1
|
Lv Z, Zhang H, Liang J, Zhao T, Xu Y, Lei Y. Microalgae removal technology for the cold source of nuclear power plant: A review. MARINE POLLUTION BULLETIN 2022; 183:114087. [PMID: 36084612 DOI: 10.1016/j.marpolbul.2022.114087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 07/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In the past three decades, nuclear energy has gained much attention as carbon-free electricity. Due to the supply of cooling water in nuclear power plant, large amount of waste heat will increase the water temperature, promote the microalgae and cyanobacteria propagation and increase the chance of red tide. Excess phytoplankton of cool source will result in abnormal operation of cooling system, even core overheating and nuclear leakage. Consequently, it is very important to remove microalgae and cyanobacteria from cold source of nuclear power plants. This review summarizes the formation mechanism and monitoring methods of red tide, compares the advantages and disadvantages of traditional microalgae removal technology including physical, chemical and biological methods. Furthermore, the improved electrochemical method and micro-nano bubble method are introduced in detail. Their combination is considered to be a low-cost, efficient and environmentally-friendly technology to prevent and control red tides for cold source of nuclear power plant.
Collapse
Affiliation(s)
- Ziwei Lv
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| | - Hong Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China.
| | - Jinsheng Liang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China.
| | - Tianyu Zhao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| | - Yuena Xu
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| | - Yinyuan Lei
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
2
|
Castro-Muñoz R, García-Depraect O. Membrane-Based Harvesting Processes for Microalgae and Their Valuable-Related Molecules: A Review. MEMBRANES 2021; 11:membranes11080585. [PMID: 34436347 PMCID: PMC8400455 DOI: 10.3390/membranes11080585] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022]
Abstract
The interest in microalgae production deals with its role as the third generation of feedstock to recover renewable energy. Today, there is a need to analyze the ultimate research and advances in recovering the microalgae biomass from the culture medium. Therefore, this review brings the current research developments (over the last three years) in the field of harvesting microalgae using membrane-based technologies (including microfiltration, ultrafiltration and forward osmosis). Initially, the principles of membrane technologies are given to outline the main parameters influencing their operation. The main strategies adopted by the research community for the harvesting of microalgae using membranes are subsequently addressed, paying particular attention to the novel achievements made for improving filtration performance and alleviating fouling. Moreover, this contribution also gives an overview of the advantages of applying membrane technologies for the efficient extraction of the high added-value compounds in microalgae cells, such as lipids, proteins and carbohydrates, which together with the production of renewable biofuels could boost the development of more sustainable and cost-effective microalgae biorefineries.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
- Correspondence: (R.C.-M.); (O.G.-D.)
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Correspondence: (R.C.-M.); (O.G.-D.)
| |
Collapse
|
3
|
Cho H, Mushtaq A, Hwang T, Kim HS, Han JI. Orifice-based membrane fouling inhibition employing in-situ turbulence for efficient microalgae harvesting. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Nitsos C, Filali R, Taidi B, Lemaire J. Current and novel approaches to downstream processing of microalgae: A review. Biotechnol Adv 2020; 45:107650. [PMID: 33091484 DOI: 10.1016/j.biotechadv.2020.107650] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Biotechnological application of microalgae cultures at large scale has significant potential in the various fields of biofuels, food and feed, cosmetic, pharmaceutic, environmental remediation and water treatment. Despite this great potential application, industrialisation of microalgae culture and valorisation is still faced with serious remaining challenges in culture scale-up, harvesting and extraction of target molecules. This review presents a general summary of current techniques for harvesting and extraction of biomolecules from microalgae, their relative merits and potential for industrial application. The cell wall composition and its impact on microalgae cell disruption is discussed. Additionally, more recent progress and promising experimental methods and studies are summarised that would allow the reader to further investigate the state of the art. A final survey of energetic assessments of the different techniques is also made. Bead milling and high-pressure homogenisation seem to give clear advantages in terms of target high value compounds extraction from microalgae, with enzyme hydrolysis as a promising emerging technique. Future industrialisation of microalgae for high scale biotechnological processing will require the establishment of universal comparison-standards that would enable easy assessment of one technique against another.
Collapse
Affiliation(s)
- Christos Nitsos
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| | - Rayen Filali
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| | - Behnam Taidi
- LGPM, CentraleSupélec, Unierstiy of Paris Sacaly, Bât Gustave Eiffel, 3 rue Joliot Curie, 91190 Gif-sur-Yvette, France.
| | - Julien Lemaire
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| |
Collapse
|
5
|
Jung JY, Hur JW, Kim K, Han HS. Evaluation of floc-harvesting technologies in biofloc technology (BFT) system for aquaculture. BIORESOURCE TECHNOLOGY 2020; 314:123719. [PMID: 32593104 DOI: 10.1016/j.biortech.2020.123719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
This study was conducted to examine floc-harvesting performance by three separation technologies, namely sedimentation, centrifugation, and membrane filtration, for biofloc generated from a BFT system in aquaculture. According to the experimental results, sedimentation demonstrated the poorest harvesting performance with the lowest energy consumption; centrifugation showed the highest harvesting performance with the highest energy burden; membrane filtration achieved better harvesting performance than sedimentation and better energy efficiency than centrifugation. In terms of large-scale floc recovery, a two-step harvesting process utilizing centrifugation with membrane filtration was found to be a reliable way to overcome the limitation of sedimentation and obtain moderate energy-efficiency. Overall, the energy-consuming aspects of the floc-recovery process on an industrial scale should be concerned, even though the use of biofloc as an aquaculture feed would be a positive in terms of an environment-friendly approach to recycling of aquaculture wastewater.
Collapse
Affiliation(s)
- Joo-Young Jung
- Faculty of Marine Applied Biosciences, Kunsan National University, 558 Daehak-ro, Gunsan, Jeonbuk 54150, Republic of Korea
| | - Jun Wook Hur
- Faculty of Marine Applied Biosciences, Kunsan National University, 558 Daehak-ro, Gunsan, Jeonbuk 54150, Republic of Korea
| | - Kyochan Kim
- Faculty of Marine Applied Biosciences, Kunsan National University, 558 Daehak-ro, Gunsan, Jeonbuk 54150, Republic of Korea.
| | - Hyon-Sob Han
- Faculty of Marine Applied Biosciences, Kunsan National University, 558 Daehak-ro, Gunsan, Jeonbuk 54150, Republic of Korea.
| |
Collapse
|
6
|
Trotochaud L, Hawkins BT, Stoner BR. Non-biological methods for phosphorus and nitrogen removal from wastewater: A gap analysis of reinvented-toilet technologies with respect to ISO 30500. Gates Open Res 2020; 3:559. [PMID: 32494770 PMCID: PMC7232852 DOI: 10.12688/gatesopenres.12931.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
The aims of the Reinvent the Toilet Challenge (RTTC) include creation of an off-the-grid sanitation system with operating costs of less than US$0.05 per user per day. Because of the small scale at which many reinvented toilets (RT) are intended to operate, non-biological treatment has been generally favored. The RTTC has already instigated notable technological advances in non-sewered sanitation systems (NSSS). However, increasingly stringent liquid effluent standards for N and P could limit the deployment of current RT in real-world scenarios, despite the urgent need for these systems. The newly adopted ISO 30500 standards for water reuse in NSSS dictate minimal use of chemical/biological additives, while at the same time requiring a 70% and 80% reduction in total nitrogen and phosphorus, respectively. This document provides a brief overview of the mature and emerging technologies for N and P (specifically ammonia/ammonium and orthophosphate) removal from wastewater. At present, the dearth of nutrient removal methods proven to be effective at small scales is a significant barrier to meeting ISO 30500 standards. Closing the gap between RTs and ISO 30500 will require significant investments in basic R&D of emerging technologies for non-biological N and P remediation and/or increased reliance on biological processes. Adaptation of existing nutrient-removal technologies to small-scale NSSS is a viable option that merits additional investigation.
Collapse
Affiliation(s)
- Lena Trotochaud
- Center for WaSH-AID, Duke University, Durham, NC, 27701, USA
| | | | - Brian R. Stoner
- Center for WaSH-AID, Duke University, Durham, NC, 27701, USA
| |
Collapse
|
7
|
Yu D, Liu M, Liu J, Zheng L, Wei Y. Effects of mixed-liquor rheology on vibration of hollow-fiber membrane via particle image velocimetry and computational fluid dynamics. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Roy M, Mohanty K. A comprehensive review on microalgal harvesting strategies: Current status and future prospects. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101683] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Zhang M, Yao L, Maleki E, Liao BQ, Lin H. Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101686] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Trotochaud L, Hawkins BT, Stoner BR. Non-biological methods for phosphorus and nitrogen removal from wastewater: A gap analysis of reinvented-toilet technologies with respect to ISO 30500. Gates Open Res 2019; 3:559. [PMID: 32494770 PMCID: PMC7232852 DOI: 10.12688/gatesopenres.12931.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 12/24/2022] Open
Abstract
The aims of the Reinvent the Toilet Challenge (RTTC) include creation of an off-the-grid sanitation system with operating costs of less than US$0.05 per user per day. Because of the small scale at which many reinvented toilets (RT) are intended to operate, non-biological treatment has been generally favored. The RTTC has already instigated notable technological advances in non-sewered sanitation systems (NSSS). However, increasingly stringent effluent standards for N and P could limit the deployment of current RT in real-world scenarios, despite the urgent need for these systems. The newly adopted ISO 30500 standards for water reuse in NSSS dictate minimal use of chemical/biological additives, while at the same time requiring a 70% and 80% reduction in total nitrogen and phosphorus, respectively. This document provides a brief overview of the mature and emerging technologies for N and P removal from wastewater. At present, the dearth of nutrient removal methods proven to be effective at small scales is a significant barrier to meeting ISO 30500 standards. Closing the gap between RTs and ISO 30500 will require significant investments in basic R&D of emerging technologies for non-biological N and P remediation and/or increased reliance on biological processes. Adaptation of existing nutrient-removal technologies to small-scale NSSS is a viable option that merits additional investigation.
Collapse
Affiliation(s)
- Lena Trotochaud
- Center for WaSH-AID, Duke University, Durham, NC, 27701, USA
| | | | - Brian R. Stoner
- Center for WaSH-AID, Duke University, Durham, NC, 27701, USA
| |
Collapse
|