1
|
Ting Gao W, Lang Gao X, Gen Zhang Q, Mei Zhu A, Lin Liu Q. Tuning polar discrimination between side chains to improve the performance of anion exchange membranes. J Colloid Interface Sci 2024; 665:133-143. [PMID: 38520930 DOI: 10.1016/j.jcis.2024.03.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Anion exchange membranes (AEMs) are the heart of alkaline fuel cells and water electrolysis, and have made a great progress in recent years. However, AEMs are still unable to satisfy the needs of high conductivity and stability, hindering their widespread commercialization. Side chain regulations have been widely used to prepare highly conductive and durable AEMs. Here, we construct a series of polyaromatic AEMs grafted with fluorinated cation side chains and cation-free alkyl chains with different end groups to explore the polar discrimination of side chains on membrane performance. This work demonstrates that AEMs grafting the cation side chains with superhydrophobic fluorine pendent and alkyl side chains with hydrophilic pendent enhance water content and ion conductivity. This is due to the strong immiscibility between the hydrophilic and hydrophobic head groups which promotes the establishments of microphase separation and ion highways. Specifically, poly(binaphthyl-co-terphenyl piperidinium) containing fluorinated piperidinium side chains and alkyl chains with methoxy pendent (QBNTP-QFM) possesses a satisficed OH- conductivity (170.6 mS cm-1 at 80 °C) and can tolerate 5 M hot NaOH for 2100 h with only 3.4 % conductivity loss. Expectedly, the single cell with QBNTP-QFM yields a prominent maximum power density of 1.62 W cm-2 and the water electrolysis cell with QBNTP-QFM achieves a pronounced current density of 3.0 A cm-2 at 1.8 V, both cells also display a prominent durability for 120 h operation. The results prove that this side chain optimization can improve ion conductivity and is a promising method for AEM development.
Collapse
Affiliation(s)
- Wei Ting Gao
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xue Lang Gao
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea.
| | - Qiu Gen Zhang
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Ai Mei Zhu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Qing Lin Liu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
2
|
Liu L, Ma H, Khan M, Hsiao BS. Recent Advances and Challenges in Anion Exchange Membranes Development/Application for Water Electrolysis: A Review. MEMBRANES 2024; 14:85. [PMID: 38668113 PMCID: PMC11051812 DOI: 10.3390/membranes14040085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
In recent years, anion exchange membranes (AEMs) have aroused widespread interest in hydrogen production via water electrolysis using renewable energy sources. The two current commercial low-temperature water electrolysis technologies used are alkaline water electrolysis (AWE) and proton exchange membrane (PEM) water electrolysis. The AWE technology exhibited the advantages of high stability and increased cost-effectiveness with low hydrogen production efficiency. In contrast, PEM water electrolysis exhibited high hydrogen efficiency with low stability and cost-effectiveness, respectively. Unfortunately, the major challenges that AEMs, as well as the corresponding ion transportation membranes, including alkaline hydrogen separator and proton exchange membranes, still face are hydrogen production efficiency, long-term stability, and cost-effectiveness under working conditions, which exhibited critical issues that need to be addressed as a top priority. This review comprehensively presented research progress on AEMs in recent years, providing a thorough understanding of academic studies and industrial applications. It focused on analyzing the chemical structure of polymers and the performance of AEMs and established the relationship between the structure and efficiency of the membranes. This review aimed to identify approaches for improving AEM ion conductivity and alkaline stability. Additionally, future research directions for the commercialization of anion exchange membranes were discussed based on the analysis and assessment of the current applications of AEMs in patents.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Madani Khan
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Benjamin S. Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
3
|
Wang Y, Wang S, Sui Z, Gu Y, Zhang Y, Gao J, Lei Y, Zhao J, Li N, Wu J, Wang Z. "Fishbone" Design of Amino/N-Spirocyclic Cations toward High-Performance Poly(triphenylene piperidine) Anion-Exchange Membranes for Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4003-4012. [PMID: 38207002 DOI: 10.1021/acsami.3c16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
N-Spirocyclic cations have excellent alkali resistance stability, and precise design of the structure of N-spirocyclic anion-exchange membranes (AEMs) improves their comprehensive performance. Here, we design and synthesize high-performance poly(triphenylene piperidine) membranes based on the "fishbone" design of amino/N-spirocyclic cations. The "fishbone" design does not disrupt the overall stabilized conformation but promotes a microphase separation structure, while exerting the synergistic effect of piperidine cations and spirocyclic cations, resulting in a membrane with good conductivity and alkali resistance stability. The hydroxide conductivity of the QPTPip-ASU-X membrane reached up to 133.5 mS cm-1 at 80 °C. The QPTPip-ASU-15 membrane was immersed in a 2 M NaOH solution at 80 °C for 1200 h, and the conductivity was maintained at 91.02%. In addition, the QPTPip-ASU-5 membrane had the highest peak power density of 255 mW cm-2.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Song Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Zhiyan Sui
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yiman Gu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yanchao Zhang
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
| | - Jian Gao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yijia Lei
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Jialin Zhao
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
| | - Na Li
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - JingYi Wu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Zhe Wang
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
- Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, Changchun 130012, China
| |
Collapse
|
4
|
Lin Y, Cui H, Liu C, Li R, Wang S, Qu G, Wei Z, Yang Y, Wang Y, Tang Z, Li H, Zhang H, Zhi C, Lv H. A Covalent Organic Framework as a Long-life and High-Rate Anode Suitable for Both Aqueous Acidic and Alkaline Batteries. Angew Chem Int Ed Engl 2023; 62:e202218745. [PMID: 36705089 DOI: 10.1002/anie.202218745] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Aqueous rechargeable batteries are prospective candidates for large-scale grid energy storage. However, traditional anode materials applied lack acid-alkali co-tolerance. Herein, we report a covalent organic framework containing pyrazine (C=N) and phenylimino (-NH-) groups (HPP-COF) as a long-cycle and high-rate anode for both acidic and alkaline batteries. The HPP-COF's robust covalent linkage and the hydrogen bond network between -NH- and water molecules collectively improve the acid-alkaline co-tolerance. More importantly, the hydrogen bond network promotes the rapid transport of H+ /OH- by the Grotthuss mechanism. As a result, the HPP-COF delivers a superior capacity and cycle stability (66.6 mAh g-1 @ 30 A g-1 , over 40000 cycles in 1 M H2 SO4 electrolyte; 91.7 mAh g-1 @ 100 A g-1 , over 30000 cycles @ 30 A g-1 in 1 M NaOH electrolyte). The work opens a new direction for the structural design and application of COF materials in acidic and alkaline batteries.
Collapse
Affiliation(s)
- Yilun Lin
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Huilin Cui
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.,Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chao Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Ran Li
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Shipeng Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Guangmeng Qu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yihan Yang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Yaxin Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Zijie Tang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Hongfei Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Haiyan Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chunyi Zhi
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.,Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Haiming Lv
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
5
|
Zhang F, Zhang Y, Sun L, Wei C, Zhang H, Wu L, Ge X, Xu T. A π-Conjugated Anion-Exchange Membrane with an Ordered Ion-Conducting Channel via the McMurray Coupling Reaction. Angew Chem Int Ed Engl 2023; 62:e202215017. [PMID: 36424359 DOI: 10.1002/anie.202215017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
The McMurry coupling is a facile, gentle and low-cost chemical reaction for synthesizing. Here, for the first time, we employed the McMurry coupling reaction to prepare π-conjugated anion exchange membranes (AEMs). The inter-chain π-π stacking between adjacent benzene rings induces directional self-assembly aggregation and enables highly ordered ion-conductive channels. The resulting structure was characterized through UV/VIS spectrum, X-ray diffraction (XRD) pattern, small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM) and density functional theory (DFT) calculations, leading to high OH- conductivity of 135.5 mS cm-1 at 80 °C. Furthermore, the double bonds in the π-conjugated system also trigger in situ self-crosslinking of the AEMs to enhance dimensional and alkaline stability. Benefiting from this advantage, the as-obtained Cr-QPPV-2.51 AEM exhibits superior alkaline stability (95 % conductivity retention after 3000 hrs in 1 M KOH at 80 °C) and high mechanical strength of 34.8 MPa. Moreover, the fuel cell using Cr-QPPV-2.51 shows a maximum peak power density of 1.27 W cm-2 at 80 °C.
Collapse
Affiliation(s)
- Fan Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yang Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixuan Sun
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chengpeng Wei
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Huaqing Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Liang Wu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaolin Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tongwen Xu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
6
|
Su X, Wang J, Xu S, Zhang D, He R. Construction of macromolecule cross-linked anion exchange membranes containing free radical inhibitor groups for superior chemical stability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Wang S, Wang Z, Xu J, Liu Q, Sui Z, Du X, Cui Y, Yuan Y, Yu J, Wang Y, Chang Y. Construction of N-spirocyclic cationic three-dimensional highly stable transport channels by electrospinning for anion exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Al Munsur AZ, Lee J, Chae JE, Kim HJ, Park CH, Nam SY, Kim TH. Hexyl quaternary ammonium- and fluorobenzoyl-grafted SEBS as hydrophilic–hydrophobic comb-type anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Chen J, Zhang M, Shen C, Gao S. Preparation and Characterization of Non-N-Bonded Side-Chain Anion Exchange Membranes Based on Poly(2,6-dimethyl-1,4-phenylene oxide). Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junjie Chen
- Department of Polymer Materials & Engineering, School of Materials Science & Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Mingliang Zhang
- Department of Polymer Materials & Engineering, School of Materials Science & Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chunhui Shen
- Department of Polymer Materials & Engineering, School of Materials Science & Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shanjun Gao
- Department of Polymer Materials & Engineering, School of Materials Science & Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
10
|
Tuning the length of aliphatic chain segments in aromatic poly(arylene ether sulfone) to tailor the micro-structure of anion-exchange membrane for improved proton blocking performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Du S, Huang S, Xie N, Zhang T, Xu Y, Ning X, Chen P, Chen X, An Z. New block poly(ether sulfone) based anion exchange membranes with rigid side-chains and high-density quaternary ammonium groups for fuel cell application. Polym Chem 2022. [DOI: 10.1039/d2py00588c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a series of novel poly(ether sulfone) based anion exchange membranes (AEMs) with relatively good stability due to their rigid side-chains and heterocyclic quaternary ammonium groups. The AEMs show appropriate performance in AEM fuel cells.
Collapse
Affiliation(s)
- Shenghua Du
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Shuai Huang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Ning Xie
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Tong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Yaoyao Xu
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Xingming Ning
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Pei Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Xinbing Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Zhongwei An
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| |
Collapse
|
12
|
Han J, Song W, Cheng X, Cheng Q, Zhang Y, Liu C, Zhou X, Ren Z, Hu M, Ning T, Xiao L, Zhuang L. Conductivity and Stability Properties of Anion Exchange Membranes: Cation Effect and Backbone Effect. CHEMSUSCHEM 2021; 14:5021-5031. [PMID: 34498428 DOI: 10.1002/cssc.202101446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The rise of heterocycle cations, a new class of stable cations, has fueled faster growth of research interest in heterocycle cation-attached anion exchange membranes (AEMs). However, once cations are grafted onto backbones, the effect of backbones on properties of AEMs must also be taken into account. In order to comprehensively study the influence of cations effect and backbones effect on AEMs performance, a series of AEMs were prepared by grafting spacer cations, heterocycles cations, and aromatic cations onto brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) or poly(vinylbenzyl chloride) (PVB) backbones, respectively. Spacer cation [trimethylamine (TMA), N,N-dimethylethylamine (DMEA)]-attached AEMs showed general ion transportation and stability behaviors, but exhibited high cationic reaction efficiency. Heterocycle cation [1-methylpyrrolidine (MPY), 1-methylpiperidine (MPrD)]-attached AEMs showed excellent chemical stability, but their ion conduction properties were unimpressive. Aromatic cation [1-methylimidazole (MeIm), N,N-dimethylaniline (DMAni)]-attached AEMs exhibited superior ionic conductivity, while their poor cations stabilities hindered the application of the membranes. Besides, it was found that PVB-based AEMs had excellent backbone stability, but BPPO-based AEMs exhibited higher OH- conductivity and cation stability than those of the same cations grafted PVB-based AEMs due to their higher water uptake (WU). For example, the ionic conductivities (ICs) of BPPO-TMA and PVB-TMA at 80 °C were 53.1 and 38.3 mS cm-1 , and their WU was 152.3 and 95.1 %, respectively. After the stability test, the IC losses of BPPO-TMA and PVB-TMA were 21.4 and 32.2 %, respectively. The result demonstrated that the conductivity and stability properties of the AEMs could be enhanced by increasing the WU of the membranes. These findings allowed the matching of cations to the appropriate backbones and reasonable modification of the AEM structure. In addition, these results helped to fundamentally understand the influence of cation effect and backbone effect on AEM performance.
Collapse
Affiliation(s)
- Juanjuan Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Wenfeng Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Xueqi Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Qiang Cheng
- Early Warning Simulation Training Center, People's Liberation Army Air Force Early Warning Academy, Wuhan, 430019, P. R. China
| | - Yangyang Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Chifeng Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Xiaorong Zhou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Zhandong Ren
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Meixue Hu
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Tianshu Ning
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Li Xiao
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
13
|
Xue J, Zhang J, Liu X, Huang T, Jiang H, Yin Y, Qin Y, Guiver MD. Toward alkaline-stable anion exchange membranes in fuel cells: cycloaliphatic quaternary ammonium-based anion conductors. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00105-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Highly stable electron-withdrawing C O link-free backbone with branched cationic side chain as anion exchange membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Gong F, Fan Z, Xia W, Zhang M, Wang L, Wang X, Chen X. N-cyclic cationic group-functionalized cardo poly(arylene ether sulfone)s membranes with ultrahigh selectivity for diffusion dialysis in acid recovery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Zhang F, Li T, Chen W, Wu X, Yan X, Xiao W, Zhang Y, Wang X, He G. Electron-Donating C-NH 2 Link Backbone for Highly Alkaline and Mechanical Stable Anion Exchange Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10490-10499. [PMID: 33591159 DOI: 10.1021/acsami.1c00324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aryl-ether cleavage and benzylic quaternary ammonium (QA) group degradation are promoted by C═O groups in most commercial anion exchange membrane materials. Herein, a novel strategy of converting C═O groups to the electron-donating C-NH2 linkages in conventional poly(arylene ether ketone)s is proposed by reductive amination via Leuckart reaction. Density functional theory (DFT) calculations indicate that the model compound containing C-NH2 linkage exhibits much higher barrier heights for aryl-ether cleavage and QA group degradation by enhancing the electronic cloud density on both the ether-connected carbon and the benzylic carbon. The C-NH2 linkages also induce hydrogen bond networks in the membranes, which enhance intermolecular interaction and provide additional hydroxide transport sites. As a result, the C-NH2 linkage membranes exhibit excellent hydroxide conductivity (108.2 mS cm-1 at 80 °C) and tensile strength (48.4 MPa) with high elongation at break (50.8%). The C-NH2 linkage membranes also show outstanding alkaline stability with no detectable backbone degradation even in 4 M KOH at 80 °C for 400 h, which is at the top-level among the state-of-the-art main chain architecture AEMs. This study proposes a new strategy for the synthesis of highly stable AEMs based on electron-donating C-NH2 link backbone.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tiantian Li
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wanting Chen
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Zhang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaozhou Wang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
17
|
Hossain MM, Yang Z, Wu L, Liang X, Xu T. Introducing a new generation of anion conducting membrane using swelling induced fabrication of covalent methanol barrier layer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Zhang D, Xu Z, Zhang X, Zhao L, Zhao Y, Wang S, Liu W, Che X, Yang J, Liu J, Yan C. Oriented Proton-Conductive Nanochannels Boosting a Highly Conductive Proton-Exchange Membrane for a Vanadium Redox Flow Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4051-4061. [PMID: 33434002 DOI: 10.1021/acsami.0c20847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we propose a sulfonated poly (ether ether ketone) (SPEEK) composite proton-conductive membrane based on a 3-(1-hydro-imidazolium-3-yl)-propane-1-sulfonate (Him-pS) additive to break through the trade-off between conductivity and selectivity of a vanadium redox flow battery (VRFB). Specifically, Him-pS enables an oriented distribution of the SPEEK matrix to construct highly conductive proton nanochannels throughout the membrane arising from the noncovalent interaction. Moreover, the "acid-base pair" effect from an imidazolium group and a sulfonic group further facilitates the proton transport through the nanochannels. Meanwhile, the structure of the acid-base pair is further confirmed based on density functional theory calculations. Material and electrochemical characterizations indicate that the nanochannels with a size of 16.5 nm are vertically distributed across the membrane, which not only accelerate proton conductivity (31.54 mS cm-1) but also enhance the vanadium-ion selectivity (39.9 × 103 S min cm-3). Benefiting from such oriented proton-conductive nanochannels in the membrane, the cell delivers an excellent Coulombic efficiency (CE, ≈ 98.8%) and energy efficiency (EE, ≈ 78.5%) at 300 mA cm-2. More significantly, the cell maintains a stable energy efficiency over 600 charge-discharge cycles with only a 5.18% decay. Accordingly, this work provides a promising fabrication strategy for a high-performance membrane of VRFB.
Collapse
Affiliation(s)
- Denghua Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Zeyu Xu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Xihao Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Lina Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yingying Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Shaoliang Wang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Weihua Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xuefu Che
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jingshuai Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jianguo Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chuanwei Yan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|