1
|
The Tyrosine Phosphatase SHP2: A New Target for Insulin Resistance? Biomedicines 2022; 10:biomedicines10092139. [PMID: 36140242 PMCID: PMC9495760 DOI: 10.3390/biomedicines10092139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
The SH2 containing protein tyrosine phosphatase 2(SHP2) plays essential roles in fundamental signaling pathways, conferring on it versatile physiological functions during development and in homeostasis maintenance, and leading to major pathological outcomes when dysregulated. Many studies have documented that SHP2 modulation disrupted glucose homeostasis, pointing out a relationship between its dysfunction and insulin resistance, and the therapeutic potential of its targeting. While studies from cellular or tissue-specific models concluded on both pros-and-cons effects of SHP2 on insulin resistance, recent data from integrated systems argued for an insulin resistance promoting role for SHP2, and therefore a therapeutic benefit of its inhibition. In this review, we will summarize the general knowledge of SHP2’s molecular, cellular, and physiological functions, explaining the pathophysiological impact of its dysfunctions, then discuss its protective or promoting roles in insulin resistance as well as the potency and limitations of its pharmacological modulation.
Collapse
|
2
|
Qi X, Sun Z, Li X, Jiao Y, Chen S, Song P, Qian Z, Qian J, Qiu X, Tang L. Shp2 suppresses fat accumulation in white adipose tissue by activating Wnt/β‑catenin signaling following vertical sleeve gastrectomy in obese rats with type‑2 diabetes. Exp Ther Med 2022; 23:302. [PMID: 35340882 PMCID: PMC8931631 DOI: 10.3892/etm.2022.11231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Adipogenesis and fat accumulation are closely associated with the development of obesity. Sleeve gastrectomy (SG) is an effective treatment for obesity and associated metabolic disorders. Leptin is downregulated after SG and Src homology phosphatase 2 (Shp2) has an important role in leptin signaling. The role of Shp2 in SG and the mechanisms of fat reduction following SG were further investigated in the current study. Sham and SG operations were performed on obese type-2 diabetes model Sprague-Dawley rats. Primary pre-adipocytes were isolated from the inguinal white adipose tissue (ingWAT) of the rats. Shp2 expression in ingWAT pre-adipocytes was silenced using small interfering RNA transfection. Shp2 function was inhibited using the specific inhibitor, SHP099. In addition, Shp2 was overexpressed using lentivirus. Gene and protein expression analysis was performed after adipocyte differentiation. Furthermore, Shp2-overexpressing ingWAT pre-adipocytes treated with the β-catenin inhibitor, PNU-74654, were also used for gene and protein expression analysis. Adipogenic markers, including triglycerides, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (Cebpα), adiponectin, fatty acid-binding protein 4 and leptin, were examined. Compared with the sham, triglyceride, leptin, PPARγ and Cebpα levels were significantly reduced in the ingWAT from the SG group. Shp2 expression levels were reduced following leptin treatment. Moreover, genetic analysis demonstrated depot-specific adipogenesis following Shp2 silencing or inhibition in ingWAT pre-adipocytes. Conversely, Shp2 overexpression decreased the expression of adipogenic markers by enhancing β-catenin expression. PNU-74654 treatment abolished the downregulation of adipogenic markers caused by Shp2 overexpression. SG decreased leptin levels in ingWAT, which in turn upregulated Shp2, and Shp2 suppressed fat accumulation and adipogenic differentiation by activating the Wnt/β-catenin signaling pathway. Overall, this may represent a potential mechanism of fat reduction in SG, and Shp2 may serve as a potential therapeutic target for the treatment of obesity and type-2 diabetes.
Collapse
Affiliation(s)
- Xiaoyang Qi
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Ziying Sun
- Department of Orthopedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xugang Li
- Department of Orthopedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yuwen Jiao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Shuai Chen
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Peng Song
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Zhifen Qian
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Jun Qian
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Xusheng Qiu
- Department of Orthopedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
3
|
Paccoud R, Saint-Laurent C, Piccolo E, Tajan M, Dortignac A, Pereira O, Le Gonidec S, Baba I, Gélineau A, Askia H, Branchereau M, Charpentier J, Personnaz J, Branka S, Auriau J, Deleruyelle S, Canouil M, Beton N, Salles JP, Tauber M, Weill J, Froguel P, Neel BG, Araki T, Heymes C, Burcelin R, Castan I, Valet P, Dray C, Gautier EL, Edouard T, Pradère JP, Yart A. SHP2 drives inflammation-triggered insulin resistance by reshaping tissue macrophage populations. Sci Transl Med 2021; 13:13/591/eabe2587. [PMID: 33910978 DOI: 10.1126/scitranslmed.abe2587] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
Insulin resistance is a key event in type 2 diabetes onset and a major comorbidity of obesity. It results from a combination of fat excess-triggered defects, including lipotoxicity and metaflammation, but the causal mechanisms remain difficult to identify. Here, we report that hyperactivation of the tyrosine phosphatase SHP2 found in Noonan syndrome (NS) led to an unsuspected insulin resistance profile uncoupled from altered lipid management (for example, obesity or ectopic lipid deposits) in both patients and mice. Functional exploration of an NS mouse model revealed this insulin resistance phenotype correlated with constitutive inflammation of tissues involved in the regulation of glucose metabolism. Bone marrow transplantation and macrophage depletion improved glucose homeostasis and decreased metaflammation in the mice, highlighting a key role of macrophages. In-depth analysis of bone marrow-derived macrophages in vitro and liver macrophages showed that hyperactive SHP2 promoted a proinflammatory phenotype, modified resident macrophage homeostasis, and triggered monocyte infiltration. Consistent with a role of SHP2 in promoting inflammation-driven insulin resistance, pharmaceutical SHP2 inhibition in obese diabetic mice improved insulin sensitivity even better than conventional antidiabetic molecules by specifically reducing metaflammation and alleviating macrophage activation. Together, these results reveal that SHP2 hyperactivation leads to inflammation-triggered metabolic impairments and highlight the therapeutical potential of SHP2 inhibition to ameliorate insulin resistance.
Collapse
Affiliation(s)
- Romain Paccoud
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France
| | - Céline Saint-Laurent
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France.,RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse F-31100, France
| | - Enzo Piccolo
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France.,RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse F-31100, France
| | - Mylène Tajan
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France.,RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse F-31100, France
| | - Alizée Dortignac
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France
| | - Ophélie Pereira
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France.,RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse F-31100, France
| | - Sophie Le Gonidec
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France.,RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse F-31100, France
| | - Inès Baba
- INSERM UMR-S 1166, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris F-75013, France
| | - Adélaïde Gélineau
- INSERM UMR-S 1166, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris F-75013, France
| | - Haoussa Askia
- INSERM UMR-S 1166, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris F-75013, France
| | - Maxime Branchereau
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France
| | - Julie Charpentier
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France
| | - Jean Personnaz
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France
| | - Sophie Branka
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France
| | - Johanna Auriau
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France
| | - Simon Deleruyelle
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France
| | - Mickaël Canouil
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille F-59000, France
| | - Nicolas Beton
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse France and Centre de Physiopathologie Toulouse-Purpan, INSERM UMR 1043, Université Paul Sabatier, Université de Toulouse, Toulouse F-31024, France
| | - Jean-Pierre Salles
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse France and Centre de Physiopathologie Toulouse-Purpan, INSERM UMR 1043, Université Paul Sabatier, Université de Toulouse, Toulouse F-31024, France
| | - Maithé Tauber
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse France and Centre de Physiopathologie Toulouse-Purpan, INSERM UMR 1043, Université Paul Sabatier, Université de Toulouse, Toulouse F-31024, France
| | - Jacques Weill
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille F-59000, France
| | - Philippe Froguel
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille F-59000, France.,Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, NYU-Langone Medical Center, NY 10016, USA
| | - Toshiyuki Araki
- Laura and Isaac Perlmutter Cancer Center, NYU-Langone Medical Center, NY 10016, USA
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France
| | - Rémy Burcelin
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France
| | - Isabelle Castan
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France.,RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse F-31100, France
| | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France.,RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse F-31100, France
| | - Cédric Dray
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France.,RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse F-31100, France
| | - Emmanuel L Gautier
- INSERM UMR-S 1166, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris F-75013, France
| | - Thomas Edouard
- RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse F-31100, France.,Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse France and Centre de Physiopathologie Toulouse-Purpan, INSERM UMR 1043, Université Paul Sabatier, Université de Toulouse, Toulouse F-31024, France
| | - Jean-Philippe Pradère
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France.,RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse F-31100, France
| | - Armelle Yart
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, Université Paul Sabatier, Université de Toulouse, Toulouse F-31432, France. .,RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse F-31100, France
| |
Collapse
|
4
|
Liu W, Yin Y, Wang M, Fan T, Zhu Y, Shen L, Peng S, Gao J, Deng G, Meng X, Kong L, Feng GS, Guo W, Xu Q, Sun Y. Disrupting phosphatase SHP2 in macrophages protects mice from high-fat diet-induced hepatic steatosis and insulin resistance by elevating IL-18 levels. J Biol Chem 2020; 295:10842-10856. [PMID: 32546483 DOI: 10.1074/jbc.ra119.011840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 06/10/2020] [Indexed: 01/14/2023] Open
Abstract
Chronic low-grade inflammation plays an important role in the pathogenesis of type 2 diabetes. Src homology 2 domain-containing tyrosine phosphatase-2 (SHP2) has been reported to play diverse roles in different tissues during the development of metabolic disorders. We previously reported that SHP2 inhibition in macrophages results in increased cytokine production. Here, we investigated the association between SHP2 inhibition in macrophages and the development of metabolic diseases. Unexpectedly, we found that mice with a conditional SHP2 knockout in macrophages (cSHP2-KO) have ameliorated metabolic disorders. cSHP2-KO mice fed a high-fat diet (HFD) gained less body weight and exhibited decreased hepatic steatosis, as well as improved glucose intolerance and insulin sensitivity, compared with HFD-fed WT littermates. Further experiments revealed that SHP2 deficiency leads to hyperactivation of caspase-1 and subsequent elevation of interleukin 18 (IL-18) levels, both in vivo and in vitro Of note, IL-18 neutralization and caspase-1 knockout reversed the amelioration of hepatic steatosis and insulin resistance observed in the cSHP2-KO mice. Administration of two specific SHP2 inhibitors, SHP099 and Phps1, improved HFD-induced hepatic steatosis and insulin resistance. Our findings provide detailed insights into the role of macrophagic SHP2 in metabolic disorders. We conclude that pharmacological inhibition of SHP2 may represent a therapeutic strategy for the management of type 2 diabetes.
Collapse
Affiliation(s)
- Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ye Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ting Fan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuyu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lihong Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shuang Peng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Guoliang Deng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Gen-Sheng Feng
- Department of Pathology and Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Tao J, Zheng L, Meng M, Li Y, Lu Z. Shp2 suppresses the adipogenic differentiation of preadipocyte 3T3-L1 cells at an early stage. Cell Death Discov 2016; 2:16051. [PMID: 27551539 PMCID: PMC4979423 DOI: 10.1038/cddiscovery.2016.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/25/2016] [Accepted: 06/05/2016] [Indexed: 11/10/2022] Open
Abstract
Tyrosine phosphatase protein Shp2 is a potential therapeutic target for obesity. However, the mechanism of Shp2 during adipogenesis is not fully understood. The present study investigated the role of Shp2 in the terminal differentiation of preadipocytes. The results showed that Shp2 suppressed adipocyte differentiation in 3T3-L1 cells; overexpression of Shp2 reduced lipid droplet production in 3T3-L1 cells, whereas Shp2 knockdown increased lipid droplet production in 3T3-L1 cells. Furthermore, inhibition of Shp2 activity also enhanced adipocyte differentiation. Interestingly, Shp2 expression was specifically decreased early during differentiation in response to stimulation with the dexamethasone–methylisobutylxanthine–insulin (DMI) hormone cocktail. During the first 2 days of differentiation, Shp2 overexpression impaired the DMI-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in 3T3-L1 cells and blocked the peak expression of CCAAT/enhancer-binding proteins β and δ during preadipocyte differentiation. In conclusion, Shp2 downregulated the early stages of hormone-induced differentiation of 3T3-L1 cells and inhibited the expression of the first wave of transcription factors by suppressing the DMI-induced STAT3 signaling pathway. These discoveries point to a novel role of Shp2 during adipogenesis and support the hypothesis that Shp2 could be a therapeutic target for the control of obesity.
Collapse
Affiliation(s)
- J Tao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University , Xiamen, Fujian, China
| | - L Zheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University , Xiamen, Fujian, China
| | - M Meng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University , Xiamen, Fujian, China
| | - Y Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University , Xiamen, Fujian, China
| | - Z Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University , Xiamen, Fujian, China
| |
Collapse
|
6
|
Gurzov EN, Stanley WJ, Brodnicki TC, Thomas HE. Protein tyrosine phosphatases: molecular switches in metabolism and diabetes. Trends Endocrinol Metab 2015; 26:30-9. [PMID: 25432462 DOI: 10.1016/j.tem.2014.10.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are a large family of enzymes that generally oppose the actions of protein tyrosine kinases (PTKs). Genetic polymorphisms for particular PTPs are associated with altered risk of both type 1 diabetes (T1D) and type 2 diabetes (T2D). Moreover, recent evidence suggests that PTPs play crucial roles in metabolism. They can act as regulators of liver homeostasis, food intake, or immune-mediated pancreatic b cell death. In this review we describe the mechanisms by which different members of the non-receptor PTP (PTPN) family influence metabolic physiology. This 'metabolic job' of PTPs is discussed in depth and the role of these proteins in different cell types compared. Understanding the pathways regulated by PTPs will provide novel therapeutic strategies for the treatment of diabetes.
Collapse
|
7
|
Tajan M, Batut A, Cadoudal T, Deleruyelle S, Le Gonidec S, Saint Laurent C, Vomscheid M, Wanecq E, Tréguer K, De Rocca Serra-Nédélec A, Vinel C, Marques MA, Pozzo J, Kunduzova O, Salles JP, Tauber M, Raynal P, Cavé H, Edouard T, Valet P, Yart A. LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity. Proc Natl Acad Sci U S A 2014; 111:E4494-503. [PMID: 25288766 PMCID: PMC4210352 DOI: 10.1073/pnas.1406107111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
LEOPARD syndrome (multiple Lentigines, Electrocardiographic conduction abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormal genitalia, Retardation of growth, sensorineural Deafness; LS), also called Noonan syndrome with multiple lentigines (NSML), is a rare autosomal dominant disorder associating various developmental defects, notably cardiopathies, dysmorphism, and short stature. It is mainly caused by mutations of the PTPN11 gene that catalytically inactivate the tyrosine phosphatase SHP2 (Src-homology 2 domain-containing phosphatase 2). Besides its pleiotropic roles during development, SHP2 plays key functions in energetic metabolism regulation. However, the metabolic outcomes of LS mutations have never been examined. Therefore, we performed an extensive metabolic exploration of an original LS mouse model, expressing the T468M mutation of SHP2, frequently borne by LS patients. Our results reveal that, besides expected symptoms, LS animals display a strong reduction of adiposity and resistance to diet-induced obesity, associated with overall better metabolic profile. We provide evidence that LS mutant expression impairs adipogenesis, triggers energy expenditure, and enhances insulin signaling, three features that can contribute to the lean phenotype of LS mice. Interestingly, chronic treatment of LS mice with low doses of MEK inhibitor, but not rapamycin, resulted in weight and adiposity gains. Importantly, preliminary data in a French cohort of LS patients suggests that most of them have lower-than-average body mass index, associated, for tested patients, with reduced adiposity. Altogether, these findings unravel previously unidentified characteristics for LS, which could represent a metabolic benefit for patients, but may also participate to the development or worsening of some traits of the disease. Beyond LS, they also highlight a protective role of SHP2 global LS-mimicking modulation toward the development of obesity and associated disorders.
Collapse
Affiliation(s)
- Mylène Tajan
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Aurélie Batut
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Thomas Cadoudal
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Simon Deleruyelle
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Sophie Le Gonidec
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Céline Saint Laurent
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Maëlle Vomscheid
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Estelle Wanecq
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Karine Tréguer
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Audrey De Rocca Serra-Nédélec
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Claire Vinel
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Marie-Adeline Marques
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Joffrey Pozzo
- Cardiology Unit, University Hospital Center of Rangueil Toulouse, F-31432 Toulouse, France
| | - Oksana Kunduzova
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Jean-Pierre Salles
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, University Hospital Center of Purpan Toulouse, F-31024 Toulouse, France
| | - Maithé Tauber
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, University Hospital Center of Purpan Toulouse, F-31024 Toulouse, France
| | - Patrick Raynal
- EA4568 Laboratoire Mécanismes des Cardiopathies et Résistances Hormonales dans le Syndrome de Noonan et les Syndromes Apparentés, Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, France; and
| | - Hélène Cavé
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche S1131, Unité de Formation et de Recherche de Médecine Paris-Diderot-Institut Universitaire d'Hématologie Département de Génétique, Unité Fonctionnelle de Génétique Moléculaire Hôpital Robert Debré, F-75019 Paris, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, University Hospital Center of Purpan Toulouse, F-31024 Toulouse, France
| | - Philippe Valet
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France
| | - Armelle Yart
- Institut National de la Santé et de la Recherche Médicale, U1048, F-31432 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Université Paul Sabatier, F-31432 Toulouse, France;
| |
Collapse
|
8
|
Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord 2014; 15:79-97. [PMID: 24264858 DOI: 10.1007/s11154-013-9282-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a major disorder that links obesity to type 2 diabetes mellitus (T2D). It involves defects in the insulin actions owing to a reduced ability of insulin to trigger key signaling pathways in major metabolic tissues. The pathogenesis of insulin resistance involves several inhibitory molecules that interfere with the tyrosine phosphorylation of the insulin receptor and its downstream effectors. Among those, growing interest has been developed toward the protein tyrosine phosphatases (PTPs), a large family of enzymes that can inactivate crucial signaling effectors in the insulin signaling cascade by dephosphorylating their tyrosine residues. Herein we briefly review the role of several PTPs that have been shown to be implicated in the regulation of insulin action, and then focus on the Src homology 2 (SH2) domain-containing SHP1 and SHP2 enzymes, since recent reports have indicated major roles for these PTPs in the control of insulin action and glucose metabolism. Finally, the therapeutic potential of targeting PTPs for combating insulin resistance and alleviating T2D will be discussed.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Ste-Foy, Québec, Canada, G1V 4G2
| | | | | |
Collapse
|
9
|
Knobler H, Elson A. Metabolic regulation by protein tyrosine phosphatases. J Biomed Res 2014; 28:157-68. [PMID: 25013399 PMCID: PMC4085553 DOI: 10.7555/jbr.28.20140012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/28/2014] [Indexed: 01/14/2023] Open
Abstract
Obesity and the metabolic syndrome and their associated morbidities are major public health issues, whose prevalence will continue to increase in the foreseeable future. Aberrant signaling by the receptors for leptin and insulin plays a pivotal role in development of the metabolic syndrome. More complete molecular-level understanding of how both of these key signaling pathways are regulated is essential for full characterization of obesity, the metabolic syndrome, and type II diabetes, and for developing novel treatments for these diseases. Phosphorylation of proteins on tyrosine residues plays a key role in mediating the effects of leptin and insulin on their target cells. Here, we discuss the molecular methods by which protein tyrosine phosphatases, which are key physiological regulators of protein phosphorylation in vivo, affect signaling by the leptin and insulin receptors in their major target tissues.
Collapse
Affiliation(s)
- Hilla Knobler
- Diabetes and Metabolic Disease Unit, Kaplan Medical Center, Rehovot 76100, Israel
| | - Ari Elson
- Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
10
|
Lee KY, Russell SJ, Ussar S, Boucher J, Vernochet C, Mori MA, Smyth G, Rourk M, Cederquist C, Rosen ED, Kahn BB, Kahn CR. Lessons on conditional gene targeting in mouse adipose tissue. Diabetes 2013; 62:864-74. [PMID: 23321074 PMCID: PMC3581196 DOI: 10.2337/db12-1089] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Conditional gene targeting has been extensively used for in vivo analysis of gene function in adipocyte cell biology but often with debate over the tissue specificity and the efficacy of inactivation. To directly compare the specificity and efficacy of different Cre lines in mediating adipocyte specific recombination, transgenic Cre lines driven by the adipocyte protein 2 (aP2) and adiponectin (Adipoq) gene promoters, as well as a tamoxifen-inducible Cre driven by the aP2 gene promoter (iaP2), were bred to the Rosa26R (R26R) reporter. All three Cre lines demonstrated recombination in the brown and white fat pads. Using different floxed loci, the individual Cre lines displayed a range of efficacy to Cre-mediated recombination that ranged from no observable recombination to complete recombination within the fat. The Adipoq-Cre exhibited no observable recombination in any other tissues examined, whereas both aP2-Cre lines resulted in recombination in endothelial cells of the heart and nonendothelial, nonmyocyte cells in the skeletal muscle. In addition, the aP2-Cre line can lead to germline recombination of floxed alleles in ~2% of spermatozoa. Thus, different "adipocyte-specific" Cre lines display different degrees of efficiency and specificity, illustrating important differences that must be taken into account in their use for studying adipose biology.
Collapse
Affiliation(s)
- Kevin Y. Lee
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Steven J. Russell
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Siegfried Ussar
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Jeremie Boucher
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Cecile Vernochet
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Marcelo A. Mori
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Graham Smyth
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Michael Rourk
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Carly Cederquist
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Evan D. Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Barbara B. Kahn
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Corresponding author: C. Ronald Kahn,
| |
Collapse
|
11
|
He Z, Zhu HH, Bauler TJ, Wang J, Ciaraldi T, Alderson N, Li S, Raquil MA, Ji K, Wang S, Shao J, Henry RR, King PD, Feng GS. Nonreceptor tyrosine phosphatase Shp2 promotes adipogenesis through inhibition of p38 MAP kinase. Proc Natl Acad Sci U S A 2013; 110:E79-88. [PMID: 23236157 PMCID: PMC3538237 DOI: 10.1073/pnas.1213000110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The molecular mechanism underlying adipogenesis and the physiological functions of adipose tissue are not fully understood. We describe here a unique mouse model of severe lipodystrophy. Ablation of Ptpn11/Shp2 in adipocytes, mediated by aP2-Cre, led to premature death, lack of white fat, low blood pressure, compensatory erythrocytosis, and hepatic steatosis in Shp2(fat-/-) mice. Fat transplantation partially rescued the lifespan and blood pressure in Shp2(fat-/-) mice, and administration of leptin also restored partially the blood pressure of mutant animals with endogenous leptin deficiency. Consistently, homozygous deletion of Shp2 inhibited adipocyte differentiation from embryonic stem (ES) cells. Biochemical analyses suggest a Shp2-TAO2-p38-p300-PPARγ pathway in adipogenesis, in which Shp2 suppresses p38 activation, leading to stabilization of p300 and enhanced PPARγ expression. Inhibition of p38 restored adipocyte differentiation from Shp2(-/-) ES cells, and p38 signaling is also suppressed in obese patients and obese animals. These results illustrate an essential role of adipose tissue in mammalian survival and physiology and also suggest a common signaling mechanism involved in adipogenesis and obesity development.
Collapse
Affiliation(s)
- Zhao He
- Department of Pathology and Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0864
| | - Helen H. Zhu
- Department of Pathology and Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0864
| | - Timothy J. Bauler
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109-5620; and
| | - Jing Wang
- Department of Pathology and Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0864
| | - Theodore Ciaraldi
- Veteran’s Administration San Diego Healthcare System and Department of Medicine, and
| | - Nazilla Alderson
- Department of Pathology and Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0864
| | - Shuangwei Li
- Department of Pathology and Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0864
| | - Marie-Astrid Raquil
- Department of Pathology and Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0864
| | - Kaihong Ji
- Department of Pathology and Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0864
| | - Shufen Wang
- Department of Pathology and Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0864
| | - Jianhua Shao
- Department of Pediatrics, University of California at San Diego, La Jolla,CA 92093
| | - Robert R. Henry
- Veteran’s Administration San Diego Healthcare System and Department of Medicine, and
| | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109-5620; and
| | - Gen-Sheng Feng
- Department of Pathology and Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0864
| |
Collapse
|