1
|
Xie Q, Jia X, Zhang W, Xu Y, Zhu M, Zhao Z, Hao J, Li H, Du J, Liu Y, Feng H, Li H. Effects of Poria cocos extract and protein powder mixture on glucolipid metabolism and rhythm changes in obese mice. Food Sci Nutr 2023; 11:2356-2371. [PMID: 37181308 PMCID: PMC10171496 DOI: 10.1002/fsn3.3245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 03/11/2023] Open
Abstract
Herein, we explored the effects of Poria cocos extract, protein powder mixture, and their combined intervention on weight loss in high-fat diet (HFD)-induced obese mice. Male C57BL/6J mice were selected and fed a HFD for 8 weeks; obese mice that were successfully modeled were divided into modeling and five intervention groups, and given the corresponding treatment for 10 weeks. Body weight, fat, and muscle tissue, blood glucose, lipids, inflammatory factors, and other glucose and lipid metabolism-related indicators were measured to evaluate the effect of P. cocos and protein powder intervention on weight loss in obese mice. The body weight of the intervention group was reduced compared with the HFD group. Fat content of mice in F3PM group decreased significantly (p < .05). Levels of blood glucose, lipids, adiponectin, leptin, and inflammatory factors, including interleukin-1 β and tumor necrosis factor- α showed improvement. Lipoprotein lipase (lower about 2.97 pg/ml, vs. HFD mice 10.65 mmoL/ml) and sterol regulatory element-binding transcription factor (lower about 1413.63 pg/ml, vs. HFD mice 3915.33 pg/ml) levels in liver tissue were decreased. The respiratory exchange rate (RER) of mice in the HFD and subject intervention groups had no circadian rhythm and was maintained at approximately 0.80. The protein powder mixture (PM) group had the lowest RER (p < .05), the P. cocos extract (FL) and F1PM groups had similar RER to the HFD group (p < .05), and the F2PM group had a higher RER than the HFD group (p < .05). And food intake and energy metabolism returned to circadian rhythm, with an increase in the dose of P. cocos extract, the feeding rhythms of F1PM, F2PM, and F3PM were closer to that of the normal diet (ND) group. Feeding intervention with P. cocos and protein powder improved fat distribution, glucolipid metabolism, and energy metabolism, with the combination of F3PM showing more diverse benefits.
Collapse
Affiliation(s)
- Qiaoling Xie
- School of Public HealthXiamen UniversityXiamenChina
| | - Xiuzhen Jia
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Wei Zhang
- School of Public HealthXiamen UniversityXiamenChina
| | - Yuhan Xu
- School of Public HealthXiamen UniversityXiamenChina
| | - Meizhen Zhu
- School of Public HealthXiamen UniversityXiamenChina
| | - Zifu Zhao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Jingyu Hao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Haoqiu Li
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Jinrui Du
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Yan Liu
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Hongwei Li
- School of Public HealthXiamen UniversityXiamenChina
| |
Collapse
|
2
|
Zhang W, Jia X, Xu Y, Xie Q, Zhu M, Zhao Z, Hao J, Li H, Du J, Liu Y, Liu WH, Ma X, Hung W, Feng H, Li H. Effects of Coix seed extract, Lactobacillus paracasei K56, and their combination on the glycolipid metabolism in obese mice. J Food Sci 2023; 88:1197-1213. [PMID: 36717373 DOI: 10.1111/1750-3841.16474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/13/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023]
Abstract
Coix seed extract (CSE) and probiotics have been reported to regulate glycolipid metabolism through different modes of action. We tested the effects of CSE, Lactobacillus paracasei K56, and their combination to determine whether they have synergistic effects on glycolipid metabolism of obese mice. We fed male C57BL/6J mice with high-fat diet for 8 weeks to establish an obesity model. The obesity mice were selected and divided into five groups: the model control group and four intervention groups. After 10 weeks of continuous gavage intervention, the mice in the intervention groups exhibited lower body weight (lower about 2.31-4.41 g, vs. HFD 42.25 g, p < 0.01), and epididymal (lower about 0.58-0.92 g, vs. HFD 2.50 g, p < 0.01) and perirenal fat content (lower about 0.24-0.42 g, vs. HFD 0.88 g, p < 0.05); decreased fasting blood glucose, total cholesterol, triglycerides, and VLDL; and increased HLDL, respiratory exchange ratio, energy expenditure, and amount of exercise performed. K56 + CSE-combined intervention groups were more effective in lowering blood glucose, IL-1β, and TNF-α levels than the CSE and K56 alone interventions. The content of fatty acid synthase and SREBP-1c protein in liver tissue was lower. The combination has synergistic effects on weight control, fat reduction, and blood glucose regulation by improving the chronic inflammatory state and reducing the content of lipid synthesis-related enzymes of obese mice, which can hinder chronic disease progression. PRACTICAL APPLICATION: Coix seed extract can be used in obese people to regulate abnormal glucose and lipid metabolism and delay the development of chronic diseases.
Collapse
Affiliation(s)
- Wei Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Xiuzhen Jia
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yuhan Xu
- School of Public Health, Xiamen University, Xiamen, China
| | - Qiaoling Xie
- School of Public Health, Xiamen University, Xiamen, China
| | - Meizhen Zhu
- School of Public Health, Xiamen University, Xiamen, China
| | - Zifu Zhao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jingyu Hao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Haoqiu Li
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jinrui Du
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yan Liu
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Xia Ma
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Weilian Hung
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Hongwei Li
- School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Zhang W, Jia X, Xu Y, Xie Q, Zhu M, Zhang H, Zhao Z, Hao J, Li H, Du J, Liu Y, Liu WH, Ma X, Hung W, Feng H, Li H. Effects of Coix Seed Extract, Bifidobacterium BPL1, and Their Combination on the Glycolipid Metabolism in Obese Mice. Front Nutr 2022; 9:939423. [PMID: 35923203 PMCID: PMC9341295 DOI: 10.3389/fnut.2022.939423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Coix seed extract (CSE) and probiotics have been reported to regulate glycolipid metabolism via different modes of action. We tested the effects of CSE, Bifidobacterium BPL1, and their combination to determine their effects on glycolipid metabolism in obese mice. Male C57BL/6J mice were fed a high-fat diet for 8 weeks to establish an obesity model. Obese mice were selected and divided into four groups: the model control group and three intervention groups. After 10 weeks of continuous gavage intervention, the mice in the intervention groups exhibited lower body weight (lower about 2.31 g, vs. HFD mice 42.23 g) and epididymal (lower about 0.37 g, vs. HFD mice 2.5 g) and perirenal fat content (lower about 0.47 g, vs. HFD mice 0.884 g); decreased fasting blood glucose, total cholesterol, triglycerides, and VLDL; and increased HLDL, respiratory exchange ratio, energy expenditure, and amount of exercise performed. CSE, BPL1 and their combination can effectively control the weight gain in obese mice, reduce fat content, and regulate blood lipids and abnormal blood sugar. These results may be related to reduce the chronic inflammatory states, improve energy metabolism, exercise, relieve insulin sensitivity, and reduce lipid synthesis via the intervention of CSE, BPL1 and their combination. Compared with the single use of CSE alone, the combination of CSE + BPL1 can better exert the regulation function of intestinal flora, and change in the abundance of bacteria that could improve the level of inflammatory factors, such as increasing Bifidobacterium, reducing Lactococcus. Compared with the use of BPL1 alone, the combination of CSE and BPL1 can better regulate pancreatic islet and improve blood sugar. CSE may act directly on body tissues to exert anti-inflammatory effects. BPL1 and CSE + BPL1 may improve the structure and function of the intestinal flora, and reduce tissue inflammation.
Collapse
Affiliation(s)
- Wei Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Xiuzhen Jia
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yuhan Xu
- School of Public Health, Xiamen University, Xiamen, China
| | - Qiaoling Xie
- School of Public Health, Xiamen University, Xiamen, China
| | - Meizhen Zhu
- School of Public Health, Xiamen University, Xiamen, China
| | - Hesong Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Zifu Zhao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jingyu Hao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Haoqiu Li
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jinrui Du
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yan Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Xia Ma
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Weilian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Hongwei Li
- School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Zhang H, Gao X, Li K, Liu Y, Hettiarachichi DS, Sunderland B, Li D. Sandalwood seed oil ameliorates hepatic insulin resistance by regulating the JNK/NF-κB inflammatory and PI3K/AKT insulin signaling pathways. Food Funct 2021; 12:2312-2322. [PMID: 33617622 DOI: 10.1039/d0fo03051a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sandalwood (santalum spicatum) seed oil (SSO) is rich in ximenynic acid. The aim of the present study was to investigate the effect of SSO on high-fat/high-sucrose diet (HFHSD) induced insulin resistance (IR) in comparison with fish oil (FO), sunflower oil (SO) and linseed oil (LO). Fifty male Sprague-Dawley rats were randomly divided into five dietary groups: standard chow diet (controls), HFHSD plus 7% SSO, HFHSD plus 7% FO, HFHSD plus 7% SO and HFHSD plus 7% LO. After 12 weeks of feeding, the rats were sacrificed, and the serum parameters, hepatic lipids and underlying molecular mechanisms were studied. SSO, FO or LO significantly prevented glucose intolerance, hyperglycaemia, obesity, and hepatic lipid accumulation, and decreased the homeostasis model assessment of IR (HOMA-IR) and the serum levels of pro-inflammatory factors (IL-6, IL-1β and TNF-α) compared with SO. In addition, SSO activated the PI3K/AKT insulin signaling pathway and down-regulated the JNK/NF-κB inflammatory signaling pathway in the liver. In summary, our results proved that SSO exerted an ameliorative effect on IR by regulating the hepatic inflammation related blockage of the insulin signaling pathway in the rats.
Collapse
Affiliation(s)
- Huijun Zhang
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China.
| | - Xiang Gao
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China. and College of Life Sciences, Qingdao University, Qingdao, China
| | - Kelei Li
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China.
| | - Yandi Liu
- School of Pharmacy, Curtin University, Perth, Australia
| | | | | | - Duo Li
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China. and Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Yu SY, Kim MB, Park YK, Bae M, Kang H, Hu S, Pham TX, Carpenter R, Lee J, Lee OH, Lee JY, Kim YC. Anthocyanin-Rich Aronia Berry Extract Mitigates High-Fat and High-Sucrose Diet-Induced Adipose Tissue Inflammation by Inhibiting Nuclear Factor- κB Activation. J Med Food 2021; 24:586-594. [PMID: 33751905 DOI: 10.1089/jmf.2020.0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity-induced inflammation in adipose tissue (AT) promotes the development of metabolic dysregulations by increasing macrophage recruitment in the stromal vascular fraction (SVF). The activation of nuclear factor-κB (NF-κB) signaling in macrophages serves as a pivotal mediator of AT inflammatory responses by increasing the expression of proinflammatory genes in obesity. Given the purported anti-inflammatory effects of berry consumption in humans, we evaluated if anthocyanin-rich aronia berry extract (ARN) can prevent obesity-induced AT inflammation in vivo. We also examined whether ARN suppresses lipopolysaccharide (LPS)-induced NF-κB activation in RAW 264.7 macrophages and mouse bone marrow-derived macrophages (BMDMs). Male C57BL/6J mice were fed a low-fat diet, a high-fat (HF), and high-sucrose (HS) diet or HF/HS diet supplemented with 0.2% ARN (HF/HS + ARN) for 14 weeks. Compared to HF-/HS-fed mice, ARN supplementation tended to decrease fasting serum glucose (P = .07). Furthermore, ARN supplementation significantly inhibited the phosphorylation of NF-κB p65 in epididymal AT with a concomitant decrease in the expression of Cd11b and Tnfα mRNAs in epididymal SVF isolated, compared with those from HF-/HS-fed mice. Consistent with these in vivo findings, ARN treatment significantly decreased the phosphorylation of p65 in LPS-stimulated RAW 264.7 macrophages and BMDMs. Moreover, ARN suppressed LPS-induced mRNA expression of inflammation mediators (iNos, Cox-2, Tnfα, Mcp-1, and Il-6) and glycolysis markers (Glut1, G6pdh, and Hk1) in both cell types. Taken together, our in vivo and in vitro results suggest that ARN supplementation may attenuate obesity-induced AT inflammation by inhibiting NF-κB signaling and glycolytic pathway in macrophages.
Collapse
Affiliation(s)
- Seok-Yeong Yu
- Department of Nutrition, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Siqi Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Tho X Pham
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Ryan Carpenter
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jungwoo Lee
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, USA
| | - Ok-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Young-Cheul Kim
- Department of Nutrition, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
Escalona-Garrido C, Vázquez P, Mera P, Zagmutt S, García-Casarrubios E, Montero-Pedrazuela A, Rey-Stolle F, Guadaño-Ferraz A, Rupérez FJ, Serra D, Herrero L, Obregon MJ, Valverde ÁM. Moderate SIRT1 overexpression protects against brown adipose tissue inflammation. Mol Metab 2020; 42:101097. [PMID: 33049408 PMCID: PMC7600394 DOI: 10.1016/j.molmet.2020.101097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Metainflammation is a chronic low-grade inflammatory state induced by obesity and associated comorbidities, including peripheral insulin resistance. Brown adipose tissue (BAT), a therapeutic target against obesity, is an insulin target tissue sensitive to inflammation. Therefore, it is necessary to find strategies to protect BAT against the effects of inflammation in energy balance. In this study, we explored the impact of moderate sirtuin 1 (SIRT1) overexpression on insulin sensitivity and β-adrenergic responses in BAT and brown adipocytes (BA) under pro-inflammatory conditions. METHODS The effect of inflammation on BAT functionality was studied in obese db/db mice and lean wild-type (WT) mice or mice with moderate overexpression of SIRT1 (SIRT1Tg+) injected with a low dose of bacterial lipopolysaccharide (LPS) to mimic endotoxemia. We also conducted studies on differentiated BA (BA-WT and BA-SIRT1Tg+) exposed to a macrophage-derived pro-inflammatory conditioned medium (CM) to evaluate the protection of SIRT1 overexpression in insulin signaling and glucose uptake, mitochondrial respiration, fatty acid oxidation (FAO), and norepinephrine (NE)-mediated-modulation of uncoupling protein-1 (UCP-1) expression. RESULTS BAT from the db/db mice was susceptible to metabolic inflammation manifested by the activation of pro-inflammatory signaling cascades, increased pro-inflammatory gene expression, tissue-specific insulin resistance, and reduced UCP-1 expression. Impairment of insulin and noradrenergic responses were also found in the lean WT mice upon LPS injection. In contrast, BAT from the mice with moderate overexpression of SIRT1 (SIRT1Tg+) was protected against LPS-induced activation of pro-inflammatory signaling, insulin resistance, and defective thermogenic-related responses upon cold exposure. Importantly, the decline in triiodothyronine (T3) levels in the circulation and intra-BAT after exposure of the WT mice to LPS and cold was markedly attenuated in the SIRT1Tg+ mice. In vitro BA experiments in the two genotypes revealed that upon differentiation with a T3-enriched medium and subsequent exposure to a macrophage-derived pro-inflammatory CM, only BA-SIRT1Tg+ fully recovered insulin and noradrenergic responses. CONCLUSIONS This study has ascertained the benefit of the moderate overexpression of SIRT1 to confer protection against defective insulin and β-adrenergic responses caused by BAT inflammation. Our results have potential therapeutic value in combinatorial therapies for BAT-specific thyromimetics and SIRT1 activators to combat metainflammation in this tissue.
Collapse
Affiliation(s)
- Carmen Escalona-Garrido
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain
| | - Patricia Vázquez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain.
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Ester García-Casarrubios
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain
| | - Ana Montero-Pedrazuela
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universitiy, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Francisco J Rupérez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universitiy, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Maria Jesus Obregon
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain.
| |
Collapse
|
7
|
More than an Anti-diabetic Bariatric Surgery, Metabolic Surgery Alleviates Systemic and Local Inflammation in Obesity. Obes Surg 2019; 28:3658-3668. [PMID: 30187424 DOI: 10.1007/s11695-018-3400-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obesity, associated with increased risk of type 2 diabetes (T2D), cardiovascular disease, and hepatic steatosis et al., has become a major global health problem. Recently, obesity has been proven to be under a status of low-grade, chronic inflammation, which contributes to insulin resistance and T2D. Bariatric surgery is currently an effective treatment for the control of morbid obesity and T2D, which impels ongoing efforts to clarify physiological and molecular mechanisms mediating these benefits. The correlation between obesity, inflammation, and T2D has been revealed to a certain extent, and studies have shed light on the effect of bariatric surgery on inflammatory status of subjects with obesity. Based on recent findings, this review focuses on the relationship between inflammation, obesity, and bariatric surgery.
Collapse
|
8
|
Mechanistic Basis for Obesity-related Increases in Ozone-induced Airway Hyperresponsiveness in Mice. Ann Am Thorac Soc 2018; 14:S357-S362. [PMID: 29161088 DOI: 10.1513/annalsats.201702-140aw] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity is a risk factor for asthma, especially nonallergic asthma. Ozone, a common air pollutant, is a nonallergic asthma trigger. Importantly, ozone-induced decrements in lung function are greater in obese and overweight human subjects than in lean individuals. Obese mice also exhibit exaggerated pulmonary responses to ozone. Ozone causes greater increases in pulmonary resistance, in bronchoalveolar lavage neutrophils, and in airway hyperresponsiveness in obese than in lean mice. Our data indicate that IL-33 plays a role in mediating these events. Ozone causes greater release of IL-33 into bronchoalveolar lavage fluid in obese than in lean mice. Furthermore, an antibody blocking the IL-33 receptor, ST2, attenuates ozone-induced airway hyperresponsiveness in obese but not in lean mice. Our data also indicate a complex role for tumor necrosis factor (TNF)-α in obesity-related effects on the response to ozone. In obese mice, genetic deficiency in either TNF-α or TNF-α receptor 2 augments ozone-induced airway hyperresponsiveness, whereas TNF-α receptor 2 deficiency virtually abolishes ozone-induced airway hyperresponsiveness in lean mice. Finally, obesity is known to alter the gut microbiome. In female mice, antibiotics attenuate obesity-related increases in the effect of ozone on airway hyperresponsiveness, possibly by altering microbial production of short-chain fatty acids. Asthma control is often difficult to achieve in obese patients with asthma. Our data suggest that therapeutics directed against IL-33 may ultimately prove effective in these patients. The data also suggest that dietary manipulations and other strategies (prebiotics, probiotics) that alter the microbiome and/or its metabolic products may represent a new frontier for treating asthma in obese individuals.
Collapse
|
9
|
TNF-α decreases lipoprotein lipase activity in 3T3-L1 adipocytes by up-regulation of angiopoietin-like protein 4. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:533-540. [DOI: 10.1016/j.bbalip.2017.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/22/2017] [Accepted: 02/10/2017] [Indexed: 12/12/2022]
|
10
|
Lana JP, Martins LB, Oliveira MCD, Menezes-Garcia Z, Yamada LTP, Vieira LQ, Teixeira MM, Ferreira AVM. TNF and IL-18 cytokines may regulate liver fat storage under homeostasis conditions. Appl Physiol Nutr Metab 2017; 41:1295-1302. [PMID: 27863204 DOI: 10.1139/apnm-2016-0265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The inflammation induced by obesogenic diets is associated with deposition of fat in the liver. On the other hand, anti-inflammatory and immunosuppressive therapies may impact in body fat storage and in liver lipid dynamics. It is important to study specific inflammatory mediators in this context, since their role on hepatic damage is not fully clarified. This study aimed to evaluate the role of interleukin (IL)-18 and tumor necrosis factor (TNF) receptor in liver dysfunction induced by diet. Male C57BL/6 wild-type (WT), IL-18, and TNF receptor 1 knockout mice (IL-18-/- and TNFR1-/-) were divided according to the experimental diets: chow diet or a high-refined carbohydrate-containing diet. Alanine aminotransferase was quantified by colorimetric analysis. Total fat content in the liver was determined by Folch methods. Levels of TNF, IL-6, IL-4, and IL-13 in liver samples were measured by ELISA assay. IL-18 and TNFR knockout mice fed with chow diet showed higher liver triglycerides deposition than WT mice fed with the same diet (WT: 131.9 ± 24.5; IL-18-/-: 239.4 ± 38.12*; TNF-/-: 179.6 ± 50.45*; *P < 0.01). Furthermore, these animals also showed a worse liver histopathological score and lower levels of TNF, IL-6, IL-4, and IL-13 in the liver. Interestingly, treatment with a high-carbohydrate diet did not exacerbate liver damage in IL-18-/- and TNFR1-/- mice. Our data suggest that IL-18 and TNF may be involved on hepatic homeostasis mainly in a context of a healthy diet.
Collapse
Affiliation(s)
- Jaqueline Pereira Lana
- a Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,b Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laís Bhering Martins
- a Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,b Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina Chaves de Oliveira
- a Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,b Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zélia Menezes-Garcia
- b Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Leda Quercia Vieira
- b Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- b Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adaliene Versiani Matos Ferreira
- a Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,b Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Chen X, Gong Q, Wang CY, Zhang K, Ji X, Chen YX, Yu XJ. High-Fat Diet Induces Distinct Metabolic Response in Interleukin-6 and Tumor Necrosis Factor-α Knockout Mice. J Interferon Cytokine Res 2016; 36:580-588. [PMID: 27610743 DOI: 10.1089/jir.2016.0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Quan Gong
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Chun-Yu Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zhang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Ji
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Xi Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi-Jie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Ertunc ME, Hotamisligil GS. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res 2016; 57:2099-2114. [PMID: 27330055 DOI: 10.1194/jlr.r066514] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/20/2016] [Indexed: 12/19/2022] Open
Abstract
Lipids encompass a wide variety of molecules such as fatty acids, sterols, phospholipids, and triglycerides. These molecules represent a highly efficient energy resource and can act as structural elements of membranes or as signaling molecules that regulate metabolic homeostasis through many mechanisms. Cells possess an integrated set of response systems to adapt to stresses such as those imposed by nutrient fluctuations during feeding-fasting cycles. While lipids are pivotal for these homeostatic processes, they can also contribute to detrimental metabolic outcomes. When metabolic stress becomes chronic and adaptive mechanisms are overwhelmed, as occurs during prolonged nutrient excess or obesity, lipid influx can exceed the adipose tissue storage capacity and result in accumulation of harmful lipid species at ectopic sites such as liver and muscle. As lipid metabolism and immune responses are highly integrated, accumulation of harmful lipids or generation of signaling intermediates can interfere with immune regulation in multiple tissues, causing a vicious cycle of immune-metabolic dysregulation. In this review, we summarize the role of lipotoxicity in metaflammation at the molecular and tissue level, describe the significance of anti-inflammatory lipids in metabolic homeostasis, and discuss the potential of therapeutic approaches targeting pathways at the intersection of lipid metabolism and immune function.
Collapse
Affiliation(s)
- Meric Erikci Ertunc
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T. H. Chan School of Public Health, Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, MA 02115
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T. H. Chan School of Public Health, Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, MA 02115
| |
Collapse
|
13
|
Enzamin ameliorates adipose tissue inflammation with impaired adipocytokine expression and insulin resistance in db/db mice. J Nutr Sci 2013; 2:e37. [PMID: 25191587 PMCID: PMC4153326 DOI: 10.1017/jns.2013.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/29/2013] [Accepted: 10/07/2013] [Indexed: 12/29/2022] Open
Abstract
The effects of Enzamin on obesity-related metabolic disorders in obese db/db mice were
examined to explore a novel agent for the prevention of insulin resistance. Db/db mice
were treated with water containing Enzamin (0·1 and 1·0 %) for 8 weeks from 6 weeks of
age. Enzamin treatment at 1·0 %, but not at 0·1 %, significantly decreased the fasting
plasma glucose, serum total cholesterol and TAG levels in db/db mice, without affecting
body weight gain and body fat composition. Furthermore, insulin sensitivity and glucose
tolerance were improved by the treatment of db/db mice with 1·0 % Enzamin.
Immunohistochemical studies and gene expression analysis showed that 1·0 % Enzamin
treatment suppressed macrophage accumulation and inflammation in the adipose tissue. In
addition, 1·0 % Enzamin treatment increased serum adiponectin in db/db mice. Treatment
with 1·0 % Enzamin also significantly suppressed the expression of NADPH oxidase subunits,
suggesting an antioxidative effect for Enzamin in the adipose tissue. Furthermore,
in vitro experiments demonstrated that the lipopolysaccharide-induced
inflammatory reaction was significantly suppressed by Enzamin treatment in macrophages.
Enzamin treatment increased the expression of GLUT4 mRNA in muscle, but not GLUT2 mRNA in
the liver of db/db mice. Enzamin also increased the mRNA expression of carnitine
palmitoyltransferase 1a (CPT1a, muscle isoform) in db/db mice, whereas Enzamin treatment
did not affect the mRNA expression of CPT1b (liver isoform) in db/db mice. In conclusion,
our data indicate that Enzamin can improve insulin resistance by ameliorating impaired
adipocytokine expression, presumably through its anti-inflammatory action, and that
Enzamin possesses a potential for preventing the metabolic syndrome.
Collapse
Key Words
- ATCC, American Type Culture Collection
- Adipocytokines
- CPT, carnitine palmitoyltransferase
- CPT1a, carnitine palmitoyltransferase 1 (liver)
- CPT1b, carnitine palmitoyltransferase 1 (muscle)
- CT, computed tomography
- Enzamin
- Insulin resistance
- LPS, lipopolysaccharide
- MCP-1, monocyte chemoattractant protein 1
- Macrophages
- Nox2, NADPH oxidase 2
- PAI-1, plasminogen activator inhibitor 1
- t-PA, tissue-type plasminogen activator
Collapse
|
14
|
Cildir G, Akıncılar SC, Tergaonkar V. Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol Med 2013; 19:487-500. [PMID: 23746697 DOI: 10.1016/j.molmed.2013.05.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/12/2022]
Abstract
Inflammation is indispensable for host homeostasis against invading pathogens and efficient wound healing upon tissue malfunction and has to be tightly controlled by various mechanisms to limit excess responses harmful to host tissues. A myriad of disease conditions ranging from type 2 diabetes (T2D) to neurodegenerative and cardiovascular disorders are now shown to progress due to persistent, unresolved inflammation in metabolic tissues such as adipose, liver, pancreas, muscle, and brain. However, their underlying mechanisms are incompletely understood. The actions of innate and adaptive immune cells in these ailments are increasingly appreciated so much so that a new research area called 'immunometabolism' has emerged. In this review, we will highlight the fundamental roles of various immune cells in adipose tissue during the initiation and progression of obesity-induced inflammation and discuss potential anti-inflammatory therapies from different mechanistic points of view.
Collapse
Affiliation(s)
- Gökhan Cildir
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | | | | |
Collapse
|
15
|
Dali-Youcef N, Mecili M, Ricci R, Andrès E. Metabolic inflammation: connecting obesity and insulin resistance. Ann Med 2013; 45:242-53. [PMID: 22834949 DOI: 10.3109/07853890.2012.705015] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Insulin resistance is a pathological condition that arises when insulin signaling is impaired, forcing β-cells to produce more insulin in order to cope with body demands and to maintain glucose homeostasis. When the pancreas is no more able to support an appropriate insulin secretion, insulin resistance becomes decompensated and hyperglycemia is detected. One of the mechanisms leading to insulin resistance is low-grade inflammation that involves a number of protagonists such as inflammatory cytokines, lipids and their metabolites, reactive oxygen species (ROS), hypoxia and endoplasmic reticulum stress, and changes in gut microbiota profiles. We review here the molecular aspects of metabolic inflammation converging to insulin resistance and secondarily to type 2 diabetes. We also discuss the place of high-sensitivity C-reactive protein (hsCRP) in the assessment of metabolic inflammation and potential therapeutic interventions aimed to impede inflammation and therefore prevent insulin resistance.
Collapse
Affiliation(s)
- Nassim Dali-Youcef
- Laboratoire de Biochimie et de Biologie Moléculaire, Hôpitaux universitaires de Strasbourg, 1 place de l'hôpital 67091 Strasbourg Cedex, France.
| | | | | | | |
Collapse
|
16
|
Bjørndal B, Vik R, Brattelid T, Vigerust NF, Burri L, Bohov P, Nygård O, Skorve J, Berge RK. Krill powder increases liver lipid catabolism and reduces glucose mobilization in tumor necrosis factor-alpha transgenic mice fed a high-fat diet. Metabolism 2012; 61:1461-72. [PMID: 22538117 DOI: 10.1016/j.metabol.2012.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/20/2012] [Accepted: 03/20/2012] [Indexed: 12/29/2022]
Abstract
A promising approach to ameliorate obesity and obesity-associated diseases is the identification of new sources of dietary ingredients. The present study investigated the hepatic regulation of energy metabolism after feeding a powder isolated from Antarctic krill (Euphausia superba) in a transgenic mouse model of chronic inflammation (human tumor necrosis factor-alpha (hTNFα) mice) known to display unfavorable effects on lipid metabolism. Male hTNFα mice were fed high-fat diets (23.6%, w/w) with or without krill powder (6.4% lipids, 4.3% protein, w/w) for 6 weeks. Blood, liver lipid, and fatty acid composition, as well as hepatic enzyme activities and gene expressions, were determined. Krill powder fed mice displayed lowered hepatic and plasma triacylglycerol levels compared to mice on a high-fat casein diet. This was accompanied by down-regulated hepatic expression of genes involved in lipogenesis and glycerolipid synthesis, and increased β-oxidation activity. In addition, the krill powder diet lowered plasma levels of cholesterol, as well as hepatic gene expression of sterol regulatory element binding transcription factor 2 (SREBP2) and enzymes involved in cholesterol synthesis. Notably, genes involved in glycolysis and gluconeogenesis were significantly reduced in liver by the krill powder diet, while genes involved in oxidative phosphorylation and uncoupling were not affected. Krill powder also reduced endogenous TNFα in liver, indicating an anti-inflammatory effect. In a high-fat mouse model with disturbed lipid metabolism due to persistent hTNFα expression, krill powder showed significant effects on hepatic glucose- and lipid metabolism, resulting in an improved lipid status in liver and plasma.
Collapse
Affiliation(s)
- Bodil Bjørndal
- Institute of Medicine, University of Bergen, 5021 Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhu M, Williams AS, Chen L, Wurmbrand AP, Williams ES, Shore SA. Role of TNFR1 in the innate airway hyperresponsiveness of obese mice. J Appl Physiol (1985) 2012; 113:1476-85. [PMID: 22984249 DOI: 10.1152/japplphysiol.00588.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to examine the role of tumor necrosis factor receptor 1 (TNFR1) in the airway hyperresponsiveness characteristic of obese mice. Airway responsiveness to intravenous methacholine was measured using the forced oscillation technique in obese Cpe(fat) mice that were either sufficient or genetically deficient in TNFR1 (Cpe(fat) and Cpe(fat)/TNFR1(-/-) mice) and in lean mice that were either sufficient or genetically deficient in TNFR1 [wild-type (WT) and TNFR1(-/-) mice]. Compared with lean WT mice, Cpe(fat) mice exhibited airway hyperresponsiveness. Airway hyperresponsives was also greater in Cpe(fat)/TNFR1(-/-) than in Cpe(fat) mice. Compared with WT mice, Cpe(fat) mice had increases in bronchoalveolar lavage fluid concentrations of several inflammatory moieties including eotaxin, IL-9, IP-10, KC, MIG, and VEGF. These factors were also significantly elevated in Cpe(fat)/TNFR1(-/-) vs. TNFR1(-/-) mice. Additional moieties including IL-13 were also elevated in Cpe(fat)/TNFR1(-/-) vs. TNFR1(-/-) mice but not in Cpe(fat) vs. WT mice. IL-17A mRNA expression was greater in Cpe(fat)/TNFR1(-/-) vs. Cpe(fat) mice and in TNFR1(-/-) vs. WT mice. Analysis of serum indicated that obesity resulted in systemic as well as pulmonary inflammation, but TNFR1 deficiency had little effect on this systemic inflammation. Our results indicate that TNFR1 is protective against the airway hyperresponsiveness associated with obesity and suggest that effects on pulmonary inflammation may be contributing to this protection.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
18
|
Gómez-Díaz RA, Talavera JO, Pool EC, Ortiz-Navarrete FV, Solórzano-Santos F, Mondragón-González R, Valladares-Salgado A, Cruz M, Aguilar-Salinas CA, Wacher NH. Metformin decreases plasma resistin concentrations in pediatric patients with impaired glucose tolerance: a placebo-controlled randomized clinical trial. Metabolism 2012; 61:1247-55. [PMID: 22424822 DOI: 10.1016/j.metabol.2012.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/06/2012] [Accepted: 02/06/2012] [Indexed: 01/15/2023]
Abstract
The objective was to determine the effect of metformin on the concentrations of resistin and other markers of insulin resistance or inflammation (C-reactive protein, cytokines, body weight, HbA1c, among others) in minors with glucose intolerance. Patients aged 4 to 17 years with glucose intolerance were studied. They were randomized to receive 850 mg of either metformin or placebo twice daily for 12 weeks, during which all followed an iso-caloric diet and an exercise program. High sensitivity C-reactive protein, TNF-alpha, IL-6, IL1-beta, resistin, leptin, adiponectin, glucose, insulin, HbA1c, lipid profile and transaminases were measured at the beginning and at the end of the period. Fifty-two patients were included, 11.9±2.6 years old; 28 (12 males/16 females) received metformin and 24 placebo (11 males/13 females). Baseline characteristics were similar between groups (except for body mass index, which in the metformin group was slightly higher). Percentage weight loss was greater in the metformin group (-5.86% vs 2.75%, P<.05). At study end, there were statistically significant differences in resistin concentrations, even after adjusting for confounding variables (F=7.714; P<.006). Also, metformin was associated with a significant decrease in HOMA-IR index (P=.032) and HbA1c levels (P=.001), but no change was observed in the concentration of other markers of inflammation. Metformin resulted in significant reductions of plasma resistin levels in minors with glucose intolerance. This change is independent of its effects on body weight. In contrast, metformin did not alter the concentration of inflammatory markers.
Collapse
Affiliation(s)
- Rita A Gómez-Díaz
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico Ciy, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sen S, Carpenter AH, Hochstadt J, Huddleston JY, Kustanovich V, Reynolds AA, Roberts S. Nutrition, weight gain and eating behavior in pregnancy: A review of experimental evidence for long-term effects on the risk of obesity in offspring. Physiol Behav 2012; 107:138-45. [DOI: 10.1016/j.physbeh.2012.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 02/07/2023]
|
20
|
Obesity and airway responsiveness: role of TNFR2. Pulm Pharmacol Ther 2012; 26:444-54. [PMID: 22584291 DOI: 10.1016/j.pupt.2012.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 01/13/2023]
Abstract
Obese mice exhibit innate airway hyperresponsiveness (AHR), a feature of asthma. Tumor necrosis factor alpha (TNFα) is implicated in the disease progression and chronic inflammatory status of both obesity and asthma. TNF acts via two TNF receptors, TNFR1 and TNFR2. To examine the role of TNFR2 in the AHR observed in obese mice, we generated obese Cpe(fat) mice that were either sufficient or deficient in TNFR2 (Cpe(fat) and Cpe(fat)/TNFR2(-/-) mice, respectively) and compared them with their lean controls (WT and TNFR2(-/-) mice). Compared to WT mice, Cpe(fat) mice exhibited AHR to aerosolized methacholine (measured using the forced oscillation technique) which was ablated in Cpe(fat)/TNFR2(-/-) mice. Bioplex or ELISA assay indicated significant increases in serum leptin, G-CSF, IL-7, IL-17A, TNFα, and KC in obese versus lean mice, as well as significant obesity-related increases in bronchoalveolar lavage fluid (BALF) G-CSF and IP-10, regardless of TNFR2 status. Importantly, BALF IL-17A was significantly increased over lean controls in Cpe(fat) but not Cpe(fat)/TNFR2(-/-) mice. Functional annotation clustering of significantly affected genes identified from microarray analysis comparing gene expression in lungs of Cpe(fat) and WT mice, identified blood vessel morphogenesis as the gene ontology category most affected by obesity. This category included several genes associated with AHR, including endothelin and trkB. Obesity increased pulmonary mRNA expression of endothelin and trkB in TNFR2 sufficient but not deficient mice. Our results indicate that TNFR2 signaling is required for the innate AHR that develops in obese mice, and suggest that TNFR2 may act by promoting IL-17A, endothelin, and/or trkB expression.
Collapse
|
21
|
Salles J, Tardif N, Landrier JF, Mothe-Satney I, Guillet C, Boue-Vaysse C, Combaret L, Giraudet C, Patrac V, Bertrand-Michel J, Denis P, Chardigny JM, Boirie Y, Walrand S. TNFα gene knockout differentially affects lipid deposition in liver and skeletal muscle of high-fat-diet mice. J Nutr Biochem 2012; 23:1685-93. [PMID: 22464148 DOI: 10.1016/j.jnutbio.2011.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Inflammation and ectopic lipid deposition contribute to obesity-related insulin resistance (IR). Studies have shown that deficiency of the proinflammatory cytokine tumor necrosis factor-α (TNFα) protects against the IR induced by a high-fat diet (HFD). We aimed to evaluate the relationship between HFD-related inflammation and lipid deposition in skeletal muscle and liver. EXPERIMENTAL DESIGN Wild-type (WT) and TNFα-deficient (TNFα-KO) mice were subjected to an HFD for 12 weeks. A glucose tolerance test was performed to evaluate IR. Inflammatory status was assessed by measuring plasma and tissue transcript levels of cytokines. Lipid intermediate concentrations were measured in plasma, muscle and liver. The expression of genes involved in fatty acid transport, synthesis and oxidation was analyzed in adipose tissue, muscle and liver. RESULTS HFD induced a higher body weight gain in TNFα-KO mice than in WT mice. The weight of epididymal and abdominal adipose tissues was twofold lower in WT mice than in TNFα-KO mice, whereas liver weight was significantly heavier in WT mice. IR, systemic and adipose tissue inflammation, and plasma nonesterified fatty acid levels were reduced in TNFα-KO mice fed an HFD. TNFα deficiency improved fatty acid metabolism and had a protective effect against lipid deposition, inflammation and fibrosis associated with HFD in liver but had no impact on these markers in muscle. CONCLUSIONS Our data suggest that in an HFD context, TNFα deficiency reduced hepatic lipid accumulation through two mechanisms: an increase in adipose tissue storage capacity and a decrease in fatty acid uptake and synthesis in the liver.
Collapse
Affiliation(s)
- Jérôme Salles
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The current obesity epidemic clearly has many causes, including the impact of our modern world on both our diet and our lifestyle/physical activity. Although many interventions have been recommended, the prevalence of obesity continues to rise and has forced a re-evaluation of the potential interventions that could have an impact. In recent years it has been definitively shown that microbiota in the gastrointestinal tract are altered in obese individuals. Recent data provide a potential mechanistic understanding of the interactions between microbiota and obesity and allow potential new interventions to the control of obesity to be proposed.
Collapse
Affiliation(s)
- Kyle J. Wolf
- Department of Microbiology at the University of Alabama at Birmingham
| | - Robin G. Lorenz
- Department of Microbiology at the University of Alabama at Birmingham
- Department of Pathology at the University of Alabama at Birmingham
- Corresponding author: Robin G. Lorenz, Department of Pathology, University of Alabama at Birmingham, 1825 University Boulevard, SHEL 602, Birmingham, AL 35294-2182, USA.
| |
Collapse
|