1
|
Zhao M, Cho SH, Wu X, Mao J, Vogt BD, Zacharia NS. Covalently crosslinked coacervates: immobilization and stabilization of proteins with enhanced enzymatic activity. SOFT MATTER 2024; 20:7623-7633. [PMID: 39291470 DOI: 10.1039/d4sm00765d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Coacervates represent models for membrane-free protocells and thus provide a simple route to synthetic cellular-like systems that provide selective encapsulation of solutes. Here, we demonstrate a simple and versatile post-coacervation crosslink method using the thiol-ene click reaction in aqueous media to prepare covalently crosslinked coacervates. The crosslinking of the coacervate enables stability at extreme pH where the uncrosslinked coacervate fully disassembles. The crosslinking also enhances the hydrophobicity within the coacervate environment to increase the encapsulation efficiency of bovine serum albumin (BSA), as compared to the uncrosslinked coacervate. Additionally, the crosslinked coacervate increases the stabilization of BSA at low pH. These crosslinked coacervates can act as carriers for enzymes. The enzymatic activity of alkaline phosphatase (ALP) is enhanced within the crosslinked coacervate compared to the ALP in aqueous solution. The post-coacervation crosslink approach allows the utilization of coacervates for encapsulation of biologicals under conditions where the coacervate would generally disassemble. We demonstrate that these crosslinked coacervates enable the protection of encapsulated protein against denaturation at extreme pH and enhance the enzymatic activity with encapsulation. This click approach to stabilization of coacervates should be broadly applicable to other systems for a variety of biologics and environmentally sensitive molecules.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Szu-Hao Cho
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Xinchi Wu
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Jingyi Mao
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Bryan D Vogt
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Nicole S Zacharia
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| |
Collapse
|
2
|
Melnik E, Kurzhals S, Mutinati GC, Beni V, Hainberger R. Electrochemical Diffusion Study in Poly(Ethylene Glycol) Dimethacrylate-Based Hydrogels. SENSORS (BASEL, SWITZERLAND) 2024; 24:3678. [PMID: 38894467 PMCID: PMC11175328 DOI: 10.3390/s24113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Hydrogels are of great importance for functionalizing sensors and microfluidics, and poly(ethylene glycol) dimethacrylate (PEG-DMA) is often used as a viscosifier for printable hydrogel precursor inks. In this study, 1-10 kDa PEG-DMA based hydrogels were characterized by gravimetric and electrochemical methods to investigate the diffusivity of small molecules and proteins. Swelling ratios (SRs) of 14.43-9.24, as well as mesh sizes ξ of 3.58-6.91 nm were calculated, and it was found that the SR correlates with the molar concentration of PEG-DMA in the ink (MCI) (SR = 0.1127 × MCI + 8.3256, R2 = 0.9692) and ξ correlates with the molecular weight (Mw) (ξ = 0.3382 × Mw + 3.638, R2 = 0.9451). To investigate the sensing properties, methylene blue (MB) and MB-conjugated proteins were measured on electrochemical sensors with and without hydrogel coating. It was found that on sensors with 10 kDa PEG-DMA hydrogel modification, the DPV peak currents were reduced to 92 % for MB, 73 % for MB-BSA, and 23 % for MB-IgG. To investigate the diffusion properties of MB(-conjugates) in hydrogels with 1-10 kDa PEG-DMA, diffusivity was calculated from the current equation. It was found that diffusivity increases with increasing ξ. Finally, the release of MB-BSA was detected after drying the MB-BSA-containing hydrogel, which is a promising result for the development of hydrogel-based reagent reservoirs for biosensing.
Collapse
Affiliation(s)
- Eva Melnik
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.K.); (G.C.M.); (R.H.)
| | - Steffen Kurzhals
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.K.); (G.C.M.); (R.H.)
| | - Giorgio C. Mutinati
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.K.); (G.C.M.); (R.H.)
| | - Valerio Beni
- Bioelectronics and Organic Electronics, Smart Hardware, Digital Systems, RISE Research Institutes of Sweden, 60233 Norrköping, Sweden;
| | - Rainer Hainberger
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.K.); (G.C.M.); (R.H.)
| |
Collapse
|
3
|
Johnston JT, Quoc BN, Abrahamson B, Candry P, Ramon C, Cash KJ, Saccomano SC, Samo TJ, Ye C, Weber PK, Winkler MKH, Mayali X. Increasing aggregate size reduces single-cell organic carbon incorporation by hydrogel-embedded wetland microbes. ISME COMMUNICATIONS 2024; 4:ycae086. [PMID: 38974332 PMCID: PMC11227278 DOI: 10.1093/ismeco/ycae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Microbial degradation of organic carbon in sediments is impacted by the availability of oxygen and substrates for growth. To better understand how particle size and redox zonation impact microbial organic carbon incorporation, techniques that maintain spatial information are necessary to quantify elemental cycling at the microscale. In this study, we produced hydrogel microspheres of various diameters (100, 250, and 500 μm) and inoculated them with an aerobic heterotrophic bacterium isolated from a freshwater wetland (Flavobacterium sp.), and in a second experiment with a microbial community from an urban lacustrine wetland. The hydrogel-embedded microbial populations were incubated with 13C-labeled substrates to quantify organic carbon incorporation into biomass via nanoSIMS. Additionally, luminescent nanosensors enabled spatially explicit measurements of oxygen concentrations inside the microspheres. The experimental data were then incorporated into a reactive-transport model to project long-term steady-state conditions. Smaller (100 μm) particles exhibited the highest microbial cell-specific growth per volume, but also showed higher absolute activity near the surface compared to the larger particles (250 and 500 μm). The experimental results and computational models demonstrate that organic carbon availability was not high enough to allow steep oxygen gradients and as a result, all particle sizes remained well-oxygenated. Our study provides a foundational framework for future studies investigating spatially dependent microbial activity in aggregates using isotopically labeled substrates to quantify growth.
Collapse
Affiliation(s)
- Juliet T Johnston
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | - Bao Nguyen Quoc
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700, United States
| | - Britt Abrahamson
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700, United States
| | - Pieter Candry
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700, United States
| | - Christina Ramon
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | - Kevin J Cash
- Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States
| | - Sam C Saccomano
- Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States
| | - Ty J Samo
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | - Congwang Ye
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | - Peter K Weber
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | | | - Xavier Mayali
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| |
Collapse
|
4
|
Thermosensitive Shape-Memory Poly(stearyl acrylate- co-methoxy poly(ethylene glycol) acrylate) Hydrogels. Gels 2023; 9:gels9010054. [PMID: 36661820 PMCID: PMC9858752 DOI: 10.3390/gels9010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Stimuli-sensitive hydrogels are highly desirable candidates for application in intelligent biomaterials. Thus, a novel thermosensitive hydrogel with shape-memory function was developed. Hydrophobic stearyl acrylate (SA), hydrophilic methoxy poly(ethylene glycol) acrylate (MPGA), and a crosslinking monomer were copolymerized to prepare poly(SA-co-MPGA) gels with various mole fractions of SA (xSA) in ethanol. Subsequently, the prepared gels were washed, dried, and re-swelled in water at 50 °C. Differential scanning calorimetric (DSC) and compression tests at different temperatures revealed that poly(SA-co-MPGA) hydrogels with xSA > 0.5 induce a crystalline-to-amorphous transition, which is a hard-to-soft transition at ~40 °C that is based on the formation/non-formation of a crystalline structure containing stearyl side chains. The hydrogels stored in water maintained an almost constant volume, independent of the temperature. The poly(SA-co-MPGA) hydrogel was soft, flexible, and deformed at 50 °C. However, the hydrogel stiffened when cooled to room temperature, and the deformation was reversible. The shape-memory function of poly(SA-co-MPGA) hydrogels is proposed for potential use in biomaterials; this is partially attributed to the use of MPGA, which consists of relatively biocompatible poly(ethylene glycol).
Collapse
|
5
|
Slow water dynamics in polygalacturonate hydrogels revealed by NMR relaxometry and molecular dynamics simulation. Carbohydr Polym 2022; 298:120093. [DOI: 10.1016/j.carbpol.2022.120093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
|
6
|
Vanoli V, Delleani S, Casalegno M, Pizzetti F, Makvandi P, Haugen H, Mele A, Rossi F, Castiglione F. Hyaluronic acid-based hydrogels: Drug diffusion investigated by HR-MAS NMR and release kinetics. Carbohydr Polym 2022; 301:120309. [DOI: 10.1016/j.carbpol.2022.120309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
|
7
|
Seida Y, Tokuyama H. Hydrogel Adsorbents for the Removal of Hazardous Pollutants—Requirements and Available Functions as Adsorbent. Gels 2022; 8:gels8040220. [PMID: 35448121 PMCID: PMC9028382 DOI: 10.3390/gels8040220] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Over the last few decades, various adsorption functions of polymer hydrogels for the removal of hazardous pollutants have been developed. The performance of hydrogel adsorbents depends on the constituents of the gels and the functions produced by the polymer networks of the gels. Research on hydrogels utilizing the characteristic functions of polymer networks has increased over the last decade. The functions of polymer networks are key to the development of advanced adsorbents for the removal of various pollutants. No review has discussed hydrogel adsorbents from the perspective of the roles and functions of polymer networks in hydrogels. This paper briefly reviews the basic requirements of adsorbents and the general characteristics of hydrogels as adsorbents. Thereafter, hydrogels are reviewed on the basis of the roles and functions of the polymer networks in them for the removal of hazardous pollutants by introducing studies published over the last decade. The application of hydrogels as adsorbents for the removal of hazardous pollutants is discussed as well.
Collapse
Affiliation(s)
- Yoshimi Seida
- Natural Science Laboratory, Toyo University, 5-28-20 Hakusan, Bunkyo-ku, Tokyo 112-8606, Japan
- Correspondence: ; Tel.: +81-3-3945-4894
| | - Hideaki Tokuyama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan;
| |
Collapse
|
8
|
Analysis of model drug permeation through highly crosslinked and biodegradable polyethylene glycol membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Kato G, Doi H, Ohashi H, Tokuyama H. Effect of Structural Features of Polymer Gels Containing Au Nanoparticles on Their Catalytic Properties. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021. [DOI: 10.1252/jcej.21we038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gakuto Kato
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology
| | - Hayato Doi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology
| | - Hidenori Ohashi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology
| | - Hideaki Tokuyama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology
| |
Collapse
|
10
|
Ethanol fermentation using macroporous monolithic hydrogels as yeast cell scaffolds. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Saikia J, Dharmalingam K, Anandalakshmi R, Redkar AS, Bhat VT, Ramakrishnan V. Electric field modulated peptide based hydrogel nanocatalysts. SOFT MATTER 2021; 17:9725-9735. [PMID: 34643203 DOI: 10.1039/d1sm00724f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ability to modulate self-assembly is the key to manufacture application-oriented materials. In this study, we investigated the effect of three independent variables that can modulate the catalytic activity of self-assembling peptides. The first two variables, amino acid sequence and its stereochemistry, were examined for their specific roles in the epitaxial growth and hydrogelation properties of a series of catalytic tripeptides. We observed that aromatic π-π interactions that direct the self-assembly of designed peptides, and the catalytic properties of hydrogels, are governed by the position and chirality of the proline residue. Subsequently, the influence of the third variable, an external electric field, was also tested to confirm its catalytic efficiency for the asymmetric C-C bond-forming aldol reaction. In particular, the electric field treated pff and PFF gels showed 10 and 36% higher stereoselectivity, respectively, compared with the control. Structure-property analysis using CD and FTIR spectroscopy indicates the electric field-induced beta to non-beta conformational transition in the peptide secondary structure, which corroborates with its reduced cross-link density and fibril width, respectively. Amplitude sweep rheology of the gels suggests a decrease in the storage modulus, with increased field strength. The results showed that an electric field of optimal strength can modulate the physical characteristics of the hydrogel, which in turn is manifested in the observed difference in enantioselectivity.
Collapse
Affiliation(s)
- Jahnu Saikia
- Molecular Informatics and Design Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - K Dharmalingam
- Advanced Energy & Materials Systems Laboratory, Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - R Anandalakshmi
- Advanced Energy & Materials Systems Laboratory, Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amay Sanjay Redkar
- Molecular Informatics and Design Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Venugopal T Bhat
- Organic Synthesis and Catalysis Laboratory SRM Research Institute and Department of Chemistry SRM Institute of Science and Technology, Tamil Nadu 603203, India.
| | - Vibin Ramakrishnan
- Molecular Informatics and Design Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
12
|
Vernerey FJ, Lalitha Sridhar S, Muralidharan A, Bryant SJ. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev 2021; 121:11085-11148. [PMID: 34473466 DOI: 10.1021/acs.chemrev.1c00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are highly water-swollen molecular networks that are ideal platforms to create tissue mimetics owing to their vast and tunable properties. As such, hydrogels are promising cell-delivery vehicles for applications in tissue engineering and have also emerged as an important base for ex vivo models to study healthy and pathophysiological events in a carefully controlled three-dimensional environment. Cells are readily encapsulated in hydrogels resulting in a plethora of biochemical and mechanical communication mechanisms, which recapitulates the natural cell and extracellular matrix interaction in tissues. These interactions are complex, with multiple events that are invariably coupled and spanning multiple length and time scales. To study and identify the underlying mechanisms involved, an integrated experimental and computational approach is ideally needed. This review discusses the state of our knowledge on cell-hydrogel interactions, with a focus on mechanics and transport, and in this context, highlights recent advancements in experiments, mathematical and computational modeling. The review begins with a background on the thermodynamics and physics fundamentals that govern hydrogel mechanics and transport. The review focuses on two main classes of hydrogels, described as semiflexible polymer networks that represent physically cross-linked fibrous hydrogels and flexible polymer networks representing the chemically cross-linked synthetic and natural hydrogels. In this review, we highlight five main cell-hydrogel interactions that involve key cellular functions related to communication, mechanosensing, migration, growth, and tissue deposition and elaboration. For each of these cellular functions, recent experiments and the most up to date modeling strategies are discussed and then followed by a summary of how to tune hydrogel properties to achieve a desired functional cellular outcome. We conclude with a summary linking these advancements and make the case for the need to integrate experiments and modeling to advance our fundamental understanding of cell-matrix interactions that will ultimately help identify new therapeutic approaches and enable successful tissue engineering.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.,Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States.,Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States.,BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
13
|
Li P, Wang T, He J, Jiang J, Lei F. Diffusion of water and protein drug in 1,4-butanediol diglycidyl ether crosslinked galactomannan hydrogels and its correlation with the physicochemical properties. Int J Biol Macromol 2021; 183:1987-2000. [PMID: 34087302 DOI: 10.1016/j.ijbiomac.2021.05.195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to obtain a better and safer galactomannan-based material for drug release applications. A novel epoxy-crosslinked galactomannan hydrogel (EGH) was prepared from guar gum using 1,4-butanediol diglycidyl ether as a crosslinking agent. The diffusion rate constant of water molecules in freeze-dried EGH positively correlated with water uptake/equilibrium swelling rate (WU/ESR), and the water molecules participated in Fickian diffusion. The ESR, WU/ESR, and bovine serum albumin (BSA) loading capacity of a customized EGH with a crosslinking density of 48.9% were 48.7 ± 0.15 g/g, 95.3%, and 56.4 mg/g, respectively. The release of BSA from freeze-dried EGH was affected by the WU/ESR and the pH; the release equilibrium time was ~40 h at pH 1.2, decreasing to ~24 h at pH 7.4. Furthermore, the cumulative release rate increased from 63.5% to 80.7% and the t50 decreased from 59 to 41 min upon changing from the acidic to basic pH. The release process conformed to the Ritger-Peppas and Hixson-Crowell models, and represented Fickian diffusion and chain relaxation. The EGH showed no cytotoxicity toward HeLa cells. Together, these results demonstrate the properties of a novel galactomannan-based hydrogel that can potentially be employed as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Ting Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Jing He
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| |
Collapse
|
14
|
Milster S, Kim WK, Kanduč M, Dzubiella J. Tuning the permeability of regular polymeric networks by the cross-link ratio. J Chem Phys 2021; 154:154902. [PMID: 33887934 DOI: 10.1063/5.0045675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The amount of cross-linking in the design of polymer materials is a key parameter for the modification of numerous physical properties, importantly, the permeability to molecular solutes. We consider networks with a diamond-like architecture and different cross-link ratios, concurring with a wide range of the polymer volume fraction. We particularly focus on the effect and the competition of two independent component-specific solute-polymer interactions, i.e., we distinguish between chain-monomers and cross-linkers, which individually act on the solutes and are altered to cover attractive and repulsive regimes. For this purpose, we employ coarse-grained, Langevin computer simulations to study how the cross-link ratio of polymer networks controls the solute partitioning, diffusion, and permeability. We observe different qualitative behaviors as a function of the cross-link ratio and interaction strengths. The permeability can be tuned ranging over two orders of magnitude relative to the reference bulk permeability. Finally, we provide scaling theories for the partitioning and diffusion that explicitly account for the component-specific interactions as well as the cross-link ratio and the polymer volume fraction. These are in overall good agreement with the simulation results and grant insight into the underlying physics, rationalizing how the cross-link ratio can be exploited to tune the solute permeability of polymeric networks.
Collapse
Affiliation(s)
- Sebastian Milster
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Won Kyu Kim
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Matej Kanduč
- Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
15
|
Quesada-Pérez M, Martín-Molina A. Solute diffusion in gels: Thirty years of simulations. Adv Colloid Interface Sci 2021; 287:102320. [PMID: 33296722 DOI: 10.1016/j.cis.2020.102320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
In this review, we present a summary of computer simulation studies on solute diffusion in gels carried out in the last three decades. Special attention is paid to coarse-grained simulations in which the role of steric and electrostatic interactions on the particle diffusion can be evaluated. In addition, other important characteristics of particle diffusion in gels, such as the stiffness of the gel structure and hydrodynamic interactions, can be taken into account through coarse-grained simulations. Emphasis is placed on how simulation results help to test phenomenological models and to improve the interpretation interof experimental results. Finally, coarse-grained simulations have also been employed to study the diffusion controlled release of drugs from gels. We believe that scientific advances in this line will be useful to better understand the mechanisms that control the diffusive transport of molecules in a wide variety of biological systems.
Collapse
Affiliation(s)
- Manuel Quesada-Pérez
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, 23700 Jaén, Spain
| | - Alberto Martín-Molina
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, 18071 Granada, Spain; Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Campus de Fuentenueva sn, 18071 Granada, Spain.
| |
Collapse
|
16
|
Aoyagi R, Terada A, Tokuyama H. Oxygen diffusivity and reaction rate in spherical gel entrapping ammonia-oxidizing bacteria. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|