1
|
Peng X, Chen L, You L, Jin Y, Zhang C, Ren S, Kapteijn F, Wang X, Gu X. Improved Synthesis of Hollow Fiber SSZ-13 Zeolite Membranes for High-Pressure CO 2/CH 4 Separation. Angew Chem Int Ed Engl 2024; 63:e202405969. [PMID: 38760324 DOI: 10.1002/anie.202405969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
High-silica CHA zeolite membranes are highly desired for natural gas upgrading because of their separation performance in combination with superior mechanical and chemical stability. However, the narrow synthesis condition range significantly constrains scale-up preparation. Herein, we propose a facile interzeolite conversion approach using the FAU zeolite to prepare SSZ-13 zeolite seeds, featuring a shorter induction and a longer crystallization period of the membrane synthesis on hollow fiber substrates. The membrane thickness was constant at ~3 μm over a wide span of synthesis time (24-96 h), while the selectivity (separation efficiency) was easily improved by extending the synthesis time without compromising permeance (throughput). At 0.2 MPa feed pressure and 303 K, the membranes showed an average CO2 permeance of (5.2±0.5)×10-7 mol m-2 s-1 Pa-1 (1530 GPU), with an average CO2/CH4 mixture selectivity of 143±7. Minimal defects ensure a high selectivity of 126 with a CO2 permeation flux of 0.4 mol m-2 s-1 at 6.1 MPa feed pressure, far surpassing requirements for industrial applications. The feasibility for successful scale-up of our approach was further demonstrated by the batch synthesis of 40 cm-long hollow fiber SSZ-13 zeolite membranes exhibiting CO2/CH4 mixture selectivity up to 400 (0.2 MPa feed pressure and 303 K) without using sweep gas.
Collapse
Affiliation(s)
- Xingyu Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Lingjie Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
- Quzhou Membrane Material Innovation Institute, No. 99 Zheda Road, Quzhou, 324000, P. R. China
| | - Lekai You
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Yang Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Chun Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Shengyuan Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Freek Kapteijn
- Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The, Netherlands
| | - Xuerui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
- Quzhou Membrane Material Innovation Institute, No. 99 Zheda Road, Quzhou, 324000, P. R. China
| | - Xuehong Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
- Quzhou Membrane Material Innovation Institute, No. 99 Zheda Road, Quzhou, 324000, P. R. China
| |
Collapse
|
2
|
Wang N, Dang G, Bai Z, Wang Q, Liu B, Zhou R, Xing W. In Situ Synthesis of Cation-Free Zirconia-Supported Zeolite CHA Membranes for Efficient CO 2/CH 4 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16853-16864. [PMID: 36972317 DOI: 10.1021/acsami.2c21682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cation-free zirconosilicate zeolite CHA and thin zirconia-supported membranes were in situ synthesized in a fluoride-free gel for the first time. The usage of the ZrO2/Al2O3 composite support inhibited the transportation of aluminum from the support into zeolite membranes. No fluorite source was used for the synthesis of cation-free zeolite CHA membranes, indicating the green property of the synthesis. The thickness of the membrane was only 1.0 μm. The best cation-free zeolite CHA membrane prepared by the green in situ synthesis displayed a high CO2 permeance of 1.1 × 10-6 mol/(m2 s Pa) and CO2/CH4 selectivity of 79 at 298 K and 0.2 MPa pressure drop for an equimolar CO2/CH4 mixture.
Collapse
Affiliation(s)
- Nana Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Guiliu Dang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Zhenwei Bai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Qing Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Bo Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Rongfei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
3
|
Highly selective and permeable SSZ-13 zeolite membranes synthesized by a facile in-situ approach for CO2/CH4 separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
4
|
Wang N, He Z, Wang B, Liu B, Xing W, Zhou R. Zirconia-supported all-silica zeolite CHA membrane with unprecedentedly high selectivity in humidified CO2/CH4 mixture. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Huang W, He Z, Liu B, Wang Q, Zhong S, Zhou R, Xing W. Large surface-to-volume-ratio and ultrahigh selectivity SSZ-13 membranes on 61-channel monoliths for efficient separation of CO2/CH4 mixture. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Song J, Peng X, You L, Du P, Zhou T, Jin X, Gao X, Wang X, Gu X. Effect of Light Gas Components on CO 2 Permeation through DD3R Membranes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Jieyu Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Xingyu Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Lekai You
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Peng Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Tao Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Xiang Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Xuechao Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Xuerui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| | - Xuehong Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, China
| |
Collapse
|
7
|
Park S, Lee M, Hong S, Jeong Y, Kim D, Choi N, Nam J, Baik H, Choi J. Low-temperature ozone treatment for p-xylene perm-selective MFI type zeolite membranes: Unprecedented revelation of performance-negating cracks larger than 10 nm in polycrystalline membrane structures. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Highly durable ZIF-8 tubular membranes via precursor-assisted processing for propylene/propane separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Li X, Yu K, He Z, Liu B, Zhou R, Xing W. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Scalable fabrication of highly selective SSZ-13 membranes on 19-channel monolithic supports for efficient CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Lee M, Lee G, Jeong Y, Oh WJ, Yeo JG, Lee JH, Choi J. Understanding and improving the modular properties of high-performance SSZ-13 membranes for effective flue gas treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Small-Pore Zeolite Membranes: A Review of Gas Separation Applications and Membrane Preparation. SEPARATIONS 2022. [DOI: 10.3390/separations9020047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There have been significant advancements in small-pore zeolite membranes in recent years. With pore size closely related to many energy- or environment-related gas molecules, small-pore zeolite membranes have demonstrated great potential for the separation of some interested gas pairs, such as CO2/CH4, CO2/N2 and N2/CH4. Small-pore zeolite membranes share some characteristics but also have distinctive differences depending on their framework, structure and zeolite chemistry. Through this mini review, the separation performance of different types of zeolite membranes with respect to interested gas pairs will be compared. We aim to give readers an idea of membrane separation status. A few representative synthesis conditions are arbitrarily chosen and summarized, along with the corresponding separation performance. This review can be used as a quick reference with respect to the influence of synthesis conditions on membrane quality. At the end, some general findings and perspectives will be discussed.
Collapse
|
13
|
Jeong Y, Kim S, Lee M, Hong S, Jang MG, Choi N, Hwang KS, Baik H, Kim JK, Yip ACK, Choi J. A Hybrid Zeolite Membrane-Based Breakthrough for Simultaneous CO 2 Capture and CH 4 Upgrading from Biogas. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2893-2907. [PMID: 34985249 DOI: 10.1021/acsami.1c21277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biogas is an environmentally friendly and sustainable energy resource that can substitute or complement conventional fossil fuels. For practical uses, biogas upgrading, mainly through the effective separation of CO2 (0.33 nm) and CH4 (0.38 nm), is required to meet the approximately 90-95% purity of CH4, while CO2 should be concomitantly purified. In this study, a high CO2 perm-selective zeolite membrane was synthesized by heteroepitaxially growing a chabazite (CHA) zeolite seed layer with a synthetic precursor that allowed the formation of all-silica deca-dodecasil 3 rhombohedral (DDR) zeolite (with a pore size of 0.36 × 0.44 nm2). The resulting hydrophobic DDR@CHA hybrid membrane on an asymmetric α-Al2O3 tube was thin (ca. 2 μm) and continuous, thus providing both high flux and permselectivity for CO2 irrespective of the presence or absence of water vapor (the third largest component in the biogas streams). To the best of our knowledge, the CO2 permeance of (2.9 ± 0.3) × 10-7 mol m-2 s-1 Pa-1 and CO2/CH4 separation factor of ca. 274 ± 73 at a saturated water vapor partial pressure of ca. 12 kPa at 50 °C have the highest CO2/CH4 separation performance yet achieved. Furthermore, we explored the membrane module properties of the hybrid membrane in terms of the recovery and purity of both CO2 and CH4 under dry and wet conditions. Despite the high intrinsic membrane properties of the current hybrid membrane, reflected by the high permeance and SF, the corresponding module properties indicated that high-performance separation of CO2 and CH4 for the desired biogas upgrading was achieved at a limited processing capacity. This supports the importance of understanding the correlation between the membrane and module properties, as this will provide guidance for the optimal operating conditions.
Collapse
Affiliation(s)
- Yanghwan Jeong
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sejin Kim
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Minseong Lee
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungwon Hong
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mun-Gi Jang
- Department of Chemical Engineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI), Seoul Center, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin-Kuk Kim
- Department of Chemical Engineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8140, New Zealand
| | - Jungkyu Choi
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Highly steam-stable CHA-type zeolite imidazole framework ZIF-302 membrane for hydrogen separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Synthesis Optimization of SSZ-13 Zeolite Membranes by Dual Templates for N2/NO2 Separation. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1420-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Highly CO2-selective and moisture-resistant bilayer silicalite-1/SSZ-13 membranes with gradient pores for wet CO2/CH4 and CO2/N2 separations. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Li Y, He S, Shu C, Li X, Liu B, Zhou R, Lai Z. A facile approach to synthesize SSZ-13 membranes with ultrahigh N2 permeances for efficient N2/CH4 separations. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|