1
|
Lee SY, Kang DR, Oh JG, Chae IS, Kim JH. Dumbbell-Shaped, Block-Graft Copolymer with Aligned Domains for High-Performance Hydrocarbon Polymer Electrolyte Membranes. Angew Chem Int Ed Engl 2024; 63:e202406796. [PMID: 38730495 DOI: 10.1002/anie.202406796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024]
Abstract
Given the environmental concerns surrounding fluoromaterials, the use of high-cost perfluorinated sulfonic acids (PFSAs) in fuel cells and water electrolysis contradicts the pursuit of clean energy systems. Herein, we present a fluorine-free dumbbell-shaped block-graft copolymer, derived from the cost-effective triblock copolymer, poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS), for polymer electrolyte membranes (PEMs). This unique polymer shape led to the alignment of the hydrophobic-hydrophilic domains along a preferred orientation, resulting in the construction of interconnected proton channels across the membrane. A bicontinuous network allowed efficient proton transport with reduced tortuosity, leading to an exceptional ionic conductivity (249 mS cm-1 at 80 °C and 90 % relative humidity (RH)), despite a low ion exchange capacity (IEC; 1.41). Furthermore, membrane electrode assembly (MEA) prepared with our membrane exhibited stable performance over a period of 150 h at 80 °C and 30 % RH. This study demonstrates a novel polymer structure design and highlights a promising outlook for hydrocarbon PEMs as alternatives to PFSAs.
Collapse
Affiliation(s)
- So Youn Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Du Ru Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong-Gil Oh
- Advanced Fuel Cell Technology Development Team, CTO, Hyundai Motor Company, Yongin-si, Gyeonggi-do, 16891, Republic of Korea
| | - Il Seok Chae
- Advanced Fuel Cell Technology Development Team, CTO, Hyundai Motor Company, Yongin-si, Gyeonggi-do, 16891, Republic of Korea
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
2
|
Mahalingam A, Pushparaj H. Synthesis, Characterization, and Fabrication of Nickel Metal-Organic Framework-Incorporated Polymer Electrolyte Membranes for Fuel-Cell Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31145-31157. [PMID: 38842949 DOI: 10.1021/acsami.4c04709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Proton-conducting sulfonated polymer metal-organic framework (MOF)-based composite membranes were synthesized by anchoring the nickel MOF (Ni-MOF) to the aromatic sulfonated polymer backbone. In this work, we sulfonated two different polymers, poly(1,4-phenylene ether ether sulfone) (PEES) and poly ether ether ketone (PEEK), with a controllable sulfonation degree, and the synthesized Ni-MOF was incorporated into the sulfonated polymers to prepare a polymer electrolyte membrane. The effect of an MOF as a pendant moiety on the polymer backbone had a significant effect on properties such as water uptake, thermal, mechanical, and oxidative stabilities, swelling ratio, ion-exchange capacity (IEC), morphology, proton conductivity, and fuel-cell performance. The presence of an MOF structure enhanced the water retention capacity of the composite membranes. Adding Ni-MOF to the composite membrane improved the fuel-cell performance by increasing the OCV and power density. Among the synthesized electrolytes, the 3 wt % Ni-MOF-incorporated sPEEK membrane displayed a power density of 319 mW/cm2 with a cell voltage of 0.79 V, which was higher than the pure sulfonated polymer. Thus, the developed composite membranes are suitable for fuel-cell applications.
Collapse
|
3
|
Kim YS. Hydrocarbon Ionomeric Binders for Fuel Cells and Electrolyzers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303914. [PMID: 37814366 DOI: 10.1002/advs.202303914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Indexed: 10/11/2023]
Abstract
Ionomeric binders in catalyst layers, abbreviated as ionomers, play an essential role in the performance of polymer-electrolyte membrane fuel cells and electrolyzers. Due to environmental issues associated with perfluoroalkyl substances, alternative hydrocarbon ionomers have drawn substantial attention over the past few years. This review surveys literature to discuss ionomer requirements for the electrodes of fuel cells and electrolyzers, highlighting design principles of hydrocarbon ionomers to guide the development of advanced hydrocarbon ionomers.
Collapse
Affiliation(s)
- Yu Seung Kim
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
4
|
Feng Z, Gupta G, Mamlouk M. Degradation of QPPO-based anion polymer electrolyte membrane at neutral pH. RSC Adv 2023; 13:20235-20242. [PMID: 37416914 PMCID: PMC10321057 DOI: 10.1039/d3ra02889e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
The chemical stability of anion polymer electrolyte membranes (AEMs) determines the durability of an AEM water electrolyzer (AEMWE). The alkaline stability of AEMs has been widely investigated in the literature. However, the degradation of AEM at neutral pH closer to the practical AEMWE operating condition is neglected, and the degradation mechanism remains unclear. This paper investigated the stability of quaternized poly(p-phenylene oxide) (QPPO)-based AEMs under different conditions, including Fenton solution, H2O2 solution and DI water. The pristine PPO and chloromethylated PPO (ClPPO) showed good chemical stability in the Fenton solution, and only limited weight loss was observed, 2.8% and 1.6%, respectively. QPPO suffered a high mass loss (29%). Besides, QPPO with higher IEC showed a higher mass loss. QPPO-1 (1.7 mmol g-1) lost nearly twice as much mass as QPPO-2 (1.3 mmol g-1). A strong correlation between the degradation rate of IEC and H2O2 concentration was obtained, which implied that the reaction order is above 1. A long-term oxidative stability test at pH neutral condition was also conducted by immersing the membrane in DI at 60 °C water for 10 months. The membrane breaks into pieces after the degradation test. The possible degradation mechanism is that oxygen or OH˙ radicals attack the methyl group on the rearranged ylide, forming aldehyde or carboxyl attached to the CH2 group.
Collapse
Affiliation(s)
- Zhiming Feng
- School of Engineering, Newcastle University Merz Court Newcastle upon Tyne NE1 7RU UK
| | - Gaurav Gupta
- Chemical Engineering, Lancaster University Lancaster LA1 4YW UK
| | - Mohamed Mamlouk
- School of Engineering, Newcastle University Merz Court Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
5
|
Shen X, Liang X, Xu Y, Yu W, Li Q, Ge X, Wu L, Xu T. In-situ growth of PPy/MnOx radical quenching layer for durability enhancement of proton exchange membrane in PEMFCs. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
6
|
Senthil T, Prabukanthan P, Paradesi D, Dinakaran K.
TiO
2
nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications. J Appl Polym Sci 2023. [DOI: 10.1002/app.53737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
| | | | - Deivanayagam Paradesi
- Department of Chemistry SRM Institute of Science and Technology Kattankulathur Tamilnadu India
| | | |
Collapse
|
7
|
Synthesis and property comparison of mono-, di-, and trisulfonated poly(arylene ether phosphine oxide)s with fluorenyl moieties as proton exchange membranes. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
8
|
Ban T, Guo M, Wang Y, Zhang Y, Zhu X. High-performance aromatic proton exchange membranes bearing multiple flexible pendant sulfonate groups: Exploring side chain length and main chain polarity. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Oroujzadeh M, Mehdipour‐Ataei S. Evaluation of properties and performance of poly(ether sulfone ketone) membranes in proton exchange membrane fuel cells. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maryam Oroujzadeh
- Faculty of Polymer Science, Department of Polyurethane and Advanced Materials Iran Polymer and Petrochemical Institute Tehran Iran
| | - Shahram Mehdipour‐Ataei
- Faculty of Polymer Science, Department of Polyurethane and Advanced Materials Iran Polymer and Petrochemical Institute Tehran Iran
| |
Collapse
|
10
|
Deng C, Liu Q, Zhang S, Wang Z, Chen Y, Jian X. Preparation and Properties of Sulfonated Poly(phthalazinone ether ketone) Membranes for Electrodialysis. Polymers (Basel) 2022; 14:polym14091723. [PMID: 35566892 PMCID: PMC9105782 DOI: 10.3390/polym14091723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/25/2023] Open
Abstract
Sulfonated poly(phthalazinone ether ketones) (SPPEK) with ion exchange capacities from 0.77 to 1.82 mmol·g−1 are synthesized via an electrophilic substitution reaction. Nuclear magnetic resonance and infrared absorption spectroscopy are used to characterize the chemical structure of the obtained polymers for confirming the successful introduction of sulfonic groups. SPPEKs show excellent thermal stability; their temperature required to achieve 5% weight loss is about 360 °C. Accordingly, the obtained membranes possess high ion perm-selectivity, proton conductivity, and low area resistance. Regarding the electrodialysis-related performance of the membranes, the SPPEK-4 membrane has the highest limiting current density (39.8 mA·cm2), resulting from its high content of sulfonic groups. In a desalination test of standard solution, SPPEK-3 and SPPEK-4 membranes exhibit both better salt removal rate and acceptable energy consumption than commercial membrane. Additionally, SPPEK-3 membrane shows outstanding performance in terms of high concentration rate and low energy consumption during saline water treatment, which indicates the feasibility of novel membranes in electrodialysis application.
Collapse
Affiliation(s)
- Cong Deng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Q.L.); (Z.W.); (Y.C.); (X.J.)
| | - Qian Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Q.L.); (Z.W.); (Y.C.); (X.J.)
- Dalian Key Laboratory of Membrane Materials and Membrane Processes, High Performance Polymer Engineering Research Center, Dalian 116024, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Q.L.); (Z.W.); (Y.C.); (X.J.)
- Dalian Key Laboratory of Membrane Materials and Membrane Processes, High Performance Polymer Engineering Research Center, Dalian 116024, China
- Correspondence: ; Tel.: +86-411-8498-6107
| | - Zhaoqi Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Q.L.); (Z.W.); (Y.C.); (X.J.)
- Dalian Key Laboratory of Membrane Materials and Membrane Processes, High Performance Polymer Engineering Research Center, Dalian 116024, China
| | - Yuning Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Q.L.); (Z.W.); (Y.C.); (X.J.)
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Q.L.); (Z.W.); (Y.C.); (X.J.)
- Dalian Key Laboratory of Membrane Materials and Membrane Processes, High Performance Polymer Engineering Research Center, Dalian 116024, China
| |
Collapse
|