding modelling are addressed and clarified. There are two paradigmatic approaches for modelling flux, one uses the overall driving force (in which case allowance for osmotic effects are expressed as additional resistances) and the other uses the net driving force across the separating layer or fouled separating layer, although often the two are unfortunately comingled. In the discussion of flux decline models' robust approaches for the determination of flux-time relationships, including the integral method of fouling analysis, are discussed and various concepts clarified. The final section emphases that for design purposes, pilot plant data are vital.
Collapse
Affiliation(s)
- Robert W. Field
- Faculty of Engineering and Environment, Northumbria University, Newcastle NE1 8ST, UK
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Jun Jie Wu
- Department of Engineering, Faculty of Science, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
26
|
Simultaneous coupling of fluidized granular activated carbon (GAC) and powdered activated carbon (PAC) with ultrafiltration process: A promising synergistic alternative for water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Kim P, Kim H, Oh H, Kang JS, Lee S, Park K. Influence of Solute Size on Membrane Fouling during Polysaccharide Enrichment Using Dense Polymeric UF Membrane: Measurements and Mechanisms. MEMBRANES 2022; 12:membranes12020142. [PMID: 35207064 PMCID: PMC8878232 DOI: 10.3390/membranes12020142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/05/2023]
Abstract
Fouling mechanisms associated with membrane-based polysaccharide enrichment were determined using a dense ultrafiltration (UF) membrane. Dextran with different molecular weights (MWs) was used as a surrogate for polysaccharides. The influence of dextran MW on fouling mechanisms was quantified using the Hermia model. Flux data obtained with different dextran MWs and filtration cycles were plotted to quantify the more appropriate fouling mechanisms among complete pore blocking, standard pore blocking, intermediate pore blocking, and cake filtration. For 100,000 Da dextran, all four mechanisms contributed to the initial fouling. As the filtration progressed, the dominant fouling mechanism appeared to be cake filtration with a regression coefficient (R2) of approximately 0.9519. For 10,000 Da, the R2 value for cake filtration was about 0.8767 in the initial filtration. Then, the R2 value gradually decreased as the filtration progressed. For 6000 Da, the R2 values of the four mechanisms were very low in the initial filtration. However, as the filtration progressed, the R2 value for cake filtration reached 0.9057. These results clearly show that the fouling mechanism of dense UF membranes during polysaccharide enrichment can be quantified. In addition, it was confirmed that the dominant fouling mechanism can change with the size of the polysaccharide and the duration of filtration.
Collapse
Affiliation(s)
- Pooreum Kim
- Graduate School of Water Resources, Sungkyunkwan University, Suwon 16419, Korea; (P.K.); (J.-s.K.)
| | - Hyungsoo Kim
- Graduate School of Water Resources, Sungkyunkwan University, Suwon 16419, Korea; (P.K.); (J.-s.K.)
- Correspondence: (H.K.); (S.L.); (K.P.); Tel.: +82-31-290-7520 (H.K.); +82-32-290-7542 (S.L.); +82-31-290-7647 (K.P.)
| | - Heekyong Oh
- School of Environmental Engineering, University of Seoul, Seoul 02504, Korea;
| | - Joon-seok Kang
- Graduate School of Water Resources, Sungkyunkwan University, Suwon 16419, Korea; (P.K.); (J.-s.K.)
| | - Sangyoup Lee
- Graduate School of Water Resources, Sungkyunkwan University, Suwon 16419, Korea; (P.K.); (J.-s.K.)
- Correspondence: (H.K.); (S.L.); (K.P.); Tel.: +82-31-290-7520 (H.K.); +82-32-290-7542 (S.L.); +82-31-290-7647 (K.P.)
| | - Kitae Park
- Graduate School of Water Resources, Sungkyunkwan University, Suwon 16419, Korea; (P.K.); (J.-s.K.)
- Correspondence: (H.K.); (S.L.); (K.P.); Tel.: +82-31-290-7520 (H.K.); +82-32-290-7542 (S.L.); +82-31-290-7647 (K.P.)
| |
Collapse
|
28
|
Review of New Approaches for Fouling Mitigation in Membrane Separation Processes in Water Treatment Applications. SEPARATIONS 2021. [DOI: 10.3390/separations9010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This review investigates antifouling agents used in the process of membrane separation (MS), in reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), microfiltration (MF), membrane distillation (MD), and membrane bioreactors (MBR), and clarifies the fouling mechanism. Membrane fouling is an incomplete substance formed on the membrane surface, which will quickly reduce the permeation flux and damage the membrane. Foulant is colloidal matter: organic matter (humic acid, protein, carbohydrate, nano/microplastics), inorganic matter (clay such as potassium montmorillonite, silica salt, metal oxide, etc.), and biological matter (viruses, bacteria and microorganisms adhering to the surface of the membrane in the case of nutrients) The stability and performance of the tested nanometric membranes, as well as the mitigation of pollution assisted by electricity and the cleaning and repair of membranes, are reported. Physical, chemical, physico-chemical, and biological methods for cleaning membranes. Biologically induced biofilm dispersion effectively controls fouling. Dynamic changes in membrane foulants during long-term operation are critical to the development and implementation of fouling control methods. Membrane fouling control strategies show that improving membrane performance is not only the end goal, but new ideas and new technologies for membrane cleaning and repair need to be explored and developed in order to develop future applications.
Collapse
|
29
|
Fabrication and Performance of Low-Fouling UF Membranes for the Treatment of Isolated Soy Protein Solutions. SUSTAINABILITY 2021. [DOI: 10.3390/su132413682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumers are becoming more conscious about the need to include functional and nutritional foods in their diet. This has increased the demand for food extracts rich in proteins and peptides with physiological effects that are used within the food and pharmaceutical industries. Among these protein extracts, soy protein and its derivatives are highlighted. Isolated soy protein (ISP) presents a protein content of at least 90%. Wastewaters generated during the production process contain small proteins (8–50 kDa), and it would be desirable to find a recovery treatment for these compounds. Ultrafiltration membranes (UF) are used for the fractionation and concentration of protein solutions. By the appropriate selection of the membrane pore size, larger soy proteins are retained and concentrated while carbohydrates and minerals are mostly recovered in the permeate. The accumulation and concentration of macromolecules in the proximity of the membrane surface generates one of the most important limitations inherent to the membrane technologies. In this work, three UF membranes based on polyethersulfone (PES) were fabricated. In two of them, polyethylene glycol (PEG) was added in their formulation to be used as a fouling prevention. The membrane fouling was evaluated by the study of flux decline models based on Hermia’s mechanisms.
Collapse
|
30
|
Hassanpour Tamrin S, Sanati Nezhad A, Sen A. Label-Free Isolation of Exosomes Using Microfluidic Technologies. ACS NANO 2021; 15:17047-17079. [PMID: 34723478 DOI: 10.1021/acsnano.1c03469] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exosomes are cell-derived structures packaged with lipids, proteins, and nucleic acids. They exist in diverse bodily fluids and are involved in physiological and pathological processes. Although their potential for clinical application as diagnostic and therapeutic tools has been revealed, a huge bottleneck impeding the development of applications in the rapidly burgeoning field of exosome research is an inability to efficiently isolate pure exosomes from other unwanted components present in bodily fluids. To date, several approaches have been proposed and investigated for exosome separation, with the leading candidate being microfluidic technology due to its relative simplicity, cost-effectiveness, precise and fast processing at the microscale, and amenability to automation. Notably, avoiding the need for exosome labeling represents a significant advance in terms of process simplicity, time, and cost as well as protecting the biological activities of exosomes. Despite the exciting progress in microfluidic strategies for exosome isolation and the countless benefits of label-free approaches for clinical applications, current microfluidic platforms for isolation of exosomes are still facing a series of problems and challenges that prevent their use for clinical sample processing. This review focuses on the recent microfluidic platforms developed for label-free isolation of exosomes including those based on sieving, deterministic lateral displacement, field flow, and pinched flow fractionation as well as viscoelastic, acoustic, inertial, electrical, and centrifugal forces. Further, we discuss advantages and disadvantages of these strategies with highlights of current challenges and outlook of label-free microfluidics toward the clinical utility of exosomes.
Collapse
Affiliation(s)
- Sara Hassanpour Tamrin
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, CCIT 125, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati Nezhad
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, CCIT 125, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
31
|
Wang B, Zhang Y, Zhang G, Zhang K, Field RW. Innovation and optimization of aeration in free bubbling flat sheet MBRs. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Biocatalytic Reduction of Formaldehyde to Methanol: Effect of pH on Enzyme Immobilization and Reactive Membrane Performance. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.3.10568.472-480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thermodynamic stabled CO2 molecules can be biocatalytically reduced to methanol via three cascade dehydrogenases (formate, formaldehyde and alcohol) with the aid of cofactor as the electron donor. In this study, Alcohol dehydrogenase (EC 1.1.1.1), the third step of the cascade enzymatic reaction which catalyzed formaldehyde (CHOH) to methanol (CH3OH) will be immobilized in an ultrafiltration membrane. The enzyme will be immobilized in the support layer of a poly(ether)sulfone (PES) membrane via a technique called fouling induced enzyme immobilization. The objective of this study is to evaluate the effect of varying pH (acid (pH 5), neutral (pH 7) and alkaline (pH 9)) of the feed solution during immobilization process of ADH in the membrane in terms of permeate flux, observed rejection, enzyme loading and fouling mechanism. The experiment was conducted in a pressure driven, dead-end stirred filtration cell. Reaction conversion and biocatalytic productivity will be also evaluated. The results showed that permeate flux for acid solution were the lowest during immobilization. High concentration polarization and fouling resistance cause lower observed rejection for pH 7 and 9. Enzyme loading for pH 5 give 73.8% loading rate which is the highest compared to 62.4% at pH 7 and 70.1% at pH 9. Meanwhile, the conversion rate during the reaction shows that reaction on fouled membrane showed more than 90% conversion for pH 5 and 7. The fouling model predicted that irreversible fouling occurs during enzyme immobilization at pH 7 with standard blocking mechanism while reversible fouling occurs at pH 5 and 9 with intermediate and complete blocking, respectively. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
33
|
Malakian A, Husson SM. Evaluating Protein Fouling on Membranes Patterned by Woven Mesh Fabrics. MEMBRANES 2021; 11:730. [PMID: 34677496 PMCID: PMC8538970 DOI: 10.3390/membranes11100730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022]
Abstract
Membrane surface patterning is one approach used to mitigate fouling. This study used a combination of flux decline measurements and visualization experiments to evaluate the effectiveness of a microscale herringbone pattern for reducing protein fouling on polyvinylidene fluoride (PVDF) ultrafiltration membranes. Thermal embossing with woven mesh stamps was used for the first time to pattern membranes. Embossing process parameters were studied to identify conditions replicating the mesh patterns with high fidelity and to determine their effect on membrane permeability. Permeability increased or remained constant when patterning at low pressure (≤4.4 MPa) as a result of increased effective surface area; whereas permeability decreased at higher pressures due to surface pore-sealing of the membrane active layer upon compression. Flux decline measurements with dilute protein solutions showed monotonic decreases over time, with lower rates for patterned membranes than as-received membranes. These data were analyzed by the Hermia model to follow the transient nature of fouling. Confocal laser scanning microscopy (CLSM) provided complementary, quantitative, spatiotemporal information about protein deposition on as-received and patterned membrane surfaces. CLSM provided a greater level of detail for the early (pre-monolayer) stage of fouling than could be deduced from flux decline measurements. Images show that the protein immediately started to accumulate rapidly on the membranes, likely due to favorable hydrophobic interactions between the PVDF and protein, followed by decreasing rates of fouling with time as protein accumulated on the membrane surface. The knowledge generated in this study can be used to design membranes that inhibit fouling or otherwise direct foulants to deposit selectively in regions that minimize loss of flux.
Collapse
Affiliation(s)
| | - Scott M. Husson
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
34
|
A comprehensive review of membrane fouling and cleaning methods with emphasis on ultrasound-assisted fouling control processes. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0832-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Doan NTT, Lai QD. Ultrafiltration for recovery of rice protein: Fouling analysis and technical assessment. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Quezada C, Estay H, Cassano A, Troncoso E, Ruby-Figueroa R. Prediction of Permeate Flux in Ultrafiltration Processes: A Review of Modeling Approaches. MEMBRANES 2021; 11:368. [PMID: 34070146 PMCID: PMC8158366 DOI: 10.3390/membranes11050368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/27/2021] [Accepted: 05/12/2021] [Indexed: 01/13/2023]
Abstract
In any membrane filtration, the prediction of permeate flux is critical to calculate the membrane surface required, which is an essential parameter for scaling-up, equipment sizing, and cost determination. For this reason, several models based on phenomenological or theoretical derivation (such as gel-polarization, osmotic pressure, resistance-in-series, and fouling models) and non-phenomenological models have been developed and widely used to describe the limiting phenomena as well as to predict the permeate flux. In general, the development of models or their modifications is done for a particular synthetic model solution and membrane system that shows a good capacity of prediction. However, in more complex matrices, such as fruit juices, those models might not have the same performance. In this context, the present work shows a review of different phenomenological and non-phenomenological models for permeate flux prediction in UF, and a comparison, between selected models, of the permeate flux predictive capacity. Selected models were tested with data from our previous work reported for three fruit juices (bergamot, kiwi, and pomegranate) processed in a cross-flow system for 10 h. The validation of each selected model's capacity of prediction was performed through a robust statistical examination, including a residual analysis. The results obtained, within the statistically validated models, showed that phenomenological models present a high variability of prediction (values of R-square in the range of 75.91-99.78%), Mean Absolute Percentage Error (MAPE) in the range of 3.14-51.69, and Root Mean Square Error (RMSE) in the range of 0.22-2.01 among the investigated juices. The non-phenomenological models showed a great capacity to predict permeate flux with R-squares higher than 97% and lower MAPE (0.25-2.03) and RMSE (3.74-28.91). Even though the estimated parameters have no physical meaning and do not shed light into the fundamental mechanistic principles that govern these processes, these results suggest that non-phenomenological models are a useful tool from a practical point of view to predict the permeate flux, under defined operating conditions, in membrane separation processes. However, the phenomenological models are still a proper tool for scaling-up and for an understanding the UF process.
Collapse
Affiliation(s)
- Carolina Quezada
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile;
- Programa de Doctorado en Ciencia de Materiales e Ingeniería de Procesos (Doctoral Program in Materials Science and Process Engineering), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile
| | - Humberto Estay
- Advanced Mining Technology Center (AMTC), University of Chile, Av. Tupper 2007 (AMTC Building), Santiago 8370451, Chile;
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende, Italy;
| | - Elizabeth Troncoso
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile;
| | - René Ruby-Figueroa
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile;
| |
Collapse
|
37
|
Antifouling Membranes Based on Cellulose Acetate (CA) Blended with Poly(acrylic acid) for Heavy Metal Remediation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fouling has been widely recognized as the Achilles’ heel of membrane processes and the growing perception about the relevance of this critical issue has driven the development of advanced antifouling strategies. Herein, novel fouling-resistant ultrafiltration (UF) membranes for Cadmium (Cd) remediation were developed via a blending method by combining the flexibility of cellulose acetate (CA) with the complex properties of poly(acrylic acid) (PAA). A systematic characterization, based on differential scanning calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR), confirmed the homogeneity of the blend favored by hydrogen interconnections between CA and PAA polymeric chains. The concentration of PAA with respect to CA played a key role in tuning the morphology and the hydrophilic character of the novel UF membranes prepared via non-solvent-induced phase separation (NIPS). UF experiments revealed the tremendous advantages of the blend since CA/PAA membranes showed superior performance with respect to the neat CA membrane in terms of (i) water permeability; (ii) Cd rejection; and (iii) antifouling resistance to humic acid (HA). Concisely, the increasing of the concentration of PAA in the casting solution was found to be beneficial to improve the flux recovery ratio (FRR) coupled with the decline of the total fouling ratio (Rt). Overall, PAA is an effective additive to prepare CA membranes with enhanced antifouling properties exploitable for the remediation of water bodies contaminated by heavy metals via UF process.
Collapse
|
38
|
Heidari S, Amirinejad M, Mirzadeh SS, Wood DA. Insights into colloidal membrane fouling mechanisms for nanofiltration of surface water using single and hybrid membrane processes. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Setareh Heidari
- Faculty of Chemical Engineering Sahand University of Technology Tabriz Iran
| | - Mehdi Amirinejad
- Membrane Research Center Faculty of Petroleum and Chemical Engineering, Razi University Kermanshah Iran
| | - Seyedeh Sima Mirzadeh
- Membrane Research Center Faculty of Petroleum and Chemical Engineering, Razi University Kermanshah Iran
| | | |
Collapse
|
39
|
Yue C, Dong H, Chen Y, Shang B, Wang Y, Wang S, Zhu Z. Direct Purification of Digestate Using Ultrafiltration Membranes: Influence of Pore Size on Filtration Behavior and Fouling Characteristics. MEMBRANES 2021; 11:membranes11030179. [PMID: 33802519 PMCID: PMC7999823 DOI: 10.3390/membranes11030179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022]
Abstract
Ultrafiltration (UF) can effectively remove large particles, suspended solids, and colloidal substances from anaerobic digestate. However, membrane fouling is a technical challenge in the purification of the digestate by UF. In this study, polyethersulfone (PES) membranes with four pore sizes (50.0, 20.0, 10.0 and 5.0 kDa) were employed to filter anaerobic digestate from swine manure. The effects of temperature, transmembrane pressure (TMP), and cross-flow velocity (CFV) on flux were investigated. The purification effects and fouling characteristics of the four membranes were analyzed. The results revealed that the increase of temperature and CFV can effectively promote UF separation efficiency, but as the TMP exceeded 3.0 bar, the flux increase rates of the four membranes were almost zero. The larger membrane pore size caused the faster flux increase with the increase in pressure. During the batch experiment, the 20.0 kDa membrane showed the lowest flux maintenance ability, while the 5.0 kDa showed the highest ability due to the smaller pore size. All four membranes can effectively remove tetracyclines residues. Elements C, O, and S were the major membrane foulant elements. The dominant bacteria orders of membrane fouling were Pseudomonadales, Xanthomonadales and Burkholderiales. Compared with tap water and citric acid, the membrane cleaning by NaOH and NaClO showed higher flux recovery rates. The 50.0 kDa membrane achieved the best cleaning effects under all cleaning methods.
Collapse
Affiliation(s)
- Caide Yue
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Y.C.); (B.S.); (Y.W.); (S.W.); (Z.Z.)
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Y.C.); (B.S.); (Y.W.); (S.W.); (Z.Z.)
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- Correspondence: ; Tel.: +86-010-82109979
| | - Yongxing Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Y.C.); (B.S.); (Y.W.); (S.W.); (Z.Z.)
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Bin Shang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Y.C.); (B.S.); (Y.W.); (S.W.); (Z.Z.)
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yi Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Y.C.); (B.S.); (Y.W.); (S.W.); (Z.Z.)
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Y.C.); (B.S.); (Y.W.); (S.W.); (Z.Z.)
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Y.C.); (B.S.); (Y.W.); (S.W.); (Z.Z.)
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
40
|
Comparison of fouling behaviors between activated sludge suspension in MBR and EPS model solutions: A new combined model. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Direct membrane filtration of municipal wastewater: Linking periodical physical cleaning with fouling mechanisms. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Yu Z, Chu H, Xiao S, Jiang S, Yang L, Zhang Y, Zhou X. Simulation of cake layer topography in heterotrophic microalgae harvesting based on interface modified diffusion-limited-aggregation (IMDLA) and its implications for membrane fouling control. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Malakian A, Zhou Z, Messick L, Spitzer TN, Ladner DA, Husson SM. Understanding the Role of Pattern Geometry on Nanofiltration Threshold Flux. MEMBRANES 2020; 10:445. [PMID: 33371519 PMCID: PMC7767534 DOI: 10.3390/membranes10120445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
Colloidal fouling can be mitigated by membrane surface patterning. This contribution identifies the effect of different pattern geometries on fouling behavior. Nanoscale line-and-groove patterns with different feature sizes were applied by thermal embossing on commercial nanofiltration membranes. Threshold flux values of as-received, pressed, and patterned membranes were determined using constant flux, cross-flow filtration experiments. A previously derived combined intermediate pore blocking and cake filtration model was applied to the experimental data to determine threshold flux values. The threshold fluxes of all patterned membranes were higher than the as-received and pressed membranes. The pattern fraction ratio (PFR), defined as the quotient of line width and groove width, was used to analyze the relationship between threshold flux and pattern geometry quantitatively. Experimental work combined with computational fluid dynamics simulations showed that increasing the PFR leads to higher threshold flux. As the PFR increases, the percentage of vortex-forming area within the pattern grooves increases, and vortex-induced shielding increases. This study suggests that the PFR should be higher than 1 to produce patterned membranes with maximal threshold flux values. Knowledge generated in this study can be applied to other feature types to design patterned membranes for improved control over colloidal fouling.
Collapse
Affiliation(s)
- Anna Malakian
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA; (A.M.); (L.M.); (T.N.S.)
| | - Zuo Zhou
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA; (Z.Z.); (D.A.L.)
| | - Lucas Messick
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA; (A.M.); (L.M.); (T.N.S.)
| | - Tara N. Spitzer
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA; (A.M.); (L.M.); (T.N.S.)
| | - David A. Ladner
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA; (Z.Z.); (D.A.L.)
| | - Scott M. Husson
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA; (A.M.); (L.M.); (T.N.S.)
| |
Collapse
|
44
|
|
45
|
Paraíso CM, Santos SS, Pereira Bessa L, Lopes AP, Ogawa CYL, Costa SC, Reis MHM, Filho UC, Sato F, Visentainer JV, Madrona GS. Performance of asymmetric spinel hollow fiber membranes for hibiscus (
Hibiscus sabdariffa
L.) extract clarification: Flux modeling and extract stability. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carolina Moser Paraíso
- Programa de Pós‐graduação em Ciência de Alimentos Universidade Estadual de Maringá Maringá Brazil
| | - Suelen Siqueira Santos
- Programa de Pós‐graduação em Ciência de Alimentos Universidade Estadual de Maringá Maringá Brazil
| | - Lidiane Pereira Bessa
- Faculdade de Engenharia Química Universidade Federal de Uberlândia Uberlândia Brazil
| | - Ana Paula Lopes
- Departamento de Bioquímica Universidade Estadual de Maringá Maringá Brazil
| | | | | | | | | | - Francielle Sato
- Departamento de Química Universidade Estadual de Maringá Maringá Brazil
| | | | | |
Collapse
|
46
|
Salama A. On the estimation of the leaked volume of an oil droplet undergoing breakup in crossflow filtration: CFD investigation, scaling, and a macroscopic model. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
47
|
Khan IA, Lee YS, Kim JO. A comparison of variations in blocking mechanisms of membrane-fouling models for estimating flux during water treatment. CHEMOSPHERE 2020; 259:127328. [PMID: 32610174 DOI: 10.1016/j.chemosphere.2020.127328] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
This study investigates five different fouling models and contributing factors in membrane-filtration blocking mechanisms in a constant-pressure mode. A polyvinylidene fluoride membrane was used to study the fouling effects of a complex mixture of foulants (a latex-bed suspension, soybean oil, and inorganics) on pristine and chemically cleaned membranes in the presence of humic acid. A significance ratio in linear regression results (p-value) was used to assess the contribution of fouling mechanism in each model. The results indicate that Hermia and Bowen's models correspond closely with the experiment results and confirms that complete blocking is dominant fouling model. We also verify that each developed model is dependent on its experimental conditions. Moreover, the role of complex mixtures, including inorganic foulants, in the fouling process needs to be modified as modified for ceramic membranes and natural organic matter removal in the Wiesner and Kilduff models, respectively.
Collapse
Affiliation(s)
- Imtiaz Afzal Khan
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yong-Soo Lee
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
48
|
Chen X, Deng E, Park D, Pfeifer BA, Dai N, Lin H. Grafting Activated Graphene Oxide Nanosheets onto Ultrafiltration Membranes Using Polydopamine to Enhance Antifouling Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48179-48187. [PMID: 32985866 DOI: 10.1021/acsami.0c14210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) nanosheets are negatively charged and exhibit excellent antifouling properties. However, their hydrophilicity makes it challenging for their grafting onto membrane surfaces to improve antifouling properties for long-term underwater operation. Herein, we demonstrate a versatile approach to covalently graft GO onto ultrafiltration membrane surfaces in aqueous solutions at ≈22 °C. The membrane surface is first primed using dopamine and then reacted with activated GO (aGO) containing amine-reactive esters. The aGO grafting improves the membrane surface hydrophilicity without decreasing water permeance. When the membranes are challenged with 1.0 g/L sodium alginate in a constant-flux crossflow system, the aGO grafting increases the critical flux by 20% and reduces the fouling rate by 63% compared with the pristine membrane. The modified membranes demonstrate stability for 48 h operation and interval cleanings using NaOH solutions.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Erda Deng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Dongwon Park
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
49
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
50
|
Technical and Economic Evaluation of WWTP Renovation Based on Applying Ultrafiltration Membrane. MEMBRANES 2020; 10:membranes10080180. [PMID: 32784612 PMCID: PMC7463495 DOI: 10.3390/membranes10080180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/26/2023]
Abstract
Nowadays, the standards of discharging are gradually becoming stricter, since much attention has been paid to the protection of natural water resources around the world. Therefore, it is urgent to upgrade the existing wastewater treatment plant (WWTP), to improve the effluent quality, and reduce the discharged pollutants to the natural environment. In this paper, taking the “Liaocheng UESH (UE Envirotech) WWTP in Shandong province of China” as an example, the existing problems and the detailed measures for a renovation were systemically discussed by technical and economic evaluation, before and after the renovation. During the renovation, the ultrafiltration membrane was added as the final stage of the designed process route, while upgrading the operation conditions of biochemical process at the same time. After the renovation, the removal rates of chemical oxygen demand (CODcr), biochemical oxygen demand (BOD5), total phosphorus (TP) and other major pollutants were improved greatly, and the results fully achieved the standards of surface water class IV. The ultrafiltration system performs a stable permeability around 1.5 LMH/kPa. Besides, the economic performance of the renovation was evaluated via the net present value (NPV) method. The result reveals that the NPV of the renovation of the WWTP within the 20 year life cycle is CNY 72.51 million and the overall investment cost can be recovered within the fourth year after the reoperation of the plant. This research does not only indicate that it is feasible to take an ultrafiltration membrane as the main technology, both from technical and economic perspectives, while upgrading the biochemical process section in the meantime, but also provides a new strategy for the renovation of existing WWTPs to achieve more stringent emission standards.
Collapse
|