1
|
Clemens AL, Jayathilake BS, Karnes JJ, Schwartz JJ, Baker SE, Duoss EB, Oakdale JS. Tuning Alkaline Anion Exchange Membranes through Crosslinking: A Review of Synthetic Strategies and Property Relationships. Polymers (Basel) 2023; 15:polym15061534. [PMID: 36987313 PMCID: PMC10051716 DOI: 10.3390/polym15061534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Alkaline anion exchange membranes (AAEMs) are an enabling component for next-generation electrochemical devices, including alkaline fuel cells, water and CO2 electrolyzers, and flow batteries. While commercial systems, notably fuel cells, have traditionally relied on proton-exchange membranes, hydroxide-ion conducting AAEMs hold promise as a method to reduce cost-per-device by enabling the use of non-platinum group electrodes and cell components. AAEMs have undergone significant material development over the past two decades; however, challenges remain in the areas of durability, water management, high temperature performance, and selectivity. In this review, we survey crosslinking as a tool capable of tuning AAEM properties. While crosslinking implementations vary, they generally result in reduced water uptake and increased transport selectivity and alkaline stability. We survey synthetic methodologies for incorporating crosslinks during AAEM fabrication and highlight necessary precautions for each approach.
Collapse
Affiliation(s)
- Auston L. Clemens
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Correspondence: (A.L.C.); (J.S.O.)
| | | | - John J. Karnes
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Johanna J. Schwartz
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Sarah E. Baker
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Eric B. Duoss
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - James S. Oakdale
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Correspondence: (A.L.C.); (J.S.O.)
| |
Collapse
|
2
|
Eti M, Cihanoğlu A, Güler E, Gomez-Coma L, Altıok E, Arda M, Ortiz I, Kabay N. Further Development of Polyepichlorohydrin Based Anion Exchange Membranes for Reverse Electrodialysis by Tuning Cast Solution Properties. MEMBRANES 2022; 12:membranes12121192. [PMID: 36557099 PMCID: PMC9786065 DOI: 10.3390/membranes12121192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/01/2023]
Abstract
Recently, there have been several studies done regarding anion exchange membranes (AEMs) based on polyepichlorohydrin (PECH), an attractive polymer enabling safe membrane fabrication due to its inherent chloromethyl groups. However, there are still undiscovered properties of these membranes emerging from different compositions of cast solutions. Thus, it is vital to explore new membrane properties for sustainable energy generation by reverse electrodialysis (RED). In this study, the cast solution composition was easily tuned by varying the ratio of active polymer (i.e., blend ratio) and quaternary agent (i.e., excess diamine ratio) in the range of 1.07-2.00, and 1.00-4.00, respectively. The membrane synthesized with excess diamine ratio of 4.00 and blend ratio of 1.07 provided the best results in terms of ion exchange capacity, 3.47 mmol/g, with satisfactory conductive properties (area resistance: 2.4 Ω·cm2, electrical conductivity: 6.44 mS/cm) and high hydrophilicity. RED tests were performed by AEMs coupled with the commercially available Neosepta CMX cation exchange membrane (CEMs).
Collapse
Affiliation(s)
- Mine Eti
- Department of Chemical Engineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey
| | - Aydın Cihanoğlu
- Department of Chemical Engineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey
| | - Enver Güler
- Department of Chemical Engineering, Atılım University, 06830 Ankara, Turkey
| | - Lucia Gomez-Coma
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros 46, 39005 Santander, Spain
| | - Esra Altıok
- Department of Chemical Engineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey
| | - Müşerref Arda
- Department of Chemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros 46, 39005 Santander, Spain
| | - Nalan Kabay
- Department of Chemical Engineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey
| |
Collapse
|
3
|
Facile fabrication of carbon nanotube embedded pore filling ion exchange membrane with high ion exchange capacity and permselectivity for high-performance reverse electrodialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Zimmermann P, Solberg SBB, Tekinalp Ö, Lamb JJ, Wilhelmsen Ø, Deng L, Burheim OS. Heat to Hydrogen by RED-Reviewing Membranes and Salts for the RED Heat Engine Concept. MEMBRANES 2021; 12:48. [PMID: 35054575 PMCID: PMC8779139 DOI: 10.3390/membranes12010048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
The Reverse electrodialysis heat engine (REDHE) combines a reverse electrodialysis stack for power generation with a thermal regeneration unit to restore the concentration difference of the salt solutions. Current approaches for converting low-temperature waste heat to electricity with REDHE have not yielded conversion efficiencies and profits that would allow for the industrialization of the technology. This review explores the concept of Heat-to-Hydrogen with REDHEs and maps crucial developments toward industrialization. We discuss current advances in membrane development that are vital for the breakthrough of the RED Heat Engine. In addition, the choice of salt is a crucial factor that has not received enough attention in the field. Based on ion properties relevant for both the transport through IEMs and the feasibility for regeneration, we pinpoint the most promising salts for use in REDHE, which we find to be KNO3, LiNO3, LiBr and LiCl. To further validate these results and compare the system performance with different salts, there is a demand for a comprehensive thermodynamic model of the REDHE that considers all its units. Guided by such a model, experimental studies can be designed to utilize the most favorable process conditions (e.g., salt solutions).
Collapse
Affiliation(s)
- Pauline Zimmermann
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; (P.Z.); (S.B.B.S.); (J.J.L.)
| | - Simon Birger Byremo Solberg
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; (P.Z.); (S.B.B.S.); (J.J.L.)
| | - Önder Tekinalp
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; (Ö.T.); (L.D.)
| | - Jacob Joseph Lamb
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; (P.Z.); (S.B.B.S.); (J.J.L.)
| | - Øivind Wilhelmsen
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway;
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; (Ö.T.); (L.D.)
| | - Odne Stokke Burheim
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; (P.Z.); (S.B.B.S.); (J.J.L.)
| |
Collapse
|
5
|
Duan X, Wang CW, Wang T, Xie X, Zhou X, Ye Y. Removal of Metal Ions in Phosphoric Acid by Electro-Electrodialysis with Cross-Linked Anion-Exchange Membranes. ACS OMEGA 2021; 6:32417-32430. [PMID: 34901593 PMCID: PMC8655774 DOI: 10.1021/acsomega.1c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
There are numerous metallic impurities in wet phosphoric acid, which causes striking negative effects on industrial phosphoric acid production. In this study, the purification behavior of metallic impurities (Fe, Mg, Ca) from a wet phosphoric acid solution employing the electro-electrodialysis (EED) technology was investigated. The cross-linked polysulfone anion-exchange membranes (AEMs) for EED were prepared using N,N,N',N'-tetramethyl-1,6-hexanediamine (TMHDA) to achieve simultaneous cross-linking and quaternization without any cross-linkers or catalysts. The performance of the resulting membranes can be determined using quaternization reagents. When the molar ratio of trimethylamine/TMHDA/chloromethylated polysulfone is 3:1:1, the cross-linked membrane CQAPSU-3-1 exhibits lower water swelling and membrane area resistance than the non-cross-linked membrane. The low membrane area resistance of CQAPSU-3-1 with long alkyl chains is obtained due to the hydrophilic-hydrophobic microphase separation structure formed by TMHDA. EED experiments with different initial phosphoric acid concentrations of 0.52 and 1.07 M were conducted to evaluate the phosphoric acid purification of different AEMs. The results show that the EED experiments were more suitable for the purification of wet phosphoric acid solution at low concentrations. It was found that the phosphoric acid concentration in the anode compartment could be increased from 0.52 to 1.04 M. Through optimization, with an initial acid concentration of 0.52 M, CQAPSU-3-1 exhibits an enhanced metallic impurity removal ratio of higher than 72.0%, the current efficiency of more than 90%, and energy consumption of 0.48 kWh/kg. Therefore, CQAPSU-3-1 exhibits much higher purification efficiency than other membranes at a low initial phosphoric acid concentration, suggesting its potential in phosphoric acid purification application.
Collapse
Affiliation(s)
- Xiaoling Duan
- Hubei
Key Laboratory of Purification and Application of Plant Anti-Cancer
Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan 430205, China
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cun-Wen Wang
- Key
Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Tielin Wang
- Key
Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xiaolin Xie
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xingping Zhou
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunsheng Ye
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Kim H, Choi J, Jeong N, Jung YG, Kim H, Kim D, Yang S. Correlations between Properties of Pore-Filling Ion Exchange Membranes and Performance of a Reverse Electrodialysis Stack for High Power Density. MEMBRANES 2021; 11:609. [PMID: 34436372 PMCID: PMC8400206 DOI: 10.3390/membranes11080609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
The reverse electrodialysis (RED) stack-harnessing salinity gradient power mainly consists of ion exchange membranes (IEMs). Among the various types of IEMs used in RED stacks, pore-filling ion exchange membranes (PIEMs) have been considered promising IEMs to improve the power density of RED stacks. The compositions of PIEMs affect the electrical resistance and permselectivity of PIEMs; however, their effect on the performance of large RED stacks have not yet been considered. In this study, PIEMs of various compositions with respect to the RED stack were adopted to evaluate the performance of the RED stack according to stack size (electrode area: 5 × 5 cm2 vs. 15 × 15 cm2). By increasing the stack size, the gross power per membrane area decreased despite the increase in gross power on a single RED stack. The electrical resistance of the PIEMs was the most important factor for enhancing the power production of the RED stack. Moreover, power production was less sensitive to permselectivities over 90%. By increasing the RED stack size, the contributions of non-ohmic resistances were significantly increased. Thus, we determined that reducing the salinity gradients across PIEMs by ion transport increased the non-ohmic resistance of large RED stacks. These results will aid in designing pilot-scale RED stacks.
Collapse
Affiliation(s)
- Hanki Kim
- Jeju Global Research Center, Korea Institute of Energy Research, Jeju-si 63357, Korea; (H.K.); (J.C.); (N.J.)
| | - Jiyeon Choi
- Jeju Global Research Center, Korea Institute of Energy Research, Jeju-si 63357, Korea; (H.K.); (J.C.); (N.J.)
| | - Namjo Jeong
- Jeju Global Research Center, Korea Institute of Energy Research, Jeju-si 63357, Korea; (H.K.); (J.C.); (N.J.)
| | - Yeon-Gil Jung
- School of Materials Science and Engineering, Changwon National University, Changwon-si 51140, Korea; (Y.-G.J.); (H.K.); (D.K.)
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon-si 51140, Korea
| | - Haeun Kim
- School of Materials Science and Engineering, Changwon National University, Changwon-si 51140, Korea; (Y.-G.J.); (H.K.); (D.K.)
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon-si 51140, Korea
| | - Donghyun Kim
- School of Materials Science and Engineering, Changwon National University, Changwon-si 51140, Korea; (Y.-G.J.); (H.K.); (D.K.)
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon-si 51140, Korea
| | - SeungCheol Yang
- School of Materials Science and Engineering, Changwon National University, Changwon-si 51140, Korea; (Y.-G.J.); (H.K.); (D.K.)
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon-si 51140, Korea
| |
Collapse
|
7
|
Sgreccia E, Narducci R, Knauth P, Di Vona ML. Silica Containing Composite Anion Exchange Membranes by Sol-Gel Synthesis: A Short Review. Polymers (Basel) 2021; 13:polym13111874. [PMID: 34200025 PMCID: PMC8200225 DOI: 10.3390/polym13111874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
This short review summarizes the literature on composite anion exchange membranes (AEM) containing an organo-silica network formed by sol–gel chemistry. The article covers AEM for diffusion dialysis (DD), for electrochemical energy technologies including fuel cells and redox flow batteries, and for electrodialysis. By applying a vast variety of organically modified silica compounds (ORMOSIL), many composite AEM reported in the last 15 years are based on poly (vinylalcohol) (PVA) or poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) used as polymer matrix. The most stringent requirements are high permselectivity and water flux for DD membranes, while high ionic conductivity is essential for electrochemical applications. Furthermore, the alkaline stability of AEM for fuel cell applications remains a challenging problem that is not yet solved. Possible future topics of investigation on composite AEM containing an organo-silica network are also discussed.
Collapse
Affiliation(s)
- Emanuela Sgreccia
- Department of Industrial Engineering and International Laboratory “Ionomer Materials for Energy”, University of Rome Tor Vergata, I-00133 Rome, Italy; (R.N.); (M.L.D.V.)
- Correspondence:
| | - Riccardo Narducci
- Department of Industrial Engineering and International Laboratory “Ionomer Materials for Energy”, University of Rome Tor Vergata, I-00133 Rome, Italy; (R.N.); (M.L.D.V.)
| | - Philippe Knauth
- CNRS, Madirel (UMR 7246) and International Laboratory “Ionomer Materials for Energy”, Aix Marseille University, F-13013 Marseille, France;
| | - Maria Luisa Di Vona
- Department of Industrial Engineering and International Laboratory “Ionomer Materials for Energy”, University of Rome Tor Vergata, I-00133 Rome, Italy; (R.N.); (M.L.D.V.)
| |
Collapse
|
8
|
A Review on Ion-exchange Membranes Fouling and Antifouling During Electrodialysis Used in Food Industry: Cleanings and Strategies of Prevention. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00178-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Zeeshan M, Ahmad R, Khan AAP, Khan AA, Singh S. Potentiometric titration studies of poly(aniline-co-pyrrole)-Sn(IV)tungstoarsenate composite cation exchange membrane and their application as a Ni(II) selective electrode. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2019.1614945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mohd Zeeshan
- Environmental Research Laboratory, Department of Applied Chemistry, F/O Engineering and Technology, Aligarh Muslim University , Aligarh , India
- Analytical and Polymer Research Laboratory, Department of Applied Chemistry, F/O Engineering and Technology, Aligarh Muslim University , Aligarh , India
| | - Rais Ahmad
- Environmental Research Laboratory, Department of Applied Chemistry, F/O Engineering and Technology, Aligarh Muslim University , Aligarh , India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research and Chemistry Department, Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Asif Ali Khan
- Analytical and Polymer Research Laboratory, Department of Applied Chemistry, F/O Engineering and Technology, Aligarh Muslim University , Aligarh , India
| | - Sakshi Singh
- Department of Chemistry, Amity School of Engineering and Technology, Amity University , Madhya Pradesh , Gwalior , India
| |
Collapse
|
10
|
|
11
|
Kim H, Jeong N, Yang S, Choi J, Lee MS, Nam JY, Jwa E, Kim B, Ryu KS, Choi YW. Nernst-Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential. WATER RESEARCH 2019; 165:114970. [PMID: 31426007 DOI: 10.1016/j.watres.2019.114970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
To properly design reverse electrodialysis (RED) stacks, modeling of ion transport and prediction of power generation on the single RED stack are very important. Currently, the Nernst-Planck equation is widely adopted to simulate ion transport through IEMs. However, applying typical Nernst-Planck equation is not proper to analyze ion transport through the heterogeneous thin-composite pore-filling membrane because of the non-conductive site in the membrane matrix. Herein, we firstly introduced modified Nernst-Planck equation by addressing conductive traveling length (CTL) to simulate the ion transport through the thin-composite pore-filling membranes and the performance of a single RED stack with the same membranes. Also, 100 cell-pairs of RED stacks were assembled to validate modified Nernst-Planck equation according to the flow rate and membrane types. Under the OCV condition, the conductivity of the effluents was measured to validate the modified Nernst-Planck equation, and differences between modeling and experiments were less than 1.5 mS/cm. Theoretical OCV and current density were estimated by using modified Nernst-Planck equation. In particular, hydrophobicity on the surface of the heterogeneous membrane was considered to describe ion transport through the pore-filling membranes. Moreover, power generation from RED stacks was calculated according to the flow rate and the number of cell pairs.
Collapse
Affiliation(s)
- Hanki Kim
- Marine Energy Convergence and Integration Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea.
| | - Namjo Jeong
- Marine Energy Convergence and Integration Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea
| | - SeungCheol Yang
- Marine Energy Convergence and Integration Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea
| | - Jiyeon Choi
- Marine Energy Convergence and Integration Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea
| | - Mi-Soon Lee
- Hydrogen and Fuel Cell Center for Industry, Academy, and Laboratories, Korea Institute of Energy Research, 20-41, Sinjaesaengeneoji-ro, Haseo-myeon, Buan-gun, Jeollabuk-do, 56332, Republic of Korea
| | - Joo-Youn Nam
- Marine Energy Convergence and Integration Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea
| | - Eunjin Jwa
- Marine Energy Convergence and Integration Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea
| | - Byungki Kim
- System Convergence Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea
| | - Kyung-Sang Ryu
- System Convergence Laboratory, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200, Haemajihaean-ro, Gujwa-eup, 63357, Jeju, South Korea
| | - Young-Woo Choi
- Hydrogen and Fuel Cell Center for Industry, Academy, and Laboratories, Korea Institute of Energy Research, 20-41, Sinjaesaengeneoji-ro, Haseo-myeon, Buan-gun, Jeollabuk-do, 56332, Republic of Korea
| |
Collapse
|
12
|
Golubenko DV, Van der Bruggen B, Yaroslavtsev AB. Novel anion exchange membrane with low ionic resistance based on chloromethylated/quaternized‐grafted polystyrene for energy efficient electromembrane processes. J Appl Polym Sci 2019. [DOI: 10.1002/app.48656] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel V. Golubenko
- Russian Academy of SciencesN.S. Kurnakov Institute of General and Inorganic Chemistry 31 Leninsky prospect, Moscow 119991 Russian Federation
- Russian Academy of SciencesInstitute of Problems of Chemical Physics Academician Semenov Avenue 1, Chernogolovka 142432 Moscow Region Russian Federation
| | - Bart Van der Bruggen
- Department of Chemical EngineeringKU Leuven Celestijnenlaan 200F, B‐3001 Leuven Belgium
- Faculty of Engineering and the Built EnvironmentTshwane University of Technology Private Bag X680 Pretoria 0001 South Africa
| | - Andrey B. Yaroslavtsev
- Russian Academy of SciencesN.S. Kurnakov Institute of General and Inorganic Chemistry 31 Leninsky prospect, Moscow 119991 Russian Federation
- Russian Academy of SciencesInstitute of Problems of Chemical Physics Academician Semenov Avenue 1, Chernogolovka 142432 Moscow Region Russian Federation
| |
Collapse
|
13
|
|
14
|
Pawlowski S, Crespo JG, Velizarov S. Profiled Ion Exchange Membranes: A Comprehensible Review. Int J Mol Sci 2019; 20:ijms20010165. [PMID: 30621185 PMCID: PMC6337161 DOI: 10.3390/ijms20010165] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/19/2018] [Accepted: 12/23/2018] [Indexed: 11/30/2022] Open
Abstract
Profiled membranes (also known as corrugated membranes, micro-structured membranes, patterned membranes, membranes with designed topography or notched membranes) are gaining increasing academic and industrial attention and recognition as a viable alternative to flat membranes. So far, profiled ion exchange membranes have shown to significantly improve the performance of reverse electrodialysis (RED), and particularly, electrodialysis (ED) by eliminating the spacer shadow effect and by inducing hydrodynamic changes, leading to ion transport rate enhancement. The beneficial effects of profiled ion exchange membranes are strongly dependent on the shape of their profiles (corrugations/patterns) as well as on the flow rate and salts’ concentration in the feed streams. The enormous degree of freedom to create new profile geometries offers an exciting opportunity to improve even more their performance. Additionally, the advent of new manufacturing methods in the membrane field, such as 3D printing, is anticipated to allow a faster and an easier way to create profiled membranes with different and complex geometries.
Collapse
Affiliation(s)
- Sylwin Pawlowski
- Associated Laboratory for Green Chemistry - Clean Technologies and Processes (LAQV), REQUIMTE, Chemistry Department, FCT, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - João G Crespo
- Associated Laboratory for Green Chemistry - Clean Technologies and Processes (LAQV), REQUIMTE, Chemistry Department, FCT, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Svetlozar Velizarov
- Associated Laboratory for Green Chemistry - Clean Technologies and Processes (LAQV), REQUIMTE, Chemistry Department, FCT, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|