1
|
Zhao G, Wang C, Wang Q, Wang Z, Wang C, Wu Q. Cyano-functionalized porous hyper-crosslinked cationic polymers for efficient preconcentration and detection of phenolic endocrine disruptors in fresh water and fish. Talanta 2025; 281:126822. [PMID: 39260255 DOI: 10.1016/j.talanta.2024.126822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Sensitively analyzing phenolic endocrine-disrupting chemicals (EDCs) in environmental substrates and aquatic organisms provides a significant challenge. Here, we developed a novel porous hyper-crosslinked ionic polymer bearing cyano groups (CN-HIP) as adsorbent for the highly efficient solid phase extraction (SPE) of phenolic EDCs in water and fish. The CN-HIP gave an excellent adsorption capability for targeted EDCs over a wide pH range, and the adsorption capacity was superior to that of several common commercial SPE adsorbents. The coexistence of electrostatic forces, hydrogen bond, and π-π interactions was confirmed as the main adsorption mechanism. A sensitive quantitative method was established by coupling CN-HIP based SPE method with high-performance liquid chromatography for the simultaneously determining trace bisphenol A, bisphenol F, bisphenol B and 4-tert-butylphenol in fresh water and fish. The method afforded lower detection limits (S/N = 3) (at 0.03-0.10 ng mL-1 for water and 0.8-4.0 ng g-1 for fish), high accuracy (the recovery of spiked sample at 88.0%-112 %) and high precision (the relative standard deviation < 8.5 %). This work provides a feasible method for detecting phenolic EDCs, and also opens a new perspective in developing functionalized cationic adsorbent.
Collapse
Affiliation(s)
- Guijiao Zhao
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Chenhuan Wang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding, 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
2
|
Ou Y, Qu T, Cheng F, Yang H, Hu F, Wang J, Liu H, Liu G, Wen S, Gong C. Dual reinforced composite membranes from in-situ ionic crosslinked quaternized chitosan filled quaternized polyvinylidene fluoride nanofiber for alkaline direct methanol fuel cell. Carbohydr Polym 2023; 322:121363. [PMID: 37839835 DOI: 10.1016/j.carbpol.2023.121363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023]
Abstract
The main obstacle of high-performance cationic functionalization chitosan (CS) as anion exchange membranes (AEMs) is the trade-off between mechanical stability and ionic conductivity. Here, in-situ ionic crosslinking between the deprotonated hydroxyl group and quaternary ammonium group under alkaline conditions was ingeniously applied to improve the mechanical stability of highly quaternized CS (HQCS) with high IEC (>2 mmol g-1). Meanwhile, to further reduce the swelling and enhance the hydroxide conductivity, a mechanically robust hydroxide ion conduction network, quaternized electrospun poly(vinylidene fluoride) (QPVDF) nanofiber, was subsequently used as the filling substrate of in-situ crosslinked HQCS to prepare dual reinforced thin AEMs. The introduction of a robust QPVDF nanofiber mat can not only greatly improve the mechanical properties and limit swelling, but also create facile ion transport channels. Notably, the HQCS/QPVDF-74.0 composite membrane demonstrates perfect dimensional stability, high mechanical performance and excellent alkaline stability, as well as superior ionic conductivity of 66.2 mS cm-1 at 80 °C. The thus assembled alkaline direct methanol fuel cell displays a maximum power density of 132.30 mW cm-2 using 5 M KOH and 3 M methanol as fuels at 80 °C with satisfactory durability.
Collapse
Affiliation(s)
- Ying Ou
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China.
| | - Ting Qu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Fan Cheng
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Haiyang Yang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Fuqiang Hu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Jie Wang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Hai Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China.
| | - Guoliang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Nr. 122 Luoshi Rd., Wuhan 430070, China.
| | - Sheng Wen
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Chunli Gong
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| |
Collapse
|
3
|
Yue JY, Song LP, Shi YH, Zhang L, Pan ZX, Yang P, Ma Y, Tang B. Chiral Ionic Covalent Organic Framework as an Enantioselective Fluorescent Sensor for Phenylalaninol Determination. Anal Chem 2023. [PMID: 37454333 DOI: 10.1021/acs.analchem.3c01637] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Phenylalaninol (PAL) is a significant chemical intermediate widely utilized in drug development and chiral synthesis, for instance, as a reactant for bicyclic lactams and oxazoloisoindolinones. Since the absolute stereochemical configuration significantly impacts biological action, it is crucial to evaluate the concentration and enantiomeric content of PAL in a quick and convenient manner. Herein, an effective PAL enantiomer recognition method was reported based on a chiral ionic covalent organic framework (COF) fluorescent sensor, which was fabricated via one-step postquaternization modification of an achiral COF by (1R, 2S, 5R)-2-isopropyl-5-methylcyclohexyl-carbonochloridate (L-MTE). The formed chiral L-TB-COF can be applied as a chiral fluorescent sensor to recognize the stereochemical configuration of PAL, which displayed a turn-on fluorescent response for R-PAL over that of S-PAL with an enantioselectivity factor of 16.96. Nonetheless, the single L-MTE molecule had no chiral recognition ability for PAL. Moreover, the ee value of PAL can be identified by L-TB-COF. Furthermore, density functional theory (DFT) calculations demonstrated that the chiral selectivity came from the stronger binding affinity between L-TB-COF and R-PAL in comparison to that with S-PAL. L-TB-COF is the first chiral ionic COF employed to identify chiral isomers by fluorescence. The current work expands the range of applications for ionic COFs and offers fresh suggestions for creating novel chiral fluorescent sensors.
Collapse
Affiliation(s)
- Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Li-Ping Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Ying-Hao Shi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Li Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Zi-Xian Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P.R. China
| |
Collapse
|
4
|
Guo M, Ban T, Wang Y, Wang X, Zhu X. "Thiol-ene" crosslinked polybenzimidazoles anion exchange membrane with enhanced performance and durability. J Colloid Interface Sci 2023; 638:349-362. [PMID: 36746053 DOI: 10.1016/j.jcis.2023.01.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
To address the "trade-off" between conductivity and stability of anion exchange membranes (AEMs), we developed a series of crosslinked AEMs by using polybenzimidazole with norbornene (cPBI-Nb) as backbone and the crosslinked structure was fabricated by adopting click chemical between thiol and vinyl-group. Meanwhile, the hydrophilic properties of the dithiol cross-linker were regulated to explore the effect for micro-phase separation morphology and hydroxide ion conductivity. As result, the AEMs with hydrophilic crosslinked structure (PcPBI-Nb-C2) not only had apparent micro-phase separation morphology and high OH- conductivity of 105.54 mS/cm at 80 °C, but also exhibited improved mechanical properties, dimensional stability (swelling ratio < 15%) and chemical stability (90.22 % mass maintaining in Fenton's reagent at 80 °C for 24 h, 78.30 % conductivity keeping in 2 M NaOH at 80 °C for 2016 h). In addition, the anion exchange membranes water electrolysis (AEMWEs) using PcPBI-Nb-C2 as AEMs achieved the current density of 368 mA/cm2 at 2.1 V and the durability over 500 min operated at 150 mA/cm2 under 60 °C. Therefore, this work paves the way for constructing AEMs by introduction of norbornene into polybenzimidazole and formation of hydrophilic crosslinked structure based on "thiol-ene".
Collapse
Affiliation(s)
- Maolian Guo
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Tao Ban
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Yajie Wang
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Xinxin Wang
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Xiuling Zhu
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
5
|
Cao D, Sun X, Gao H, Pan L, Li N, Li Y. Crosslinked Polynorbornene-Based Anion Exchange Membranes with Perfluorinated Branch Chains. Polymers (Basel) 2023; 15:polym15051073. [PMID: 36904314 PMCID: PMC10007585 DOI: 10.3390/polym15051073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
To investigate the effect of perfluorinated substituent on the properties of anion exchange membranes (AEMs), cross-linked polynorbornene-based AEMs with perfluorinated branch chains were prepared via ring opening metathesis polymerization, subsequent crosslinking reaction, and quaternization. The crosslinking structure enables the resultant AEMs (CFnB) to exhibit a low swelling ratio, high toughness, and high water uptake, simultaneously. In addition, benefiting from the ion gathering and side chain microphase separation caused by their flexible backbone and perfluorinated branch chain, these AEMs had high hydroxide conductivity up to 106.9 mS cm-1 at 80 °C even at low ion content (IEC < 1.6 meq g-1). This work provides a new approach to achieve improved ion conductivity at low ion content by introducing the perfluorinated branch chains and puts forward a referable way to prepare AEMs with high performance.
Collapse
Affiliation(s)
- Dafu Cao
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaowei Sun
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Huan Gao
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Li Pan
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Correspondence:
| | - Nanwen Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yuesheng Li
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
6
|
Zhao Y, Lv B, Song W, Hao J, Zhang J, Shao Z. Influence of the PBI structure on PBI/CsH5(PO4)2 membrane performance for HT-PEMFC application. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
7
|
Wang JJ, Gao WT, Choo YSL, Cai ZH, Zhang QG, Zhu AM, Liu QL. Highly conductive branched poly(aryl piperidinium) anion exchange membranes with robust chemical stability. J Colloid Interface Sci 2023; 629:377-387. [DOI: 10.1016/j.jcis.2022.08.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
|
8
|
Thangarasu S, Oh TH. Recent Developments on Bioinspired Cellulose Containing Polymer Nanocomposite Cation and Anion Exchange Membranes for Fuel Cells (PEMFC and AFC). Polymers (Basel) 2022; 14:polym14235248. [PMID: 36501640 PMCID: PMC9738973 DOI: 10.3390/polym14235248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Hydrogen fuel cell (FC) technologies are being worked on as a possible replacement for fossil fuels because they produce a lot of energy and do not pollute the air. In FC, ion-exchange membranes (IEMs) are the vital components for ion transport between two porous electrodes. However, the high production cost of commercialized membranes limits their benefits. Various research has focused on cellulose-based membranes such as IEM with high proton conductivity, and mechanical, chemical, and thermal stabilities to replace the high cost of synthetic polymer materials. In this review, we focus on and explain the recent progress (from 2018 to 2022) of cellulose-containing hybrid membranes as cation exchange membranes (CEM) and anion exchange membranes (AEM) for proton exchange membrane fuel cells (PEMFC) and alkaline fuel cells (AFC). In this account, we focused primarily on the effect of cellulose materials in various membranes on the functional properties of various polymer membranes. The development of hybrid membranes with cellulose for PEMFC and AFC has been classified based on the combination of other polymers and materials. For PEMFC, the sections are associated with cellulose with Nafion, polyaryletherketone, various polymeric materials, ionic liquid, inorganic fillers, and natural materials. Moreover, the cellulose-containing AEM for AFC has been summarized in detail. Furthermore, this review explains the significance of cellulose and cellulose derivative-modified membranes during fuel cell performance. Notably, this review shows the vital information needed to improve the ion exchange membrane in PEMFC and AFC technologies.
Collapse
|
9
|
Wang J, Liu G, Wang A, Ji W, Zhang L, Zhang T, Li J, Pan H, Tang H, Zhang H. Novel N-alkylation synthetic strategy of imidazolium cations grafted polybenzimidazole for high temperature proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Wang T, Zhang Y, Wang Y, You W. Transition-metal-free preparation of polyethylene-based anion exchange membranes from commercial EVA. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Cao D, Nie F, Liu M, Sun X, Wang B, Wang F, Li N, Wang B, Ma Z, Pan L, Li Y. Crosslinked anion exchange membranes prepared from highly reactive polyethylene and polypropylene intermediates. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Zhang C, Chen S, Hu L, You M, Meng J. Elevating the water/salt selectivity of polybenzimidazole to the empirical upper bound of desalting polymers by marrying N-substitution with chlorination. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Ayaz S, Yao ZY, Chen YJ, Yu HY. Preparation of poly(arylene ether ketone) based anion exchange membrane with pendant pyrimidinium and pyridazinium cation derivatives for alkaline fuel cell. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Enhancing the durability and performance of radiation-induced grafted low-density polyethylene-based anion-exchange membranes by controlling irradiation conditions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Su X, Wang J, Xu S, Zhang D, He R. Construction of macromolecule cross-linked anion exchange membranes containing free radical inhibitor groups for superior chemical stability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Min K, Chae JE, Lee Y, Kim HJ, Kim TH. Crosslinked poly(m-terphenyl N-methyl piperidinium)-SEBS membranes with aryl-ether free and kinked backbones as highly stable and conductive anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Zhang G, Li R, Wang X, Chen X, Shen Y, Fu Y. The inhibiting water uptake mechanism of main-chain type N-spirocyclic quaternary ammonium ionene blended with polybenzimidazole as anion exchange membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Alkali-free quaternized polybenzimidazole membranes with high phosphoric acid retention ability for high temperature proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Guo M, Ban T, Wang Y, Wang Y, Zhang Y, Zhang J, Zhu X. Exploring highly soluble ether-free polybenzimidazole as anion exchange membranes with long term durability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Swelling-Resistant, Crosslinked Polyvinyl Alcohol Membranes with High ZIF-8 Nanofiller Loadings as Effective Solid Electrolytes for Alkaline Fuel Cells. NANOMATERIALS 2022; 12:nano12050865. [PMID: 35269354 PMCID: PMC8912677 DOI: 10.3390/nano12050865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023]
Abstract
The present work investigates the direct mixing of aqueous zeolitic imidazolate framework-8 (ZIF-8) suspension into a polyvinyl alcohol (PVA) and crosslinked with glutaraldehyde (GA) to form swelling-resistant, mechanically robust and conductivity retentive composite membranes. This drying-free nanofiller incorporation method enhances the homogeneous ZIF-8 distributions in the PVA/ZIF-8/GA composites to overcome the nanofiller aggregation problem in the mixed matrix membranes. Various ZIF-8 concentrations (25.4, 40.5 and 45.4 wt.%) are used to study the suitability of the resulting GA-crosslinked composites for direct alkaline methanol fuel cell (DAMFC). Surface morphological analysis confirmed homogeneous ZIF-8 particle distribution in the GA-crosslinked composites with a defect- and crack-free structure. The increased ionic conductivity (21% higher than the ZIF-free base material) and suppressed alcohol permeability (94% lower from the base material) of PVA/40.5%ZIF-8/GA resulted in the highest selectivity among the prepared composites. In addition, the GA-crosslinked composites’ selectivity increased to 1.5−2 times that of those without crosslink. Moreover, the ZIF-8 nanofillers improved the mechanical strength and alkaline stability of the composites. This was due to the negligible volume swelling ratio (<1.4%) of high (>40%) ZIF-8-loaded composites. After 168 h of alkaline treatment, the PVA/40.5%ZIF-8/GA composite had almost negligible ionic conductivity loss (0.19%) compared with the initial material. The maximum power density (Pmax) of PVA/40.5%ZIF-8/GA composite was 190.5 mW cm−2 at 60 °C, an increase of 181% from the PVA/GA membrane. Moreover, the Pmax of PVA/40.5%ZIF-8/GA was 10% higher than that without GA crosslinking. These swelling-resistant and stable solid electrolytes are promising in alkaline fuel cell applications.
Collapse
|
21
|
Huang T, Yin J, Tang H, Zhang Z, Liu D, Liu S, Xu Z, Li N. Improved permeability and antifouling performance of Tröger's base polymer-based ultrafiltration membrane via zwitterionization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Al Munsur AZ, Lee J, Chae JE, Kim HJ, Park CH, Nam SY, Kim TH. Hexyl quaternary ammonium- and fluorobenzoyl-grafted SEBS as hydrophilic–hydrophobic comb-type anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Wang F, Cui Y, Sang J, Zhang H, Zhu H. Cross‐linked of poly(biphenyl pyridine) and poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) grafted with double cations for anion exchange membrane. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Huang Z, Lv B, Zhou L, Tao wei, Qin X, Shao Z. Ultra-thin h-BN doped high sulfonation sulfonated poly (ether-ether-ketone) of PTFE-reinforced proton exchange membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Jheng LC, Cheng CW, Ho KS, Hsu SLC, Hsu CY, Lin BY, Ho TH. Dimethylimidazolium-Functionalized Polybenzimidazole and Its Organic-Inorganic Hybrid Membranes for Anion Exchange Membrane Fuel Cells. Polymers (Basel) 2021; 13:2864. [PMID: 34502904 PMCID: PMC8456347 DOI: 10.3390/polym13172864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 01/15/2023] Open
Abstract
A quaternized polybenzimidazole (PBI) membrane was synthesized by grafting a dimethylimidazolium end-capped side chain onto PBI. The organic-inorganic hybrid membrane of the quaternized PBI was prepared via a silane-induced crosslinking process with triethoxysilylpropyl dimethylimidazolium chloride. The chemical structure and membrane morphology were characterized using NMR, FTIR, TGA, SEM, EDX, AFM, SAXS, and XPS techniques. Compared with the pristine membrane of dimethylimidazolium-functionalized PBI, its hybrid membrane exhibited a lower swelling ratio, higher mechanical strength, and better oxidative stability. However, the morphology of hydrophilic/hydrophobic phase separation, which facilitates the ion transport along hydrophilic channels, only successfully developed in the pristine membrane. As a result, the hydroxide conductivity of the pristine membrane (5.02 × 10-2 S cm-1 at 80 °C) was measured higher than that of the hybrid membrane (2.22 × 10-2 S cm-1 at 80 °C). The hydroxide conductivity and tensile results suggested that both membranes had good alkaline stability in 2M KOH solution at 80 °C. Furthermore, the maximum power densities of the pristine and hybrid membranes of dimethylimidazolium-functionalized PBI reached 241 mW cm-2 and 152 mW cm-2 at 60 °C, respectively. The fuel cell performance result demonstrates that these two membranes are promising as AEMs for fuel cell applications.
Collapse
Affiliation(s)
- Li-Cheng Jheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| | - Cheng-Wei Cheng
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Ko-Shan Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| | - Steve Lien-Chung Hsu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Chung-Yen Hsu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| | - Bi-Yun Lin
- Instrument Center of National Cheng Kung University, Tainan 70101, Taiwan;
| | - Tsung-Han Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| |
Collapse
|
26
|
The alkaline stability and fuel cell performance of poly(N-spirocyclic quaternary ammonium) ionenes as anion exchange membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|