1
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Yan Z, Chen X, Chang H, Pang H, Fan G, Xu K, Liang H, Qu F. Feasibility of replacing proton exchange membranes with pressure-driven membranes in membrane electrochemical reactors for high salinity organic wastewater treatment. WATER RESEARCH 2024; 254:121340. [PMID: 38428235 DOI: 10.1016/j.watres.2024.121340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
Membrane electrochemical reactor (MER) shows superiority to electrochemical oxidation (EO) in high salinity organic wastewater (HSOW) treatment, but requirement of proton exchange membranes (PEM) increases investment and maintenance cost. In this work, the feasibility of using low-cost pressure-driven membranes as the separation membrane in MER system was systematically investigated. Commonly used pressure-driven membranes, including loose membranes such as microfiltration (MF) and ultrafiltration (UF), as well as dense membranes like nanofiltration (NF) and reverse osmosis (RO), were employed in the study. When tested in a contamination-free solution, MF and UF exhibited superior electrochemical performance compared to PEM, with comparable pH regulation capabilities in the short term. When foulant (humic acid, Ca2+ and Mg2+) presented in the feed, UF saved the most energy (43 %) compared to PEM with similar removal rate of UV254 (∼85 %). In practical applications of MER for treating nanofiltration concentrate (NC) of landfill leachate, UF saved 27 % energy compared to PEM per cycle with the least Ca2+ and Mg2+ retention in membrane and none obvious organics permeation. For fouled RO and PEM with ion transport impediment, water splitting was exacerbated, which decreased the percentage of oxidation for organics. Overall, replacing of PEM with UF significantly reduce the costs associated with both the investment and operation of MER, which is expected to broaden the practical application for treating HSOW.
Collapse
Affiliation(s)
- Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian 350108, China
| | - Xiaolei Chen
- College of Civil Engineering, Fuzhou University, Fujian 350108, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, Fujian 350108, China.
| | - Kaiqin Xu
- College of Civil Engineering, Fuzhou University, Fujian 350108, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Zhang T, Wang Q, Yang Y, Hou L, Zheng W, Wu Z, Wang Z. Revealing the contradiction between DLVO/XDLVO theory and membrane fouling propensity for oil-in-water emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133594. [PMID: 38290334 DOI: 10.1016/j.jhazmat.2024.133594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
Oil fouling is the crucial issue for the separation of oil-in-water emulsion by membrane technology. The latest research found that the membrane fouling rate was opposite to the widely used theoretical prediction by Derjaguin-Landau-Verwey-Overbeek (DLVO) or extended DLVO (XDLVO) theory. To interpret the contradiction, the molecular dynamics was adopted to explore the molecular behavior of oil and emulsifier (Tween 80) at membrane interface with the assistance of DLVO/XDLVO theory and membrane fouling models. The decreased flux attenuation and fitting of fouling models proved that the existence of Tween 80 effectively alleviated membrane fouling. Conversely, DLVO/XDLVO theory predicted that the membrane fouling should be exacerbated with the increase of Tween 80 concentration in O/W emulsion. This contradiction originated from the different interaction energy between oil/Tween 80 molecules and polyether sulfone (PES) membrane. The favorable free energy of Tween 80 was resulted from the sulfuryl groups in PES and hydrogen bonds (O-H…O) formation further strengthened the interaction. Therefore, Tween 80 could preferentially adsorb on membrane surface and form an isolation layer by demulsification and steric hindrance and resist the aggregation of oil, which effectively alleviated membrane fouling. This study provided a new insight in the interpretation of interaction in O/W emulsion.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiaoying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yan Yang
- China South-to-North Water Diversion Corporation Limited, Beijing 100036, China
| | - Linxi Hou
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenjia Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Tomczak W, Gryta M. Long-Term Performance of Ultrafiltration Membranes: Corrosion Fouling Aspect. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041673. [PMID: 36837302 PMCID: PMC9959295 DOI: 10.3390/ma16041673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 05/14/2023]
Abstract
The past decade has seen a rise in the importance of the ultrafiltration (UF) technique in the separation of various complex solutions. However, the fouling phenomenon is the main limitation to faster process development. To the best of the authors' knowledge, the present paper is the first to aim to identify the role of corrosion fouling in long-term UF. For this purpose, polyvinylidene fluoride (PVDF) and polyethersulfone (PES) membranes were used. The investigations were carried out with the use of both pilot-scale and laboratory-scale units. Results obtained in the present study have clearly demonstrated that the oil concentration has a significant impact on the process performance. Indeed, it has been noted that a reduction in oil concentration from 160 to 100 mg/L resulted in an increase in the PVDF membrane flux from 57 to 77 L/m2h. In addition, it has been shown that the feed temperature has a significant influence on the UF performance. Importantly, it has been shown that corrosion fouling is of vital importance in UF membranes. Indeed, corrosion products such as iron oxides contaminated the membrane surface leading to an irreversible decrease in the UF process performance. In addition, it has been found that repeating the chemical cleaning of the membrane units significantly reduced the intensity of the fouling phenomenon. However, the complete elimination of its effects was not achieved. Therefore, it has been indicated that cleaning agents recommended by membrane manufacturers do not remove corrosion products deposited on the membrane surface. Undoubtedly, the obtained results can be used in the design of UF units leading to the extension of membrane installation lifetime.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland
- Correspondence:
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| |
Collapse
|
5
|
Tran ML, Fu CC, Wu MH, Juang RS. Experimental verification on real-time fouling analysis in crossflow UF of protein solutions by electrical impedance spectroscopy. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
NaCl precleaning of microfiltration membranes fouled with oil-in-water emulsions: Impact on fouling dislodgment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Tanudjaja HJ, Ng AQQ, Chew JW. Mechanistic insights into the membrane fouling mechanism during ultrafiltration of high-concentration proteins via in-situ electrical impedance spectroscopy (EIS). J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
A highly sensitive non-enzymatic glucose sensor based on CuNi nanoalloys through one-step electrodeposition strategy. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
El-badawy T, Othman MHD, Matsuura T, Bilad MR, Adam MR, Tai ZS, Ravi J, Ismail A, Rahman MA, Jaafar J, Usman J, Kurniawan TA. Progress in treatment of oilfield produced water using membrane distillation and potentials for beneficial re-use. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Chen M, Heijman SGJ, Rietveld LC. State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application. MEMBRANES 2021; 11:888. [PMID: 34832117 PMCID: PMC8625480 DOI: 10.3390/membranes11110888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
Membrane filtration is considered to be one of the most promising methods for oily wastewater treatment. Because of their hydrophilic surface, ceramic membranes show less fouling compared with their polymeric counterparts. Membrane fouling, however, is an inevitable phenomenon in the filtration process, leading to higher energy consumption and a shorter lifetime of the membrane. It is therefore important to improve the fouling resistance of the ceramic membranes in oily wastewater treatment. In this review, we first focus on the various methods used for ceramic membrane modification, aiming for application in oily wastewater. Then, the performance of the modified ceramic membranes is discussed and compared. We found that, besides the traditional sol-gel and dip-coating methods, atomic layer deposition is promising for ceramic membrane modification in terms of the control of layer thickness, and pore size tuning. Enhanced surface hydrophilicity and surface charge are two of the most used strategies to improve the performance of ceramic membranes for oily wastewater treatment. Nano-sized metal oxides such as TiO2, ZrO2 and Fe2O3 and graphene oxide are considered to be the potential candidates for ceramic membrane modification for flux enhancement and fouling alleviation. The passive antifouling ceramic membranes, e.g., photocatalytic and electrified ceramic membranes, have shown some potential in fouling control, oil rejection and flux enhancement, but have their limitations.
Collapse
Affiliation(s)
- Mingliang Chen
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands; (S.G.J.H.); (L.C.R.)
| | | | | |
Collapse
|