1
|
Jamal H, Khan F, Kim JH, Kim E, Lee SU, Kim JH. Compact Solid Electrolyte Interface Realization Employing Surface-Modified Fillers for Long-Lasting, High-Performance All-Solid-State Li-Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402001. [PMID: 38966882 DOI: 10.1002/smll.202402001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/15/2024] [Indexed: 07/06/2024]
Abstract
The implementation of polymer-based Li-metal batteries is hindered by their low coulombic efficiency and poor cycling stability attributed to continuous electrolyte decomposition. Enhancement of the solid electrolyte interface (SEI) stability is key to mitigating electrolyte decomposition. This study proposes surface-functionalized silica mesoball fillers to fabricate a composite polymer electrolyte (MSBM-CPE). As a result of surface modification, the polyethylene oxide matrix benefits from the uniform distribution of the filler, which provides a large surface area and Lewis acid sites. Molecular dynamics simulations reveal that the dissociation energy of lithium bis(trifluoromethanesulfonyl)imide in the filler is fourfold higher (-1.95 eV) than that of the filler-free electrolyte. Consequently, the MSMB-CPE diffusivity is 30 times higher than its filler-free counterpart. The MSMB-CPE of ionic conductivity of 1.16 × 10-2 S cm-1 @60 °C and a venerable Li-ion transference number of 0.81. The excellent compatibility of MSMB-CPE with the Li anode is demonstrated by its stable symmetric cell performance under high current density (200 µA cm-2 @60 °C) for over 5000 h. Approximately 85.60% retention capacity of the [Li/MSMB-CPE/LiFePO4] full cell after 700 cycles. Furthermore, compositional analysis reveals that the SEI layer in MSMB-CPE is smooth with fewer by-products at the electrolyte/Li interface.
Collapse
Affiliation(s)
- Hasan Jamal
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Firoz Khan
- Interdisciplinary Research Center for Sustainable Energy Systems (IRC-SES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Ji Hoon Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16149, Republic of Korea
| | - Eunhui Kim
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
- School of Materials Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang Uck Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16149, Republic of Korea
| | - Jae Hyun Kim
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
| |
Collapse
|
2
|
Zang Y, Irfan M, Yang Z, Zhang W. Diethylenetriaminepentaacetic Acid-based Conducting Solid Polymer Electrolytes Impede Lithium Dendrites and Impart Antioxidant Capacity in Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404506. [PMID: 39120001 PMCID: PMC11481259 DOI: 10.1002/advs.202404506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Indexed: 08/10/2024]
Abstract
In the development of lithium-ion batteries (LIBs), cheaper and safer solid polymer electrolytes are expected to replace combustible organic liquid electrolytes to meet the larger market demand. However, low ionic conductivity and inadequate cycling stability impede their commercial viability. Herein, a novel flexible conducting solid polymer electrolytes (CSPEs) based on polyvinyl alcohol (PVA) and ion-polarized diethylenetriaminepentaacetic acid (P-DETP) is developed for the first time and applied in LIBs. PVA and P-DETP form a compact polymer network through hydrogen bonding, enhancing the thermomechanical stability of CSPE while restricting the migration of larger anions. Furthermore, density functional theory calculations confirm that P-DETP can facilitate the dissociation of Li+-TFSI- via electrostatic attraction, resulting in increased mobility of lithium ions. Additionally, P-DETP contributes to the formation of a stable electrode-electrolyte interface layer, effectively suppressing the growth of lithium dendrites and improving antioxidant capacity. These synergistic effects enable CSPE to exhibit remarkable properties including high ionic conductivity (2.8 × 10-4 S cm-1), elevated electrochemical potential (5.1 V), and excellent lithium transference number (0.869). Notably, the P-DETP/LiTFSI CSPE demonstrates stable performance not only in LiFePO4 batteries but also adapts to high-nickel ternary LiNi0.88Co0.06Mn0.06O2 cathode, highlighting its immense potential for application in high energy density LIBs.
Collapse
Affiliation(s)
- Yuli Zang
- School of Chemistry and Chemical EngineeringHefei University of TechnologyHefeiAnhui230009P. R. China
| | - Muhammad Irfan
- Department of Chemical and Energy EngineeringPak‐Austria Fachhochschule: Institute of Applied Sciences and TechnologyMangHaripurPakistan
| | - Zeheng Yang
- School of Chemistry and Chemical EngineeringHefei University of TechnologyHefeiAnhui230009P. R. China
| | - Weixin Zhang
- School of Chemistry and Chemical EngineeringHefei University of TechnologyHefeiAnhui230009P. R. China
| |
Collapse
|
3
|
Zhang X, Cheng S, Fu C, Yin G, Wang L, Wu Y, Huo H. Advancements and Challenges in Organic-Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries. NANO-MICRO LETTERS 2024; 17:2. [PMID: 39302512 DOI: 10.1007/s40820-024-01498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024]
Abstract
To address the limitations of contemporary lithium-ion batteries, particularly their low energy density and safety concerns, all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative. Among the various SEs, organic-inorganic composite solid electrolytes (OICSEs) that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications. However, OICSEs still face many challenges in practical applications, such as low ionic conductivity and poor interfacial stability, which severely limit their applications. This review provides a comprehensive overview of recent research advancements in OICSEs. Specifically, the influence of inorganic fillers on the main functional parameters of OICSEs, including ionic conductivity, Li+ transfer number, mechanical strength, electrochemical stability, electronic conductivity, and thermal stability are systematically discussed. The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective. Besides, the classic inorganic filler types, including both inert and active fillers, are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs. Finally, the advanced characterization techniques relevant to OICSEs are summarized, and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Shichao Cheng
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Chuankai Fu
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Geping Yin
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Yongmin Wu
- State Key Laboratory of Space Power-Sources, 2965 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China.
| | - Hua Huo
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
4
|
Duan S, Qian L, Zheng Y, Zhu Y, Liu X, Dong L, Yan W, Zhang J. Mechanisms of the Accelerated Li + Conduction in MOF-Based Solid-State Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314120. [PMID: 38578406 DOI: 10.1002/adma.202314120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/09/2024] [Indexed: 04/06/2024]
Abstract
Solid polymer electrolytes (SPEs) for lithium metal batteries have garnered considerable interests owing to their low cost, flexibility, lightweight, and favorable interfacial compatibility with battery electrodes. Their soft mechanical nature compared to solid inorganic electrolytes give them a large advantage to be used in low pressure solid-state lithium metal batteries, which can avoid the cost and weight of the pressure cages. However, the application of SPEs is hindered by their relatively low ionic conductivity. In addressing this limitation, enormous efforts are devoted to the experimental investigation and theoretical calculations/simulation of new polymer classes. Recently, metal-organic frameworks (MOFs) have been shown to be effective in enhancing ion transport in SPEs. However, the mechanisms in enhancing Li+ conductivity have rarely been systematically and comprehensively analyzed. Therefore, this review provides an in-depth summary of the mechanisms of MOF-enhanced Li+ transport in MOF-based solid polymer electrolytes (MSPEs) in terms of polymer, MOF, MOF/polymer interface, and solid electrolyte interface aspects, respectively. Moreover, the understanding of Li+ conduction mechanisms through employing advanced characterization tools, theoretical calculations, and simulations are also reviewed in this review. Finally, the main challenges in developing MSPEs are deeply analyzed and the corresponding future research directions are also proposed.
Collapse
Affiliation(s)
- Song Duan
- Institute of New Energy Materials and Engineering/School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Lanting Qian
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yun Zheng
- Institute of New Energy Materials and Engineering/School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yanfei Zhu
- Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, P. R. China
| | - Xiang Liu
- Institute of New Energy Materials and Engineering/School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Li Dong
- Zhaoqing Leoch Battery Technology Co., Ltd, Zhaoqing City, 526000, P. R. China
| | - Wei Yan
- Institute of New Energy Materials and Engineering/School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jiujun Zhang
- Institute of New Energy Materials and Engineering/School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
5
|
Liu W, Deng N, Chen S, Zhao Y, Gao L, Ju J, Zhao C, Kang W. Flexible self-supporting inorganic nanofiber membrane-reinforced solid-state electrolyte for dendrite-free lithium metal batteries. NANOSCALE 2024. [PMID: 38497195 DOI: 10.1039/d3nr06308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Compounding of suitable fillers with PEO-based polymers is the key to forming high-performance electrolytes with robust network structures and homogeneous Li+-transport channels. In this work, we innovatively and efficiently prepared Al2O3 nanofibers and deposited an aqueous dispersion of Al2O3 into a membrane via vacuum filtration to construct a nanofiber membrane with a three-dimensional (3D) network structure as the backbone of a PEO-based solid-state electrolyte. The supporting effect of the nanofiber network structure improved the mechanical properties of the reinforced composite solid-state electrolyte and its ability to inhibit the growth of Li dendrites. Meanwhile, interconnected nanofibers in the PEO-based electrolyte and the strong Lewis acid-base interactions between the chemical groups on the surface of the inorganic filler and the ionic species in the PEO matrix provided facilitated pathways for Li+ transport and regulated the uniform deposition of Li+. Moreover, the interaction between Al2O3 and lithium salts as well as the PEO polymer increased free Li+ concentration and maintained its stable electrochemical properties. Hence, assembled Li/Li symmetric cells achieved a cycle life of more than 2000 h. LFP/Li and NMC811/Li cells provided high discharge specific capacities of up to 146.9 mA h g-1 (0.5C and 50 °C) and 166.9 mA h g-1 (0.25C and 50 °C), respectively. The prepared flexible self-supporting 3D nanofiber network structure construction can provide a simple and efficient new strategy for the exploitation of high-performance solid-state electrolytes.
Collapse
Affiliation(s)
- Weicui Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin 300387, PR China.
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin 300387, PR China.
| | - Shuang Chen
- Shandong Road New Materials Co., Ltd, Taian Road Engineering Materials Co., Ltd, No. 9 Longji Street, High-tech District, Tai'an City, Shandong Province 271000, PR China
| | - Yixia Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin 300387, PR China.
| | - Lu Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin 300387, PR China.
| | - Jingge Ju
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin 300387, PR China.
| | - Chunfeng Zhao
- Shandong Road New Materials Co., Ltd, Taian Road Engineering Materials Co., Ltd, No. 9 Longji Street, High-tech District, Tai'an City, Shandong Province 271000, PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin 300387, PR China.
| |
Collapse
|
6
|
Thomas F, Mahdi L, Lemaire J, Santos DMF. Technological Advances and Market Developments of Solid-State Batteries: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:239. [PMID: 38204092 PMCID: PMC10779501 DOI: 10.3390/ma17010239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Batteries are essential in modern society as they can power a wide range of devices, from small household appliances to large-scale energy storage systems. Safety concerns with traditional lithium-ion batteries prompted the emergence of new battery technologies, among them solid-state batteries (SSBs), offering enhanced safety, energy density, and lifespan. This paper reviews current state-of-the-art SSB electrolyte and electrode materials, as well as global SSB market trends and key industry players. Solid-state electrolytes used in SSBs include inorganic solid electrolytes, organic solid polymer electrolytes, and solid composite electrolytes. Inorganic options like lithium aluminum titanium phosphate excel in ionic conductivity and thermal stability but exhibit mechanical fragility. Organic alternatives such as polyethylene oxide and polyvinylidene fluoride offer flexibility but possess lower ionic conductivity. Solid composite electrolytes combine the advantages of inorganic and organic materials, enhancing mechanical strength and ionic conductivity. While significant advances have been made for composite electrolytes, challenges remain for synthesis intricacies and material stability. Nuanced selection of these electrolytes is crucial for advancing resilient and high-performance SSBs. Furthermore, while global SSB production capacity is currently below 2 GWh, it is projected to grow with a >118% compound annual growth rate by 2035, when the potential SSB market size will likely exceed 42 billion euros.
Collapse
Affiliation(s)
- Felix Thomas
- Mechanical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (F.T.); (L.M.); (J.L.)
| | - Lauren Mahdi
- Mechanical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (F.T.); (L.M.); (J.L.)
| | - Julien Lemaire
- Mechanical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (F.T.); (L.M.); (J.L.)
| | - Diogo M. F. Santos
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
7
|
Hashimoto K, Shiwaku T, Aoki H, Yokoyama H, Mayumi K, Ito K. Strain-induced crystallization and phase separation used for fabricating a tough and stiff slide-ring solid polymer electrolyte. SCIENCE ADVANCES 2023; 9:eadi8505. [PMID: 38000032 PMCID: PMC10672157 DOI: 10.1126/sciadv.adi8505] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
The demand for mechanically robust polymer-based electrolytes is increasing for applications to wearable devices. Young's modulus and breaking energy are essential parameters for describing the mechanical reliability of electrolytes. The former plays a vital role in suppressing the short circuit during charge-discharge, while the latter indicates crack propagation resistance. However, polymer electrolytes with high Young's moduli are generally brittle. In this study, a tough slide-ring solid polymer electrolyte (SR-SPE) breaking through this trade-off between stiffness and toughness is designed on the basis of strain-induced crystallization (SIC) and phase separation. SIC makes the material highly tough (breaking energy, 80 to 100 megajoules per cubic meter). Phase separation in the polymer enhanced stiffness (Young's modulus, 10 to 70 megapascals). The combined effect of phase separation and SIC made SR-SPE tough and stiff, while these mechanisms do not impair ionic conductivity. This SIC strategy could be combined with other toughening mechanisms to design tough polymer gel materials.
Collapse
Affiliation(s)
- Kei Hashimoto
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toru Shiwaku
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Hiroyuki Aoki
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Naka-gun, Ibaraki 319-1106, Japan
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Naka-gun, Ibaraki 319-1195, Japan
| | - Hideaki Yokoyama
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Koichi Mayumi
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
8
|
Hu L, Gao X, Li Z, Liu Y, Wang H, Liu J, Hu R. Layered Polymer Stacking for Stable Interfaces and Dendrite Growth Inhibition in All-Solid-State Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38485-38495. [PMID: 37539469 DOI: 10.1021/acsami.3c07794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
To improve the ionic conductivity and cycling stability of solid-state lithium batteries based on poly(ethylene oxide) (PEO) electrolytes, we developed a sandwich-structured composite polymer electrolyte (sandwich-CPE) PEO-TiN/PEO-LiYF4/PEO-TiN. The sandwich-CPE delivers a high ionic conductivity of 1.7 × 10-4 S cm-1 at 30 °C and a wide potential window of 0 to 5.0 V (vs Li/Li+). Adding PEO-TiN leads to the formation of Li3N between Li and sandwich-CPE during cycling, which effectively reduces the level of Li dendrite formation. Additionally, PEO-TiN acts as a sacrificial layer to stop the entry of Li dendrites into the interlayer PEO-LiYF4. Using the sandwich-CPE, LiFePO4 retains a reversible capacity of 113.8 mA h g-1 at 30 °C after 300 cycles under 0.5 C. For high-voltage cells, LiNi0.5Co0.2Mn0.3O2 retains a capacity retention of 71.4% at 45 °C after 300 cycles under 0.2 C among 3.0-4.3 V, while Li3V2(PO4)3 delivers an initial discharge capacity of 108.1 mA h g-1 at 60 °C and retains 81.6% after 500 cycles under 1 C among 2.8-4.4 V. These results demonstrate the strong electrochemical compatibility of the sandwich-CPE, enabling high reversible capacity and good cycling stability for solid-state Li batteries with different cathodes at different temperatures and current rates.
Collapse
Affiliation(s)
- Long Hu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510641, China
| | - Xue Gao
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510641, China
| | - Ziyong Li
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510641, China
| | - Yuxuan Liu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510641, China
| | - Hui Wang
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510641, China
| | - Jun Liu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510641, China
| | - Renzong Hu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
9
|
Zheng F, Li C, Li Z, Cao X, Luo H, Liang J, Zhao X, Kong J. Advanced Composite Solid Electrolytes for Lithium Batteries: Filler Dimensional Design and Ion Path Optimization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206355. [PMID: 36843226 DOI: 10.1002/smll.202206355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/14/2023] [Indexed: 05/25/2023]
Abstract
Composite solid electrolytes are considered to be the crucial components of all-solid-state lithium batteries, which are viewed as the next-generation energy storage devices for high energy density and long working life. Numerous studies have shown that fillers in composite solid electrolytes can effectively improve the ion-transport behavior, the essence of which lies in the optimization of the ion-transport path in the electrolyte. The performance is closely related to the structure of the fillers and the interaction between fillers and other electrolyte components including polymer matrices and lithium salts. In this review, the dimensional design of fillers in advanced composite solid electrolytes involving 0D-2D nanofillers, and 3D continuous frameworks are focused on. The ion-transport mechanism and the interaction between fillers and other electrolyte components are highlighted. In addition, sandwich-structured composite solid electrolytes with fillers are also discussed. Strategies for the design of composite solid electrolytes with high room temperature ionic conductivity are summarized, aiming to assist target-oriented research for high-performance composite solid electrolytes.
Collapse
Affiliation(s)
- Feifan Zheng
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chunwei Li
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zongcheng Li
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xin Cao
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hebin Luo
- Fujian Blue Ocean & Black Stone Technology Co., Ltd. , Changtai, Fujian Province, 363900, China
| | - Jin Liang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaodong Zhao
- Fujian Blue Ocean & Black Stone Technology Co., Ltd. , Changtai, Fujian Province, 363900, China
| | - Jie Kong
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
10
|
Zhang Q, Sun Q, Wang S, Li C, Xu C, Ma Y, Zhang H, Song D, Shi X, Li C, Zhang L. Chloride-Reinforced Solid Polymer Electrolyte for High-Performance Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18252-18261. [PMID: 37010228 DOI: 10.1021/acsami.2c20734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Flexible solid-state polymer electrolytes (SPEs) enable intimate contact with the electrode and reduce the interfacial impedance for all-solid-state lithium batteries (ASSLBs). However, the low ionic conductivity and poor mechanical strength restrict the development of SPEs. In this work, the chloride superionic conductor Li2ZrCl6 (LZC) is innovatively introduced into the poly(ethylene oxide) (PEO)-based SPE to address these issues since LZC is crucial for improving the ionic conductivity and enhancing the mechanical strength. The as-prepared electrolyte provides a high ionic conductivity of 5.98 × 10-4 S cm-1 at 60 °C and a high Li-ion transference number of 0.44. More importantly, the interaction between LZC and PEO is investigated using FT-IR and Raman spectroscopy, which is conducive to inhibiting the decomposition of PEO and beneficial to the uniform deposition of Li ions. Therefore, a minor polarization voltage of 30 mV is exhibited for the Li||Li cell after cycling for 1000 h. The LiFePO4||Li ASSLB with 1% LZC-added composite electrolyte (CPE-1% LZC) demonstrates excellent cycling performance with a capacity of 145.4 mA h g-1 after 400 cycles at 0.5 C. This work combines the advantages of chloride and polymer electrolytes, exhibiting great potential in the next generation of all-solid-state lithium metal batteries.
Collapse
Affiliation(s)
- Qing Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qifang Sun
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Su Wang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chen Li
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chaoran Xu
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yue Ma
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hongzhou Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Dawei Song
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xixi Shi
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chunliang Li
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lianqi Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
11
|
Nguyen AG, Park CJ. Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
12
|
Lin Y, Li X, Zheng W, Gang Y, Liu L, Cui X, Dan Y, Chen L, Cheng X. Effect of SiO2 microstructure on ionic transport behavior of self-healing composite electrolytes for sodium metal batteries. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Delgado-Rosero MI, Jurado-Meneses NM, Uribe-Kaffure R. Composite Polymer Electrolytes Based on (PEO) 4CF 3COOLi and Multi-Walled Carbon Nanotube (MWCNT). Polymers (Basel) 2022; 15:polym15010049. [PMID: 36616400 PMCID: PMC9824726 DOI: 10.3390/polym15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
The addition of nanoparticles as fillers has a significant influence in modifying the dynamic conditions and avoiding crystallization in polymer composites. In this work, (PEO)4CF3COOLi electrolyte and multi-walled carbon nanotubes (MWCNTs) were used to prepare composites by a solution method. The formation of the new composite was evidenced by the experimental results obtained from DSC analysis and infrared spectroscopy (FTIR). The impedance spectroscopy analysis shows a notable decrease in the resistance, which is attributed to an interaction between the oxygen of the polymer and the Li+ cations of the salt, and the interactions between the electrolyte and the MWNTs. Values of dc conductivity of 8.42 × 10-4 S cm-1 at room temperature are obtained at a concentration of 2.0 wt.% MWCNT in the whole electrolyte. The results indicate that membranes can be used in technological devices such as batteries and gas or moisture sensors.
Collapse
|
14
|
Shan X, Zhao S, Ma M, Pan Y, Xiao Z, Li B, Sokolov AP, Tian M, Yang H, Cao PF. Single-Ion Conducting Polymeric Protective Interlayer for Stable Solid Lithium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56110-56119. [PMID: 36490324 DOI: 10.1021/acsami.2c17547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With many reported attempts on fabricating single-ion conducting polymer electrolytes, they still suffer from low ionic conductivity, narrow voltage window, and high cost. Herein, we report an unprecedented approach on improving the cationic transport number (tLi+) of the polymer electrolyte, i.e., single-ion conducting polymeric protective interlayer (SIPPI), which is designed between the conventional polymer electrolyte (PVEC) and Li-metal electrode. Satisfied ionic conductivity (1 mS cm-1, 30 °C), high tLi+ (0.79), and wide-area voltage stability are realized by coupling the SIPPI with the PVEC electrolyte. Benefiting from this unique design, the Li symmetrical cell with the SIPPI shows stable cycling over 6000 h at 3 mA cm-2, and the full cell with the SIPPI exhibits stable cycling performance with a capacity retention of 86% over 1000 cycles at 1 C and 25 °C. This incorporated SIPPI on the Li anode presents an alternative strategy for enabling high-energy density, long cycling lifetime, and safe and cost-effective solid-state batteries.
Collapse
Affiliation(s)
- Xinyuan Shan
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sheng Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Mengxiang Ma
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiyang Pan
- School of Chemistry, Beihang University, Beijing 10019, China
| | - Zhenxue Xiao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huabin Yang
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Ma J, Ma X, Zhang H, Chen F, Guan X, Niu J, Hu X. In-situ generation of poly(ionic liquid) flexible quasi-solid electrolyte supported by polyhedral oligomeric silsesquioxane / polyvinylidene fluoride electrospun membrane for lithium metal battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Hu Z, Zhang Y, Long X, Bao W, Zhang Y, Fan W, Cheng H. Hydroxyl-rich single-ion conductors enable solid hybrid polymer electrolytes with excellent compatibility for dendrite-free lithium metal batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Wang B, Wang G, He P, Fan LZ. Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Maia BA, Magalhães N, Cunha E, Braga MH, Santos RM, Correia N. Designing Versatile Polymers for Lithium-Ion Battery Applications: A Review. Polymers (Basel) 2022; 14:403. [PMID: 35160393 PMCID: PMC8839412 DOI: 10.3390/polym14030403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Solid-state electrolytes are a promising family of materials for the next generation of high-energy rechargeable lithium batteries. Polymer electrolytes (PEs) have been widely investigated due to their main advantages, which include easy processability, high safety, good mechanical flexibility, and low weight. This review presents recent scientific advances in the design of versatile polymer-based electrolytes and composite electrolytes, underlining the current limitations and remaining challenges while highlighting their technical accomplishments. The recent advances in PEs as a promising application in structural batteries are also emphasized.
Collapse
Affiliation(s)
- Beatriz Arouca Maia
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
- LAETA—Associated Laboratory of Energy, Transports and Aeronautics, 4200-265 Porto, Portugal;
- Chemical Engineering Department, FEUP—Faculty of Engineering, University of Porto, 4200-265 Porto, Portugal
| | - Natália Magalhães
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
| | - Eunice Cunha
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
| | - Maria Helena Braga
- LAETA—Associated Laboratory of Energy, Transports and Aeronautics, 4200-265 Porto, Portugal;
- Engineering Physics Department, FEUP—Faculty of Engineering, University of Porto, 4200-265 Porto, Portugal
| | - Raquel M. Santos
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
- LAETA—Associated Laboratory of Energy, Transports and Aeronautics, 4200-265 Porto, Portugal;
| | - Nuno Correia
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
- LAETA—Associated Laboratory of Energy, Transports and Aeronautics, 4200-265 Porto, Portugal;
| |
Collapse
|
19
|
Gan H, Li S, Zhang Y, Wang J, Xue Z. Electrospun Composite Polymer Electrolyte Membrane Enabled with Silica‐Coated Silver Nanowires. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huihui Gan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Shaoqiao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Yong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Jirong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
20
|
Zhang Y, Yu L, Wang J, Li S, Gan H, Xue Z. Fabrication of polymer electrolyte via lithium salt-induced surface-initiated radical polymerization for lithium metal batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Zhai Y, Wang X, Chen Y, Sang X, Liu H, Sheng J, Wu Y, Wang X, Li L. Multiscale-structured polyvinylidene fluoride/polyacrylonitrile/ vermiculite nanosheets fibrous membrane with uniform Li+ flux distribution for lithium metal battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|