1
|
Li R, Wei Z, Li P, Qiu Y, Wang C, Wang C, Ren LF, Shao J, He Y. Novel visible-light activated photocatalytic ultrafiltration membrane for simultaneous separation and degradation of emerging contaminants. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135634. [PMID: 39182300 DOI: 10.1016/j.jhazmat.2024.135634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Emerging contaminants (ECs) in secondary effluent of wastewater treatment plants (WWTPs) have received increasing attention due to their adverse effects on aquatic ecosystems and human health. Herein, visible-light responsive photocatalyst TM (TiO2 @NH2-MIL-101(Fe)) and resultant photocatalytic ultrafiltration (PUF, PVDF/TM) membrane were prepared to remove 32 typical compounds of antibiotics, 296 compounds of antibiotic resistance genes (ARGs), and their corresponding bacterial hosts. The construction of heterojunction photocatalyst promoted the electron transfer from NH2-MIL-101(Fe) to TiO2 and the formation of N-TiO2, enhancing visible-light (λ ≥ 420 nm) photocatalytic activity. With highly-hydrophilic surface and delicately-regulated pore structure, the initial water permeance of optimal PUF membrane significantly increased to 3912.2 L/m2/h at 1.0 bar. Meanwhile, membrane retention (via adsorption, electrostatic interaction, and steric hindrance) was improved due to the narrowed pore size, highly-negative surface charge and abundant functional groups. Additionally, hydroxyl radical (•OH) was the dominant active reactive oxygen species (ROS) for ECs degradation, and the narrowed pore structure could serve as microreactors to increase ROS concentration and reduce migration distance. Consequently, the removal efficiencies of antibiotics, bacteria and ARGs were 86.5 %, 91.4 % and 91.8 %, respectively. Overall, this novel visible-light-activated PUF membrane expands membrane application, and has great potential in ECs treatment.
Collapse
Affiliation(s)
- Ran Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Zhidong Wei
- College of Smart Energy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chengyi Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650504, PR China.
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650504, PR China.
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
2
|
Han J, Xie N, Ju J, Zhang Y, Wang Y, Kang W. Developments of electrospinning technology in membrane bioreactor: A review. CHEMOSPHERE 2024; 364:143091. [PMID: 39151583 DOI: 10.1016/j.chemosphere.2024.143091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The necessity for effective wastewater treatment and purification has grown as a result of the increasing pollution issues brought on by industrial and municipal wastewater. Membrane bioreactor (MBR) technology stands out when compared to other treatment methods because of its high efficiency, environmental friendliness, small footprint, and ease of maintenance. However, the development and application of membrane bioreactors has been severely constrained by the higher cost and shorter service life of these devices brought on by membrane biofouling issues resulting from contaminants and bacteria in the water. The nanoscale size of the electrospinning products provides unique microstructure, and the technology facilitates the production of structurally different membranes, or the modification and functionalization of membranes, which makes it possible to solve the membrane fouling problem. Therefore, many current studies have attempted to use electrospinning in MBRs to address membrane fouling and ultimately improve treatment efficacy. Meanwhile, in addition to solving the problem of membrane fouling, the fabrication technology of electrospinning also shows great advantages in constructing thin porous fiber membrane materials with controllable surface wettability and layered structure, which is helpful for the performance enhancement of MBR and expanding innovation. This paper systematically reviews the application and research progress of electrospinning in MBRs. Firstly, the current status of the application of electrospinning technology in various MBRs is introduced, and the relevant measures to solve the membrane fouling based on electrospinning technology are analyzed. Subsequently, some new types of MBRs and new application areas developed with the help of electrospinning technology are introduced. Finally, the limitations and challenges of merging the two technologies are presented, and pertinent recommendations are provided for future research on the use of electrospinning technology in membrane bioreactors.
Collapse
Affiliation(s)
- Jiacheng Han
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Nan Xie
- ChinaTianjin Research Institute of Construction Machinery, No.91 Huashi Road, Beichen Technology Park, Tianjin, 300409, PR China
| | - Jingge Ju
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| | - Yan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Yongcheng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| |
Collapse
|
3
|
Ayyaru S, Ahn YH. Fabrication and application of novel high strength sulfonated PVDF ultrafiltration membrane for production of reclamation water. CHEMOSPHERE 2022; 305:135416. [PMID: 35738407 DOI: 10.1016/j.chemosphere.2022.135416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Advanced treated water (ATW) produced in wastewater treatment facilities was assessed as an excellent alternative water resource that can be used as reclamation water, such as indirect and direct potable reuse. The development of cutting-edge technology for simple but best practices is essential for the reliable production of safe reclamation water from wastewater. This study prepared a novel high strength sulfonated polyvinylidene fluoride (HSPVDF) ultrafiltration membrane and investigated to produce ATW, and performances were compared to sulfonated PVDF (SPVDF) (which was prepared without thermal treatment) and bare PVDF. To compare the properties of HSPVDF to hydrocarbon polymer, the polyetherimide (PEI) and Sulfonated PEI (SPEI) membrane were prepared. HSPVDF showed excellent membrane morphology, porosity, MWCO, and hydrophilicity, resulting in higher pure water flux (712 ± 6 L m-2 h-1) antifouling properties (Rir 1.3% and FRR 98.6%) compared to PVDF. It is an interesting fact that the tensile strength of the HSPVDF (3.4 ± 0.2 MPa) tremendously increased (3 folders) when compere to PVDF (1.3 ± 0.1 MPa). The HSPVDF membrane showed good removal efficiency up to 96 ± 05% and 97 ± 09% rejection for bovine serum albumin (BSA) and humic acid (HA), respectively. The membrane application studies for wastewater treatment showed that the tertiary HSPVDF UF membrane filtration following the nutrient removal activated sludge (NRAS) process can produce reliable and economic performance (125 ± 2 L m-2 h-1, 0.25 ± 0.05 NTU, no pathogens), suggesting that it can be a best practice technique that can replace the complicated multi-staged tertiary processes to produce reclamation water.
Collapse
Affiliation(s)
- Sivasankaran Ayyaru
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
4
|
Din J, Wu H, Wu P. One-Step Water-Induced Phase Separation Simultaneously Triggering Polymer Solidification and Polyelectrolyte Complexation for Porous Ultrafiltration Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8482-8489. [PMID: 35113528 DOI: 10.1021/acsami.1c24059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functional additives have been widely utilized for the membrane structure modulation and performance improvement during the nonsolvent-induced phase separation process, but the resulted membranes easily suffer from additives' inhomogeneous dispersity and compatibility with the polymer matrix. Herein, a facile and robust strategy, i.e., one-step water-induced phase separation, was proposed for the preparation of polyelectrolytes-contained composite membranes. Polyanion (dopamine modified polyacrylic acid) and polycation (quaternized chitosan paired with bis(trifluoromethane-sulfonyl)imide) were first premixed in dimethyl sulfoxide and used as polyelectrolyte additives in a polysulfone (PSF) solution, and then a uniform PSF-based casting solution was readily obtained. During the solvent-water exchange process, polymer solidification and polyelectrolyte complexation were simultaneously triggered, in situ generating a polyelectrolyte complex fixed within the membrane matrix. Ultrafiltration membranes with hierarchical structures were notably tailored through altering the concentration, molecular weight, and type of polyelectrolytes. The obtained membrane exhibited a water flux of 672 L·m-2·h-1, three times over the raw PSF membrane, while almost maintaining high bovine serum albumin (BSA) rejection. This work paves a straightforward and convenient path for the preparation of composite membranes with tunable architecture and properties.
Collapse
Affiliation(s)
- Jincheng Din
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| | - Huiqing Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| | - Peiyi Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| |
Collapse
|
5
|
Liu D, Yin J, Tang H, Wang H, Liu S, Huang T, Fang S, Zhu K, Xie Z. Fabrication of ZIF-67@PVDF ultrafiltration membrane with improved antifouling and separation performance for dye wastewater treatment via sulfate radical enhancement. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Facile Fabrication of Multi-Hydrogen Bond Self-Assembly Poly(MAAc-co-MAAm) Hydrogel Modified PVDF Ultrafiltration Membrane to Enhance Anti-Fouling Property. MEMBRANES 2021; 11:membranes11100761. [PMID: 34677527 PMCID: PMC8537210 DOI: 10.3390/membranes11100761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022]
Abstract
In this work, a facile preparation method was proposed to reduce natural organics fouling of hydrophobic membrane via UV grafting polymerization with methacrylic acid (MAAc) and methyl acrylamide (MAAm) as hydrophilic monomers, followed by multihydrogen bond self-assembly. The resulting poly(vinylidene fluoride)-membranes were characterized with respect to monomer ratio, chemical structure and morphology, surface potential, and water contact angle, as well as water flux and organic foulants ultrafiltration property. The results indicated that the optimal membrane modified with a poly(MAAc-co-MAAm) polymer gel layer derived from a 1:1 monomer ratio exhibited superior hydrophilicity and excellent gel layer stability, even after ultrasonic treatment or soaking in acid or alkaline aqueous solution. The initial water contact angle of modified membranes was only 36.6° ± 2.9, and dropped to 0° within 13 s. Moreover, flux recovery rates (FRR) of modified membranes tested by bovine serum albumin (BSA), humic acid (HA), and sodium alginate (SA) solution, respectively, were all above 90% after one-cycle filtration (2 h), significantly higher than that of the pure membrane (70–76%). The total fouling rates (Rt) of the pure membrane for three foulants were as high as 47.8–56.2%, while the Rt values for modified membranes were less than 30.8%. Where Rt of BSA dynamic filtration was merely 10.7%. The membrane designed through grafting a thin-layer hydrophilic hydrogel possessed a robust antifouling property and stability, which offers new insights for applications in pure water treatment or protein purification.
Collapse
|
7
|
Amiri S, Asghari A, Vatanpour V, Rajabi M. Fabrication of chitosan-aminopropylsilane graphene oxide nanocomposite hydrogel embedded PES membrane for improved filtration performance and lead separation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112918. [PMID: 34139646 DOI: 10.1016/j.jenvman.2021.112918] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
In the present study chitosan-aminopropylsilane graphene oxide (CS-APSGO) nanocomposite hydrogel was synthesized and utilized as a hydrophilic additive in different dosages (0.5, 1, 2 and 5 wt%) in fabrication of porous polyethersulfone (PES) membranes via the phase inversion induced process by immersion precipitation method for heavy metal ion and dye removal. The modified membranes were characterized using ATR-FTIR, AFM, SEM, water contact angle, overall porosity and mean pore radius evaluations and zeta potential measurement. The addition of CS-APSGO nanocomposite hydrogel to PES doping solutions enhanced membranes hydrophilicity and consequently pure water flux permeability. Filtration performance of the CS-APSGO embedded membranes showed promising antifouling properties during BSA filtration test (FRR> 90%) and 1 wt% membranes showed the highest pure water flux of 123.8 L/m2 h with BSA rejection more than 98% and removal capability more than 82% for lead (II) ion, 90.5% and 98.5% for C.I. Reactive Blue 50 and C.I. Reactive Green 19, respectively. Therefore, the CS-APSGO nanocomposite hydrogel blending in order to modification of PES-based membranes have a noticeable potential in improving filtration performance of blended membranes.
Collapse
Affiliation(s)
- Saba Amiri
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran
| | - Alireza Asghari
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran.
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Maryam Rajabi
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran
| |
Collapse
|
8
|
Rapid and robust modification of PVDF ultrafiltration membranes with enhanced permselectivity, antifouling and antibacterial performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Liu LJ, Chen GE, Mao HF, Wang Y, Wan JJ. High performance polyvinylidene fluoride (PVDF) mixed matrix membrane (MMM) doped by various zeolite imidazolate frameworks. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320952525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zeolitic imidazolate framework (ZIF-8) in three particle sizes (40, 70 and 100 nm) was prepared through both solvothermal and hydrothermal methods and employed to decorate polyvinylidene fluoride (PVDF). The finger-like macro-voids, sponge-like poly-porous morphology and surface roughness of prepared membranes were characterized by SEM and AFM microscopy. The FTIR spectrum and XPS analysis bear out the chemical component. ZIF-8 has the characteristics of higher porosity and appropriate pore size, which is a condition for improving the permeability and pollution resistance of the modified membrane. Results indicated that different ZIF-8s have different enhancement effects on PVDF MMM. 100 nm ZIF-8 membrane possessed pure water flux (PWF) of 350 L m−2h−1, which was 10 times more than the bare membrane (30 L m−2h−1), and OVA flux recovery ration (FRR%) is 98%. 40 nm ZIF-8 membrane owned BSA FRR% of 98.4%. The 70 nm ZIF-8 showed the best mechanical properties. The dynamic contact angles of UP-Z70 ranged from 104.5° to 62.5° within 180 s. Furthermore, pore size distribution, molecular weight cut-off (MWCO) and porosity were also researched to evaluate the MMM. The dislodge of Reactive Black KN-B, Reactive Red 3BS and Reactive Brilliant Blue KN-R dyes by MMM were studied under different dye concentrations and transmembrane pressures. The membrane can provide selective separation methods for dyes and Reactive Brilliant Blue KN-R up to 99%. Overall, the permeability, hydrophilicy, anti-fouling performance and wastewater treatment of modified membranes were regulated by the ZIF-8 in a steerable blending reaction modification process.
Collapse
Affiliation(s)
- Lian-Jing Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Gui-E Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Hai-Fang Mao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Jia-Jun Wan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
10
|
Zwitterionic Polymer Brush Grafted on Polyvinylidene Difluoride Membrane Promoting Enhanced Ultrafiltration Performance with Augmented Antifouling Property. Polymers (Basel) 2020; 12:polym12061303. [PMID: 32517332 PMCID: PMC7361682 DOI: 10.3390/polym12061303] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
Superhydrophilic zwitterions on the membrane surface have been widely exploited to improve antifouling properties. However, the problematic formation of a <20 nm zwitterionic layer on the hydrophilic surface remains a challenge in wastewater treatment. In this work, we focused on the energy consumption and time control of polymerization and improved the strong hydrophilicity of the modified polyvinylidene difluoride (PVDF) membrane. The sulfobetaine methacrylate (SBMA) monomer was treated with UV-light through polymerization on the PVDF membrane at a variable time interval of 30 to 300 s to grow a poly-SBMA (PSBMA) chain and improve the membrane hydrophilicity. We examined the physiochemical properties of as-prepared PVDF and PVDF-PSBMAx using numeric analytical tools. Then, the zwitterionic polymer with controlled performance was grafted onto the SBMA through UV-light treatment to improve its antifouling properties. The PVDF-PSBMA120s modified membrane exhibited a greater flux rate and indicated bovine serum albumin (BSA) rejection performance. PVDF-PSBMA120s and unmodified PVDF membranes were examined for their antifouling performance using up to three cycles dynamic test using BSA as foulant. The PVDF-modified PSBMA polymer improved the antifouling properties in this experiment. Overall, the resulting membrane demonstrated an enhancement in the hydrophilicity and permeability of the membrane and simultaneously augmented its antifouling properties.
Collapse
|