1
|
Gortat I, Chruściel JJ, Marszałek J, Żyłła R, Wawrzyniak P. The Efficiency of Polyester-Polysulfone Membranes, Coated with Crosslinked PVA Layers, in the Water Desalination by Pervaporation. MEMBRANES 2024; 14:213. [PMID: 39452825 PMCID: PMC11509809 DOI: 10.3390/membranes14100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Composite polymer membranes were obtained using the so-called dry phase inversion and were used for desalination of diluted saline water solutions by pervaporation (PV) method. The tests used a two-layer backing, porous, ultrafiltration commercial membrane (PS20), which consisted of a supporting polyester layer and an active polysulfone layer. The active layer of PV membranes was obtained in an aqueous environment, in the presence of a surfactant, by cross-linking a 5 wt.% aqueous solution of polyvinyl alcohol (PVA)-using various amounts of cross-linking substances: 50 wt.% aqueous solutions of glutaraldehyde (GA) or citric acid (CA) or a 40 wt.% aqueous solution of glyoxal. An ethylene glycol oligomer (PEG 200) was also used to prepare active layers on PV membranes. Witch its help a chemically cross-linked hydrogel with PVA and cross-linking reagents (CA or GA) was formed and used as an active layer. The manufactured PV membranes (PVA/PSf/PES) were used in the desalination of water with a salinity of 35‱, which corresponds to the average salinity of oceans. The pervaporation method was used to examine the efficiency (productivity and selectivity) of the desalination process. The PV was carried at a temperature of 60 °C and a feed flow rate of 60 dm3/h while the membrane area was 0.005 m2. The following characteristic parameters of the membranes were determined: thickness, hydrophilicity (based on contact angle measurements), density, degree of swelling and cross-linking density and compared with the analogous properties of the initial PS20 backing membrane. The physical microstructure of the cross-section of the membranes was analyzed using scanning electron microscopy (SEM) method.
Collapse
Affiliation(s)
- Izabela Gortat
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 93-005 Łódź, Poland; (I.G.); (P.W.)
- Łukasiewicz Research Network-Lodz Institute of Technology, Circular Economy Center (BCG), Brzezińska 5/15, 92-103 Łódź, Poland; (J.J.C.); (R.Ż.)
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network-Lodz Institute of Technology, Circular Economy Center (BCG), Brzezińska 5/15, 92-103 Łódź, Poland; (J.J.C.); (R.Ż.)
| | - Joanna Marszałek
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 93-005 Łódź, Poland; (I.G.); (P.W.)
| | - Renata Żyłła
- Łukasiewicz Research Network-Lodz Institute of Technology, Circular Economy Center (BCG), Brzezińska 5/15, 92-103 Łódź, Poland; (J.J.C.); (R.Ż.)
| | - Paweł Wawrzyniak
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 93-005 Łódź, Poland; (I.G.); (P.W.)
| |
Collapse
|
2
|
Wang F, He K, Wang R, Ma H, Marriott PJ, Hill MR, Simon GP, Holl MMB, Wang H. A Homochiral Porous Organic Cage-Polymer Membrane for Enantioselective Resolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400709. [PMID: 38721928 DOI: 10.1002/adma.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/07/2024] [Indexed: 05/21/2024]
Abstract
Membrane-based enantioselective separation is a promising method for chiral resolution due to its low cost and high efficiency. However, scalable fabrication of chiral separation membranes displaying both high enantioselectivity and high flux of enantiomers is still a challenge. Here, the authors report the preparation of homochiral porous organic cage (Covalent cage 3 (CC3)-R)-based enantioselective thin-film-composite membranes using polyamide (PA) as the matrix, where fully organic and solvent-processable cage crystals have good compatibility with the polymer scaffold. The hierarchical CC3-R channels consist of chiral selective windows and inner cavities, leading to favorable chiral resolution and permeation of enantiomers; the CC3-R/PA composite membranes display an enantiomeric excess of 95.2% for R-(+)-limonene over S-(-)-limonene and a high flux of 99.9 mg h-1 m-2. This work sheds light on the use of homochiral porous organic cages for preparing enantioselective membranes and demonstrates a new route for the development of next-generation chiral separation membranes.
Collapse
Affiliation(s)
- Fanmengjing Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Kaiqiang He
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ruoxin Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Hongyu Ma
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Philip J Marriott
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Matthew R Hill
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark M Banaszak Holl
- Department of Mechanical and Materials Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
3
|
Ahmed MA, Amin S, Mohamed AA. Fouling in reverse osmosis membranes: monitoring, characterization, mitigation strategies and future directions. Heliyon 2023; 9:e14908. [PMID: 37064488 PMCID: PMC10102236 DOI: 10.1016/j.heliyon.2023.e14908] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Water scarcity has been a global challenge for many countries over the past decades, and as a result, reverse osmosis (RO) has emerged as a promising and cost-effective tool for water desalination and wastewater remediation. Currently, RO accounts for >65% of the worldwide desalination capacity; however, membrane fouling is a major issue in RO processes. Fouling reduces the membrane's lifespan and permeability, while also increases the operating pressure and chemical cleaning frequency. Overall, fouling reduces the quality and quantity of desalinated water, and thus hinders the sustainable application of RO membranes by disturbing its efficacy and economic aspects. Fouling arises from various physicochemical interactions between water pollutants and membrane materials leading to foulants' accumulation onto the membrane surfaces and/or inside the membrane pores. The current review illustrates the main types of particulates, organic, inorganic and biological foulants, along with the major factors affecting its formation and development. Moreover, the currently used monitoring methods, characterization techniques and the potential mitigation strategies of membrane fouling are reviewed. Further, the still-faced challenges and the future research on RO membrane fouling are addressed.
Collapse
Affiliation(s)
- Mahmoud A. Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sherif Amin
- Chemistry Department, Faculty of Science, Al Azhar University, Cairo, Egypt
| | - Ashraf A. Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
4
|
Li D, Lu H, Yan X, Wan H, Yan G, Zhang G. Preparation of chlorine resistant thin‐film‐composite reverse‐osmosis polyamide membranes with tri‐acyl chloride containing thioether units. J Appl Polym Sci 2022. [DOI: 10.1002/app.53518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dongsheng Li
- Shaanxi Engineering Research Center of Special Sealing Technology Xi'an Aerospace Propulsion Institute Xi'an People's Republic of China
| | - Haoran Lu
- Institute of Materials Science and Technology, Analysis and Testing Center Sichuan University Chengdu People's Republic of China
| | - Xinyi Yan
- Shaanxi Engineering Research Center of Special Sealing Technology Xi'an Aerospace Propulsion Institute Xi'an People's Republic of China
| | - Haohan Wan
- Institute of Materials Science and Technology, Analysis and Testing Center Sichuan University Chengdu People's Republic of China
| | - Guangming Yan
- Institute of Materials Science and Technology, Analysis and Testing Center Sichuan University Chengdu People's Republic of China
| | - Gang Zhang
- Institute of Materials Science and Technology, Analysis and Testing Center Sichuan University Chengdu People's Republic of China
- State Key Laboratory of Polymer Materials Engineering (Sichuan University) Chengdu People's Republic of China
| |
Collapse
|
5
|
A novel UV-initiated modification process for fabricating high-performance TFC RO membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Majid H, Heidarzadeh N, Vatanpour V, Dehqan A. Surface modification of commercial reverse osmosis membranes using both hydrophilic polymer and graphene oxide to improve desalination efficiency. CHEMOSPHERE 2022; 302:134931. [PMID: 35568212 DOI: 10.1016/j.chemosphere.2022.134931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Various methods have been applied to modify the surface of reverse osmosis (RO) membranes to modify the membrane performance to enhance the flux, rejection, and resistance to various factors of fouling. Hence, the main objective of the current study is to modify the surface of commercial RO membranes using the synergistic effect of the hydrophilic polymer and graphene oxide (GO). GO nanosheets were firstly synthesized by the modified hummer method, then characterized by FTIR, XRD, and SEM analyses. Then, the polyacrylic acid (PAA) was grafted on the membrane surface for membrane fabrication. Furthermore, effective factors of grafting such as monomer concentration, time, and temperature of polymerization were optimized. After that, different amounts of GO nanosheets were loaded in PAA optimized layer. Then, the effect of GO loading on the RO membrane structure and performance was investigated. The outcomes of membrane characterization demonstrated that modified RO membranes had a smoother surface, more negative surface charge, a little better hydrophilicity, and more thickness. Moreover, the results of PAA and GO optimization were shown that grafting 1.5 mM of PAA and loading 0.1 wt% of GO nanosheets give the best membrane performance. This membrane (GO 0.1@1.5M PAA/RO) between all modified membranes has the most water flux (37.1 L/m2h), the highest NaCl rejection (98%), and the best antifouling efficiency. Ultimately, it was concluded that the grafting of GO@PAA on the surface of a commercial RO membrane is an efficient approach for the enhancement of desalination and antifouling performance of this kind of membrane.
Collapse
Affiliation(s)
- Haddadi Majid
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran, Iran
| | - Nima Heidarzadeh
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran, Iran.
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, P.O. Box 15719-14911, Tehran, Iran; Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran; Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey.
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, P.O. Box 15719-14911, Tehran, Iran
| |
Collapse
|
7
|
Zhang Y, Tang W, Bai J, Li J, Wang J, Zhou T, Guan X, Zhou B. Highly efficient removal of total nitrogen and dissolved organic compound in waste reverse osmosis concentrate mediated by chlorine radical on 3D Co 3O 4 nanowires anode. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127662. [PMID: 34801298 DOI: 10.1016/j.jhazmat.2021.127662] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Reverse osmosis concentrate (ROC) from wastewater reclamation has posed significant disposal challenges due to its highly concentrated NH3-N, chloride ion and bio-refractory organics, and developing technologies for their removal are essential. Herein, we developed an efficient electrochemical system to remove total nitrogen and dissolved organic compound (DOC) simultaneously mediated by chlorine radical (Cl•), which is generated by activation of chloride ion existing in ROC on an inexpensive, three-dimensional Co3O4 nanowires. Results showed that the total nitrogen and total organic carbon removal were 98.2% and 56.9% in 60 min for synthetic ROC with 56 mg/L of NH3-N and 20 mg/L of DOC. The utilization of Co3O4 nanowires enhanced NH3-N degradation by 2.58 times compared with Co3O4 nanoplates, which were 1.69 and 17.5 times these of RuO2 and Pt. We found that structural Co3+/Co2+ acts as cyclic catalysis to produce Cl• via single-electron transfer, which convert NH3-N to N2 and lead to faster DOC degradation. This architecture provides abundant catalytic sites and sufficient accessibility of reactants. Small amount of nitrate generated by oxidation of NH3-N was further reduced to N2 on Pd-Cu/NF cathode. These findings provide new insights for utilization of waste Cl- and development of novel electrochemical system for ROC disposal.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wenjing Tang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jing Bai
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Jinhua Li
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jiachen Wang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Tingsheng Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaohong Guan
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan 650034, PR China.
| |
Collapse
|
8
|
Krizak D, Abbaszadeh M, Kundu S. Desalination membranes by deposition of polyamide on polyvinylidene fluoride supports using the automated layer-by-layer technique. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1962349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Daniel Krizak
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, United States
| | - Mahsa Abbaszadeh
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, United States
| | - Santanu Kundu
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, United States
| |
Collapse
|
9
|
Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118719] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|