1
|
Singh G, Yadav G, Yadav N, Kapoor S, Sharma B, Sharma RK, Kumar R, Chaudhary GR. Recent advancements in the synthesis of anion exchange membranes and their potential applications in wastewater treatment. Adv Colloid Interface Sci 2025; 336:103376. [PMID: 39662338 DOI: 10.1016/j.cis.2024.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Water treatment procedures are increasingly utilized for resource recovery and wastewater disinfection, addressing the current challenges of clean water depletion and wastewater management. Various pollutants, including dyes, acids, pharmaceuticals, and toxic heavy metals have been released into the environment through industrial, domestic, and agricultural activities, posing serious environmental and public health risks. Addressing these issues requires the development of more effective waste treatment processes. Membrane-based treatment technologies offer significant advantages, including high efficiency, versatility, and cost-effectiveness, making them a promising solution for mitigating the impact of these pollutants. In view of this, the potential of ion exchange membranes (IEMs) is continuously increasing due to their advanced characteristics compared to conventional techniques. Anion exchange membranes (AEMs), a special class of IEMs, selectively allow anions to pass through their pores due to the positive charge on their surface. This selective passage aids in resource recovery and removing specific types of pollutants. This review covers preparation methods, modification techniques, and classification of AEMs. It offers a practical classification based on the method of synthesis and structural properties of AEMs. The water-based applications of AEMs including, electrodialysis, diffusion dialysis, and electro-electrodialysis for various wastewater treatments such as heavy metal recovery, dye removal, pharmaceutical removal, and acid separation, have been discussed in detail. Additionally, the effect of various operational parameters on the performance and SWOT (strengths, weaknesses, opportunities, and threats) analysis of AEMs in effluent treatment are presented. The review provides detailed insights into the current status, challenges, and future directions of AEM-based technologies, offering suggestions for future advancements.
Collapse
Affiliation(s)
- Gurkaran Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gaurav Yadav
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; Sophisticated Analytical Instrumentation Facility (SAIF)/ Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India
| | - Nidhi Yadav
- Department of Chemistry, National Institute of Technology, Silchar, 788010, India
| | - Sahil Kapoor
- Department of Chemical Engineering, Panjab University, Chandigarh 160014, India
| | - Bunty Sharma
- Sophisticated Analytical Instrumentation Facility (SAIF)/ Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India
| | - Ramesh Kumar Sharma
- Sophisticated Analytical Instrumentation Facility (SAIF)/ Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; Sophisticated Analytical Instrumentation Facility (SAIF)/ Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
2
|
Fu J, Chen Y, Ma R, Huang H, Luo J, Zheng H, Sun S. Microwave-modulated graded porous carbon for supercapacitors: Pore size matching and operating voltage expansion. J Colloid Interface Sci 2024; 673:163-177. [PMID: 38871624 DOI: 10.1016/j.jcis.2024.05.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
Optimizing the pore structure and its interaction with the electrolytes was vital for enhancing the performance of supercapacitors based on the electrical double layer mechanism. In this study, graded porous carbon material (STP) with outstanding properties was prepared by adjusting the activation temperature and KOH dosage in the microwave pyrolysis process of sargassum thunbergii. The results demonstrated that better electrochemical performance was obtained when 1 M NaNO3 was used as electrolyte and STP-800-3 was employed as electrode material, attributed to its excellent specific surface area (SSA) of 2011.8 m2 g-1, high micropore ratio, and the optimal matching degree between micropore size and electrolyte ion diameter. Moreover, the operating voltage window was expanded to 2.0 V in supercapacitors assembled with 6 M NaNO3 high-concentration electrolyte. Simultaneously, the symmetric supercapacitors exhibited a remarkable specific capacitance of 290.0 F g-1, a high energy density of 39.0 W h kg-1, and outstanding capacity retention at 70.9% after 10,000 charge/discharge cycles based on 6 M NaNO3 electrolyte. Consequently, the results provided valuable technical support and theoretical basis to foster progress of novel and high-performance supercapacitors.
Collapse
Affiliation(s)
- Jiemei Fu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huimin Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juan Luo
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huihai Zheng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Ozkul S, Arbabzadeh O, Bisselink RJM, Kuipers NJM, Bruning H, Rijnaarts HHM, Dykstra JE. Selective adsorption in ion exchange membranes: The effect of solution ion composition on ion partitioning. WATER RESEARCH 2024; 254:121382. [PMID: 38471202 DOI: 10.1016/j.watres.2024.121382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Electrodialysis is a water desalination technology that enables selective separation of ions, making it a promising solution for sustainable water reuse. The selectivity of the process is mainly determined by the properties of ion exchange membranes that can vary depending on the composition of ions in water, such as water uptake and charge density. In this work, we studied selective adsorption of Na+ and K+ ions in various ion exchange membranes considering the effect of solution ion composition on membrane water volume fraction. For that purpose, we conducted membrane adsorption experiments using solutions with Na+ and K+ ions with different ion compositions including Li+, Ca2+ or Mg2+ ions at different concentrations (0.001 - 0.25 M). The experiments showed that with the total ion concentration and the amount of divalent ions in solution, the membrane water volume fraction decreases while the selective adsorption of the smaller (hydrated) K+ ions over the Na+ ions in the membrane increases. We developed a theoretical framework based on Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) theory to describe the effect of membrane water volume fraction on selective adsorption of the ions by including volumetric effects, such as size exclusion. The developed framework was used to describe ion partitioning results of the membrane adsorption experiments. In addition, the effect of solution ion composition on selective ion removal during electrodialysis operation was evaluated using experimental data and theoretical calculations. The results of this study show that considering volumetric effects can improve the ion partitioning description in ion exchange membranes for solutions with various ion compositions.
Collapse
Affiliation(s)
- S Ozkul
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - O Arbabzadeh
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands; Department of Civil, Environmental and Architectural Engineering, University of Padua, Via Marzolo 9, Padua 35131, Italy
| | - R J M Bisselink
- Food and Biobased Research, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - N J M Kuipers
- Food and Biobased Research, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - H Bruning
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - H H M Rijnaarts
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - J E Dykstra
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands.
| |
Collapse
|
4
|
Jung J, Choi S, Kang I, Choi K. Ultra-Thin Ion Exchange Membranes by Low Ionomer Blending for Energy Harvesting. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:478. [PMID: 38470806 DOI: 10.3390/nano14050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024]
Abstract
Exploring the utilization of ion exchange membranes (IEMs) in salinity gradient energy harvesting, a technique that capitalizes on the salinity difference between seawater and freshwater to generate electricity, this study focuses on optimizing PVDF to Nafion ratios to create ultra-thin membranes. Specifically, our investigation aligns with applications such as reverse electrodialysis (RED), where IEMs facilitate selective ion transport across salinity gradients. We demonstrate that membranes with reduced Nafion content, particularly the 50:50 PVDF:Nafion blend, retain high permselectivity comparable to those with higher Nafion content. This challenges traditional understandings of membrane design, highlighting a balance between thinness and durability for energy efficiency. Voltage-current analyses reveal that, despite lower conductivity, the 50:50 blend shows superior short-circuit current density under salinity gradient conditions. This is attributed to effective ion diffusion facilitated by the blend's unique microstructure. These findings suggest that blended membranes are not only cost-effective but also exhibit enhanced performance for energy harvesting, making them promising candidates for sustainable energy solutions. Furthermore, these findings will pave the way for advances in membrane technology, offering new insights into the design and application of ion exchange membranes in renewable energy.
Collapse
Affiliation(s)
- Jaehoon Jung
- NextE&M Research Institute, Environmental Industry Research Complex, 410 Jeongseojin-ro, Seo-gu, Incheon 22689, Republic of Korea
| | - Soyeong Choi
- NextE&M Research Institute, Environmental Industry Research Complex, 410 Jeongseojin-ro, Seo-gu, Incheon 22689, Republic of Korea
| | - Ilsuk Kang
- National Nanofab Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kiwoon Choi
- NextE&M Research Institute, Environmental Industry Research Complex, 410 Jeongseojin-ro, Seo-gu, Incheon 22689, Republic of Korea
| |
Collapse
|
5
|
Nguyen Tan T, Babel S, Bora T, Sreearunothai P, Laohhasurayotin K. Preparation of heterogeneous cation exchange membrane and its contributions in enhancing the removal of Ni 2+ by capacitive deionization system. CHEMOSPHERE 2024; 350:141115. [PMID: 38182085 DOI: 10.1016/j.chemosphere.2024.141115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Capacitive deionization (CDI), an emerging method to eliminate ions from water at a low cost, has garnered significant interest in recent years. This study evaluates the implication of cation exchange resin loading on the membrane via the nonsolvent-induced phase inversion method. After determining the quantity of resins efficiently loaded on the membrane, it was subsequently utilized as a cation exchange membrane in the membrane capacitive deionization (MCDI) unit to examine the performance removal of Ni2+. The results show that the amount of resins influenced the membrane structure and significantly improved the efficiency of Ni2+ removal. The sulfonic acid group show a strong intensity directly proportional to the quantity of resins based on the FTIR measurement. In conjunction with the enhanced resin amount, ion exchange capacity and water content were increased. Simultaneously, there was an observed elevation in the water contact angle and the roughness of the membrane surface with increased resin amount. In the MCDI unit, membrane M20 (20% by weight resin) was employed to elucidate its roles in the CDI unit, encompassing an examination of various concentrations and flow rates, with Ni2+ utilized as a test contaminant. The results demonstrated that using membrane M20 in the MCDI (MCDI-M20) unit consistently exhibited higher adsorption levels than the CDI unit, reaching 19.80 mg g-1 ACC in the MCDI-M20 unit, while CDI unit achieved 10.27 mg g-1 ACC at 200 mg L-1 Ni2+ concentration and a flow rate of 10 mL min-1 at 1.2 V. Additionally, Ni2+ concentrations and flow rates in CDI system had an evident impact on the duration of adsorption due to the mechanisms of ions transport on the membrane. This study suggests that employing the prepared membrane in the MCDI unit enhanced the removal of Ni2+ from the solution, contributing to sustainable development goals.
Collapse
Affiliation(s)
- Thong Nguyen Tan
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani, 12121, Thailand
| | - Sandhya Babel
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani, 12121, Thailand.
| | - Tanujjal Bora
- Center of Excellence in Nanotechnology, School of Engineering and Technology, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani, 12121, Thailand
| | - Paiboon Sreearunothai
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani, 12121, Thailand
| | - Kritapas Laohhasurayotin
- National Nanotechnology Center, National Science and Technology Development Agency 111 Thailand Science Park, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
6
|
Lee JM, Kang MS. Heterogeneous Anion-Exchange Membranes with Enhanced Ion Conductivity for Continuous Electrodeionization. MEMBRANES 2023; 13:888. [PMID: 38132892 PMCID: PMC10744961 DOI: 10.3390/membranes13120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
In this study, the optimal fabrication parameters of a heterogeneous anion-exchange membrane (AEM) using an ionomer binder are investigated to improve the performance of continuous electrodeionization (CEDI) for producing ultrapure water. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is selected as the base material for preparing the ionomer binder and quaternized to have various ion exchange capacities (IECs). The optimal content of ion-exchange resin (IER) powder according to the IEC of the ionomer binder is then determined through systematic analyses. In conclusion, it is revealed that a heterogeneous AEM with optimal performance can be fabricated when the IEC of the ionomer binder is lowered and the content of IER powder is also lower than that of conventional heterogeneous membranes. Moreover, crosslinked quaternized PPO (QPPO) nanofiber powder is used as an additive to improve ion conductivity without deteriorating the mechanical properties of the membrane. The membrane fabricated under optimal conditions exhibits significantly lower electrical resistance (4.6 Ω cm2) despite a low IER content (30 wt%) compared to the commercial membrane (IONAC MA-3475, 13.6 Ω cm2) while also demonstrating moderate tensile strength (9.7 MPa) and a high transport number (ca. 0.97). Furthermore, it is proven that the prepared membrane exhibits a superior ion removal rate (99.86%) and lower energy consumption (0.35 kWh) compared to the commercial membrane (99.76% and 0.4 kWh, respectively) in CEDI experiments.
Collapse
Affiliation(s)
| | - Moon-Sung Kang
- Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea;
| |
Collapse
|
7
|
Chinello D, Myrstad A, de Smet L, Miedema H. Modelling the required membrane selectivity for NO3⁻ recovery from effluent also containing Cl⁻, while saving water. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
8
|
Yang J, Chen Q, Afsar NU, Ge L, Xu T. Poly(alkyl-biphenyl pyridinium)-Based Anion Exchange Membranes with Alkyl Side Chains Enable High Anion Permselectivity and Monovalent Ion Flux. MEMBRANES 2023; 13:188. [PMID: 36837691 PMCID: PMC9967815 DOI: 10.3390/membranes13020188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Poly(alkyl-biphenyl pyridinium)-based anion exchange membranes with alkyl side chains were synthesized for permselective anion separation. By altering the length of the grafted side chain, the hydrophilicity and other attributes of the membranes could be controlled. The QDPAB-C5 membrane with the best comprehensive performance exhibited a Cl- ion flux of 3.72 mol m-2 h-1 and a Cl-/SO42- permselectivity of 15, which are significantly better than the commercial Neosepta ACS membrane. The QDPAB-C5 membranes with distinct microscopic phase separation structures formed interconnected hydrophilic/hydrophobic ion channels and exhibited excellent ion flux and permselectivity for other anionic systems (NO3-/SO42-, Br-/SO42-, F-/SO42-, NO3-/Cl-, Br-/Cl-, and F-/Cl-) as well. Furthermore, the influence of alkyl side chain length on the membranes' ion flux and permselectivity in electrodialysis was investigated, which may be attributed to the alterations in ion channels and hydrophobic regions of the membranes. This work provides an effective strategy for the development of monovalent anion permselective membranes.
Collapse
Affiliation(s)
- Jin Yang
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Qian Chen
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Noor Ul Afsar
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Heterogenous bipolar membrane with amino methyl phosphonic acid functionalized cation exchange layer and montmorillonite nanoclay based interfacial layer. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Kumar A, Chaudhury S. Transport selectivities in ion-exchange membranes: Heterogeneity effect and analytical method dependence. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Ashwani Kumar
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sanhita Chaudhury
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Department of Chemical Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
11
|
Mudau F, Motsa M, Hassard F, de Kock LA. Resin-Loaded Heterogeneous Polyether Sulfone Ion Exchange Membranes for Saline Groundwater Treatment. MEMBRANES 2022; 12:736. [PMID: 36005651 PMCID: PMC9416794 DOI: 10.3390/membranes12080736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022]
Abstract
Arid areas often contain brackish groundwater that has a salinity exceeding 500 mg/L. This poses several challenges to the users of the water such as a salty taste and damage to household appliances. Desalination can be one of the key solutions to significantly lower the salinity and solute content of the water. However, the technology requires high energy inputs as well as managing waste products. This paper presents the fabrication of ultrafiltration heterogeneous ion exchange membranes for brackish groundwater treatment. Scanning electron microscopy (SEM) images showed a relatively uniform resin particle distribution within the polymer matrix. The mean roughness of the cation exchange membrane (CEM) and anion exchange membrane (AEM) surfaces increased from 42.12 to 317.25 and 68.56 to 295.95 nm, respectively, when resin loading was increased from 1 to 3.5 wt %. Contact angle measures suggested a more hydrophilic surface (86.13 to 76.26° and 88.10 to 74.47° for CEM and AEM, respectively) was achieved with greater resin loading rates. The ion exchange capacity (IEC) of the prepared membranes was assessed using synthetic groundwater in a dead-end filtration system and removal efficiency of K+, Mg2+, and Ca2+ were 56.0, 93.5, and 85.4%, respectively, for CEM with the highest resin loading. Additionally, the anion, NO3- and SO42- removal efficiency was 84.2% and 52.4%, respectively, for the AEM with the highest resin loading. This work demonstrates that the prepared ultrafiltration heterogeneous ion exchange membranes have potential for selective removal for of ions by ion exchange, under filtration conditions at low pressure of 0.05 MPa.
Collapse
Affiliation(s)
- Fulufhelo Mudau
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; (F.M.); (M.M.)
| | - Machawe Motsa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; (F.M.); (M.M.)
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, College Way, Bedford MK43 0AL, UK;
| | - Lueta-Ann de Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; (F.M.); (M.M.)
| |
Collapse
|
12
|
Mubita T, Porada S, Biesheuvel P, van der Wal A, Dykstra J. Strategies to increase ion selectivity in electrodialysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Nitrate Removal by Donnan Dialysis and Anion-Exchange Membrane Bioreactor Using Upcycled End-of-Life Reverse Osmosis Membranes. MEMBRANES 2022; 12:membranes12020101. [PMID: 35207023 PMCID: PMC8878892 DOI: 10.3390/membranes12020101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023]
Abstract
This work explores the application of Reverse Osmosis (RO) upcycled membranes, as Anion Exchange Membranes (AEMs) in Donnan Dialysis (DD) and related processes, such as the Ion Exchange Membrane Bioreactor (IEMB), for the removal of nitrate from contaminated water, to meet drinking water standards. Such upcycled membranes might be manufactured at a lower price than commercial AEMs, while their utilization reinforces the commitment to a circular economy transition. In an effort to gain a better understanding of such AEMs, confocal µ-Raman spectroscopy was employed, to assess the distribution of the ion-exchange sites through the thickness of the prepared membranes, and 2D fluorescence spectroscopy, to evaluate alterations in the membranes caused by fouling and chemical cleaning The best performing membrane reached a 56% average nitrate removal within 24 h in the DD and IEMB systems, with the latter furthermore allowing for simultaneous elimination of the pollutant by biological denitrification, thus avoiding its discharge into the environment. Overall, this work validates the technical feasibility of using RO upcycled AEMs in DD and IEMB processes for nitrate removal. This membrane recycling concept might also find applications for the removal and/or recovery of other target negatively charged species.
Collapse
|
14
|
Qi L, Jiang T, Liang R, Qin W. Enhancing the Oil-Fouling Resistance of Polymeric Membrane Ion-Selective Electrodes by Surface Modification of a Zwitterionic Polymer-Based Oleophobic Self-Cleaning Coating. Anal Chem 2021; 93:6932-6937. [PMID: 33914516 DOI: 10.1021/acs.analchem.1c01116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to the frequent oil spill accidents and pollution of industrial oily wastewater, oil fouling has become a great challenge to polymeric membrane ion-selective electrodes (ISEs) for applications in oil-contaminated areas. Herein, a simple approach is proposed to enhance the oil-fouling resistance of polymeric membrane ISEs by surface modification of a zwitterionic polymer-based underwater oleophobic coating. As a proof-of-concept, a classical poly(vinyl chloride) membrane-based calcium ion-selective electrode (Ca2+-ISE) is chosen as a model sensor. The zwitterionic polymer-based coating can be readily modified on the sensor's surface by immersion of the electrode into a mixture solution of dopamine and a zwitterionic acrylate monomer (i.e., sulfobetaine methacrylate, SBMA). The formed poly(SBMA) (PSBMA) coating alters the oleophilic membrane surface to an oleophobic one, which endows the surface with excellent self-cleaning properties without loss of the sensor's analytical performance. Compared to the pristine Ca2+-ISE, the PSBMA-modified Ca2+-ISE exhibits an improved analytical stability when exposed to oil-containing wastewater. The proposed approach can be explored to enhance the oil-fouling resistance of other polymeric membrane-based electrochemical sensors for use in the oil-polluted environment.
Collapse
Affiliation(s)
- Longbin Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai, Shandong 264003, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tianjia Jiang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai, Shandong 264003, P. R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, P. R. China
| | - Rongning Liang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai, Shandong 264003, P. R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, P. R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai, Shandong 264003, P. R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, P. R. China
| |
Collapse
|
15
|
Lejarazu-Larrañaga A, Ortiz JM, Molina S, Zhao Y, García-Calvo E. Nitrate-Selective Anion Exchange Membranes Prepared using Discarded Reverse Osmosis Membranes as Support. MEMBRANES 2020; 10:membranes10120377. [PMID: 33261117 PMCID: PMC7760365 DOI: 10.3390/membranes10120377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
The present work shows a methodology for the preparation of membranes with a high affinity for nitrates. For this purpose, a polymeric mixture containing an anion exchange resin was extended on a recycled pressure filtration membrane used as mechanical support. Different ion exchange resins were tested. The influence in ion fractionation of (i) the type of ion exchange resin, (ii) the use of a recycled membrane as support and (iii) the operating current density during the separation process were studied. Results revealed that the employed anion exchange resin could tune up the transport numbers of the anions in the membrane and enhance the transport of nitrates over sulfates. The use of the recycled filtration membrane as support further increased the transport of nitrates in detriment of sulfates in nitrate-selective membranes. Moreover, it considerably improved the mechanical stability of the membranes. Lowering the operational current density also boosted ion fractionation. In addition, the use of recycled membranes as support in membrane preparation is presented as an alternative management route of discarded reverse osmosis membranes, coupling with the challenging management of waste generated by the desalination industry. These membranes could be used for nitrate recovery from wastewater or for nitrate separation from groundwater.
Collapse
Affiliation(s)
- Amaia Lejarazu-Larrañaga
- IMDEA Water Institute, Avenida Punto Com, 2, 28805 Alcalá de Henares, Madrid, Spain; (J.M.O.); (S.M.); (E.G.-C.)
- Chemical Engineering Department, University of Alcalá, Ctra. Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid, Spain
- Correspondence: ; Tel.: +34-918-30-59-62
| | - Juan Manuel Ortiz
- IMDEA Water Institute, Avenida Punto Com, 2, 28805 Alcalá de Henares, Madrid, Spain; (J.M.O.); (S.M.); (E.G.-C.)
| | - Serena Molina
- IMDEA Water Institute, Avenida Punto Com, 2, 28805 Alcalá de Henares, Madrid, Spain; (J.M.O.); (S.M.); (E.G.-C.)
| | - Yan Zhao
- Department of Chemical Engineering, Katholieke Universiteit of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium;
| | - Eloy García-Calvo
- IMDEA Water Institute, Avenida Punto Com, 2, 28805 Alcalá de Henares, Madrid, Spain; (J.M.O.); (S.M.); (E.G.-C.)
- Chemical Engineering Department, University of Alcalá, Ctra. Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
16
|
Sudmalis D, Mubita TM, Gagliano MC, Dinis E, Zeeman G, Rijnaarts HHM, Temmink H. Cation exchange membrane behaviour of extracellular polymeric substances (EPS) in salt adapted granular sludge. WATER RESEARCH 2020; 178:115855. [PMID: 32375109 DOI: 10.1016/j.watres.2020.115855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 05/14/2023]
Abstract
This paper aims to elucidate the role of extracellular polymeric substances (EPS) in regulating anion and cation concentrations and toxicity towards microorganisms in anaerobic granular sludges adapted to low (0.22 M of Na+) and high salinity (0.87 M of Na+). The ion exchange properties of EPS were studied with a novel approach, where EPS were entangled with an inert binder (PVDF-HFP) to form a membrane and characterized in an electrodialysis cell. With a mixture of NaCl and KCl salts the EPS membrane was shown to act as a cation exchange membrane (CEM) with a current efficiency of ∼80%, meaning that EPS do not behave as ideal CEM. Surprisingly, the membrane had selectivity for transport of K+ compared to Na+ with a separation factor ( [Formula: see text] ) of 1.3. These properties were compared to a layer prepared from a model compound of EPS (alginate) and a commercial CEM. The alginate layer had a similar current efficiency (∼80%.), but even higher [Formula: see text] of 1.9, while the commercial CEM did not show selectivity towards K+ or Na+, but exhibited the highest current efficiency of 92%. The selectivity of EPS and alginate towards K+ transport has interesting potential applications for ion separation from water streams and should be further investigated. The anion repelling and cation binding properties of EPS in hydrated and dehydrated granules were further confirmed with microscopy (SEM-EDX, epifluorescence) and ion chromatography (ICP-OES, IC) techniques. Results of specific methanogenic activity (SMA) tests conducted with 0.22 and 0.87 M Na+ adapted granular sludges and with various monovalent salts suggested that ions which are preferentially transported by EPS are also more toxic towards methanogenic cells.
Collapse
Affiliation(s)
- D Sudmalis
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - T M Mubita
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, MA, 8911, the Netherlands
| | - M C Gagliano
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, MA, 8911, the Netherlands
| | - E Dinis
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, MA, 8911, the Netherlands
| | - G Zeeman
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - H H M Rijnaarts
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - H Temmink
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| |
Collapse
|