1
|
Yu Q, Du F, Goodman J, Waites CL. APOE4 exacerbates glucocorticoid stress hormone-induced tau pathology via mitochondrial dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636364. [PMID: 39974942 PMCID: PMC11838549 DOI: 10.1101/2025.02.03.636364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
APOE4 is the leading genetic risk factor for Alzheimer's disease, and chronic stress is a leading environmental risk factor. Studies suggest that APOE4 confers vulnerability to the behavioral and neuropathological effects of chronic stress, representing a potential mechanism by which this genetic variant accelerates Alzheimer's onset and progression. Whether and how APOE4 -mediated stress vulnerability manifests in neurons of the hippocampus, a brain region particularly susceptible to stress and Alzheimer's pathology, remains unexplored. Using a combination of in vivo and in vitro experiments in humanized APOE4 and APOE3 knockin mice and primary hippocampal neurons from these animals, we investigate whether and how APOE4 confers sensitivity to glucocorticoids, the main stress hormones. We find that a major hallmark of stress/glucocorticoid-induced brain damage, tau pathology (i.e., tau accumulation, hyperphosphorylation, and spreading) is exacerbated in APOE4 versus APOE3 mice. Moreover, APOE4 animals exhibit underlying mitochondrial dysfunction and enhanced glucocorticoid receptor activation in the hippocampus, factors that likely contribute to tau pathogenesis in both the presence and absence of stress/glucocorticoids. Supporting this concept, we show that opening of the mitochondrial permeability transition pore drives mitochondrial dysfunction and tau pathology in APOE4 mice, and that pharmacological inhibition of pore opening is protective against ApoE4-mediated mitochondrial damage, tau phosphorylation and spreading, and downstream hippocampal synapse loss. These findings shed light on the mechanisms of stress vulnerability in APOE4 carriers and identify the mitochondrial permeability transition pore as a potential therapeutic target for ameliorating Alzheimer's pathogenesis in this population.
Collapse
|
2
|
Yang H, Sun L, Bai X, Cai B, Tu Z, Fang C, Bian Y, Zhang X, Han X, Lv D, Zhang C, Li B, Luo S, Du B, Li L, Yao Y, Dong Z, Huang Z, Su G, Li H, Wang QK, Zhang M. Dysregulated RBM24 phosphorylation impairs APOE translation underlying psychological stress-induced cardiovascular disease. Nat Commun 2024; 15:10181. [PMID: 39580475 PMCID: PMC11585567 DOI: 10.1038/s41467-024-54519-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Psychological stress contributes to cardiovascular disease (CVD) and sudden cardiac death, yet its molecular basis remains obscure. RNA binding protein RBM24 plays a critical role in cardiac development, rhythm regulation, and cellular stress. Here, we show that psychological stress activates RBM24 S181 phosphorylation through eIF4E2-GSK3β signaling, which causally links psychological stress to CVD by promoting APOE translation (apolipoprotein E). Using an Rbm24 S181A KI mouse model, we show that impaired S181 phosphorylation leads to cardiac contractile dysfunction, atrial fibrillation, dyslipidemia, reduced muscle strength, behavioral abnormalities, and sudden death under acute and chronic psychological stressors. The impaired S181 phosphorylation of RBM24 inhibits cardiac translation, including APOE translation. Notably, cardiomyocyte-specific expression of APOE rescues cardiac electrophysiological abnormalities and contractile dysfunction, through preventing ROS stress and mitochondrial dysfunction. Moreover, RBM24-S181 phosphorylation acts as a serum marker for chronic stress in human. These results provide a functional link between RBM24 phosphorylation, eIF4E-regulated APOE translation, and psychological-stress-induced CVD.
Collapse
Affiliation(s)
- He Yang
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Sun
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemei Bai
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bingcheng Cai
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zepeng Tu
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Fang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Bian
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyu Zhang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xudong Han
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dayin Lv
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chi Zhang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bo Li
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Bingbing Du
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lan Li
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufeng Yao
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuowei Huang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Guanhua Su
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Li
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China.
- School of Biotechnology of Shandong Polytechnic, Jinan, Shandong, 250101, China.
| | - Qing K Wang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Min Zhang
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Ling S, Xu JW. Phenotypes and functions of "aged" neutrophils in cardiovascular diseases. Biomed Pharmacother 2024; 179:117324. [PMID: 39216451 DOI: 10.1016/j.biopha.2024.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neutrophils are important effector cells of innate immunity and undergo several phenotypic changes after release from the bone marrow. Neutrophils with a late life cycle phenotype are often referred to as "aged" neutrophils. These neutrophils undergo functional changes that accompany stimuli of inflammation, tissue senescence and injury, inducing their maturation and senescence in the circulation and locally in damaged tissues, forming a unique late-life neutrophil phenotype. "Aged" neutrophils, although attenuated in antibacterial capacity, are more active in aging and age-related diseases, exhibit high levels of mitochondrial ROS and mitochondrial DNA leakage, promote senescence of neighboring cells, and exacerbate cardiac and vascular tissue damage, including vascular inflammation, myocardial infarction, atherosclerosis, stroke, abdominal aortic aneurysm, and SARS-CoV-2 myocarditis. In this review, we outline the phenotypic changes of "aged" neutrophils characterized by CXCR4high/CD62Llow, investigate the mechanisms driving neutrophil aging and functional transformation, and analyze the damage caused by "aged" neutrophils to various types of heart and blood vessels. Tissue injury and senescence promote neutrophil infiltration and induce neutrophil aging both in the circulation and locally in damaged tissues, resulting in an "aged" neutrophil phenotype characterized by CXCR4high/CD62Llow. We also discuss the effects of certain agents, such as neutralizing mitochondrial ROS, scavenging IsoLGs, blocking VDAC oligomers and mPTP channel activity, activating Nrf2 activity, and inhibiting neutrophil PAD4 activity, to inhibit neutrophil NET formation and ameliorate age-associated cardiovascular disease, providing a new perspective for anti-aging therapy in cardiovascular disease.
Collapse
Affiliation(s)
- Shuang Ling
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Rueter J, Rimbach G, Bilke S, Tholey A, Huebbe P. Readdressing the Localization of Apolipoprotein E (APOE) in Mitochondria-Associated Endoplasmic Reticulum (ER) Membranes (MAMs): An Investigation of the Hepatic Protein-Protein Interactions of APOE with the Mitochondrial Proteins Lon Protease (LONP1), Mitochondrial Import Receptor Subunit TOM40 (TOMM40) and Voltage-Dependent Anion-Selective Channel 1 (VDAC1). Int J Mol Sci 2024; 25:10597. [PMID: 39408926 PMCID: PMC11476584 DOI: 10.3390/ijms251910597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
As a component of circulating lipoproteins, APOE binds to cell surface receptors mediating lipoprotein metabolism and cholesterol transport. A growing body of evidence, including the identification of a broad variety of cellular proteins interacting with APOE, suggests additional independent functions. Investigating cellular localization and protein-protein interactions in cultured human hepatocytes, we aimed to contribute to the elucidation of hitherto unnoted cellular functions of APOE. We observed a strong accumulation of APOE in MAMs, equally evident for the two major isoforms APOE3 and APOE4. Using mass spectrometry proteome analyses, novel and previously noted APOE interactors were identified, including the mitochondrial proteins TOMM40, LONP1 and VDAC1. All three interactors were present in MAM fractions, which we think initially facilitates interactions with APOE. LONP1 is a protease with chaperone activity, which migrated to MAMs in response to ER stress, displaying a reinforced interaction with APOE. We therefore hypothesize that APOE may help in the unfolded protein response (UPR) by acting as a co-chaperone in cooperation with LONP1 at the interface of mitochondria and ER membranes. The interaction of APOE with the integral proteins TOMM40 and VDAC1 may point to the formation of bridging complexes connecting mitochondria with other organelles.
Collapse
Affiliation(s)
- Johanna Rueter
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany; (J.R.); (G.R.)
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany; (J.R.); (G.R.)
| | - Stephanie Bilke
- Institute of Experimental Medicine, University of Kiel, Niemannsweg 11, 24105 Kiel, Germany
| | - Andreas Tholey
- Institute of Experimental Medicine, University of Kiel, Niemannsweg 11, 24105 Kiel, Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany; (J.R.); (G.R.)
| |
Collapse
|
5
|
Gao J, Hou T. Cardiovascular disease treatment using traditional Chinese medicine:Mitochondria as the Achilles' heel. Biomed Pharmacother 2023; 164:114999. [PMID: 37311280 DOI: 10.1016/j.biopha.2023.114999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Cardiovascular disease (CVD), involving the pathological alteration of the heart or blood vessels, is one of the main causes of disability and death worldwide, with an estimated 18.6 million deaths per year. CVDs are caused by a variety of risk factors, including inflammation, hyperglycemia, hyperlipidemia, and increased oxidative stress. Mitochondria, the hub of ATP production and the main generator of reactive oxygen species (ROS), are linked to multiple cellular signaling pathways that regulate the progression of CVD and therefore are recognized as an essential target for CVD management. Initial treatment of CVD generally focuses on diet and lifestyle interventions; proper drugs or surgery can prolong or save the patient's life. Traditional Chinese medicine (TCM), a holistic medical care system with an over 2500-year history, has been proven to be efficient in curing CVD and other illnesses, with a strengthening effect on the body. However, the mechanisms underlying TCM alleviation of CVD remain elusive. Recent studies have recognized that TCM can alleviate cardiovascular disease by manipulating the quality and function of mitochondria. This review systematically summarizes the association of mitochondria with cardiovascular risk factors, and the relationships between mitochondrial dysfunction and CVD progression. We will investigate the research progress of managing cardiovascular disease by TCM and cover widely used TCMs that target mitochondria for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jie Gao
- Chengdu Integrated TCM and Western Medicine Hospital and Chengdu University of Traditional Chinese Medicine, Chengdu 610041 China
| | - Tianshu Hou
- Chengdu Integrated TCM and Western Medicine Hospital and Chengdu University of Traditional Chinese Medicine, Chengdu 610041 China.
| |
Collapse
|
6
|
Benitez S, Puig N, Rives J, Solé A, Sánchez-Quesada JL. Can Electronegative LDL Act as a Multienzymatic Complex? Int J Mol Sci 2023; 24:ijms24087074. [PMID: 37108253 PMCID: PMC10138509 DOI: 10.3390/ijms24087074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Electronegative LDL (LDL(-)) is a minor form of LDL present in blood for which proportions are increased in pathologies with increased cardiovascular risk. In vitro studies have shown that LDL(-) presents pro-atherogenic properties, including a high susceptibility to aggregation, the ability to induce inflammation and apoptosis, and increased binding to arterial proteoglycans; however, it also shows some anti-atherogenic properties, which suggest a role in controlling the atherosclerotic process. One of the distinctive features of LDL(-) is that it has enzymatic activities with the ability to degrade different lipids. For example, LDL(-) transports platelet-activating factor acetylhydrolase (PAF-AH), which degrades oxidized phospholipids. In addition, two other enzymatic activities are exhibited by LDL(-). The first is type C phospholipase activity, which degrades both lysophosphatidylcholine (LysoPLC-like activity) and sphingomyelin (SMase-like activity). The second is ceramidase activity (CDase-like). Based on the complementarity of the products and substrates of these different activities, this review speculates on the possibility that LDL(-) may act as a sort of multienzymatic complex in which these enzymatic activities exert a concerted action. We hypothesize that LysoPLC/SMase and CDase activities could be generated by conformational changes in apoB-100 and that both activities occur in proximity to PAF-AH, making it feasible to discern a coordinated action among them.
Collapse
Affiliation(s)
- Sonia Benitez
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER of Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Núria Puig
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - José Rives
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Arnau Solé
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER of Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
Rueter J, Rimbach G, Treitz C, Schloesser A, Lüersen K, Tholey A, Huebbe P. The mitochondrial BCKD complex interacts with hepatic apolipoprotein E in cultured cells in vitro and mouse livers in vivo. Cell Mol Life Sci 2023; 80:59. [PMID: 36749362 PMCID: PMC9905200 DOI: 10.1007/s00018-023-04706-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Apolipoprotein E (APOE) is known for its role in lipid metabolism and its association with age-related disease pathology. The aim of the present work was to identify previously unknown functions of APOE based on the detection of novel APOE protein-protein interaction candidates. APPROACH AND RESULTS APOE targeted replacement mice and transfected cultured hepatocytes expressing the human isoforms APOE3 and APOE4 were used. For 7 months, APOE3 and APOE4 mice were fed a high-fat and high-sugar diet to induce obesity, while a subgroup was subjected to 30% dietary restriction. Proteomic analysis of coimmunoprecipitation products from APOE mouse liver extracts revealed 28 APOE-interacting candidate proteins, including branched-chain alpha-keto acid dehydrogenase (BCKD) complex subunit alpha (BCKDHA) and voltage-dependent anion-selective channel 1 (VDAC1). The binding of APOE and BCKDHA was verified in situ by proximity ligation assay in cultured cells. The activity of the BCKD enzyme complex was significantly higher in obese APOE4 mice than in APOE3 mice, while the plasma levels of branched-chain amino acids and mTOR signalling proteins were not different. However, the protein-protein interaction with VDAC1 was strongly induced in APOE3 and APOE4 mice upon dietary restriction, suggesting a prominent role of APOE in mitochondrial function. CONCLUSIONS The protein-protein interactions of APOE with BCKDHA and VDAC1 appear to be of physiological relevance and are modulated upon dietary restriction. Because these are mitochondrial proteins, it may be suggested that APOE is involved in mitochondria-related processes and adaptation to hepatic energy demands.
Collapse
Affiliation(s)
- Johanna Rueter
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany.
| | - Christian Treitz
- Institute of Experimental Medicine, University of Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Anke Schloesser
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| | - Andreas Tholey
- Institute of Experimental Medicine, University of Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| |
Collapse
|
8
|
Zhang X, Wu L, Swerdlow RH, Zhao L. Opposing Effects of ApoE2 and ApoE4 on Glycolytic Metabolism in Neuronal Aging Supports a Warburg Neuroprotective Cascade against Alzheimer's Disease. Cells 2023; 12:410. [PMID: 36766752 PMCID: PMC9914046 DOI: 10.3390/cells12030410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Apolipoprotein E4 (ApoE4) is the most recognized genetic risk factor for late-onset Alzheimer's disease (LOAD), whereas ApoE2 reduces the risk for LOAD. The underlying mechanisms are unclear but may include effects on brain energy metabolism. Here, we used neuro-2a (N2a) cells that stably express human ApoE isoforms (N2a-hApoE), differentiated N2a-hApoE neuronal cells, and humanized ApoE knock-in mouse models to investigate relationships among ApoE isoforms, glycolytic metabolism, and neuronal health and aging. ApoE2-expressing cells retained robust hexokinase (HK) expression and glycolytic activity, whereas these endpoints progressively declined with aging in ApoE4-expressing cells. These divergent ApoE2 and ApoE4 effects on glycolysis directly correlated with markers of cellular wellness. Moreover, ApoE4-expressing cells upregulated phosphofructokinase and pyruvate kinase with the apparent intent of compensating for the HK-dependent glycolysis reduction. The introduction of ApoE2 increased HK levels and glycolysis flux in ApoE4 cells. PI3K/Akt signaling was distinctively regulated by ApoE isoforms but was only partially responsible for the ApoE-mediated effects on HK. Collectively, our findings indicate that human ApoE isoforms differentially modulate neuronal glycolysis through HK regulation, with ApoE2 upregulating and ApoE4 downregulating, which markedly impacts neuronal health during aging. These findings lend compelling support to the emerging inverse-Warburg theory of AD and highlight a therapeutic opportunity for bolstering brain glycolytic resilience to prevent and treat AD.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Long Wu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
9
|
Nishita Y, Sala G, Shinohara M, Tange C, Ando F, Shimokata H, Sato N, Otsuka R. Effects of APOEɛ4 genotype on age-associated change in cognitive functions among Japanese middle-aged and older adults: A 20-year follow-up study. Exp Gerontol 2023; 171:112036. [PMID: 36435340 DOI: 10.1016/j.exger.2022.112036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS Carriers of the apolipoprotein E ε4 allele (APOEɛ4) have an increased risk of developing dementia (e.g., Alzheimer's disease). However, it is less clear whether the APOEɛ4 might also be involved in cognitive aging among the non-clinical population of older adults. While some studies have suggested that the APOEɛ4 is related to accelerated cognitive decline in the normal aging process, others have failed to provide compelling evidence of such an impact. Notably, these discrepancies may depend on methodological shortcomings, including short time spans, few assessments, and small sample sizes. The present study overcomes the above limitations and aims to clarify the impact of the APOEɛ4 genotype on long-term longitudinal changes in cognitive functions in middle-aged and older adults in Japan. METHODS AND RESULTS The data were retrieved from the National Institute for Longevity Sciences-Longitudinal Study of Aging (NILS-LSA) survey (N = 1832; 40 to 79 years of age at baseline). The participants were tested over nine waves covering a period of approximately 20 years. Latent Growth Curve (LGC) modeling was employed to test the impact of the interaction between APOEɛ4 status and age on several cognitive functions. Four tests of the WAIS-R were administered: Information, Similarities, Picture completion, and Digit Symbol Substitution Test (DSST). The results showed that the APOEɛ4 carriers experienced a more pronounced decline in the DSST (p = 0.001) and Similarities (p = 0.022) tests. A similar tendency was found in the Information test (p = 0.034). By contrast, no effect was found in the Picture completion test (p = 0.563). CONCLUSIONS APOEɛ4 carriers seem to exhibit a steeper cognitive decline, which becomes apparent in old age. This effect is more robust in fluid cognitive skills (DSST) than crystallized cognitive skills (Information and Similarities). Overall, the APOEɛ4 genotype may be a significant risk factor in normal (i.e., non-clinical) cognitive aging.
Collapse
Affiliation(s)
- Yukiko Nishita
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan.
| | - Giovanni Sala
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Mitsuru Shinohara
- Department of Aging Neurobiology, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Chikako Tange
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Fujiko Ando
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Faculty of Health and Medical Sciences, Aichi Shukutoku University, Nagakute, Aichi 480-1197, Japan
| | - Hiroshi Shimokata
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Aichi 470-0196, Japan
| | - Naoyuki Sato
- Department of Aging Neurobiology, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Rei Otsuka
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| |
Collapse
|
10
|
Rueter J, Rimbach G, Huebbe P. Functional diversity of apolipoprotein E: from subcellular localization to mitochondrial function. Cell Mol Life Sci 2022; 79:499. [PMID: 36018414 PMCID: PMC9418098 DOI: 10.1007/s00018-022-04516-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
Human apolipoprotein E (APOE), originally known for its role in lipid metabolism, is polymorphic with three major allele forms, namely, APOEε2, APOEε3, and APOEε4, leading to three different human APOE isoforms. The ε4 allele is a genetic risk factor for Alzheimer's disease (AD); therefore, the vast majority of APOE research focuses on its role in AD pathology. However, there is increasing evidence for other functions of APOE through the involvement in other biological processes such as transcriptional regulation, mitochondrial metabolism, immune response, and responsiveness to dietary factors. Therefore, the aim of this review is to provide an overview of the potential novel functions of APOE and their characterization. The detection of APOE in various cell organelles points to previously unrecognized roles in mitochondria and others, although it is actually considered a secretory protein. Furthermore, numerous interactions of APOE with other proteins have been detected, providing indications for new metabolic pathways involving APOE. The present review summarizes the current evidence on APOE beyond its original role in lipid metabolism, to change the perspective and encourage novel approaches to future research on APOE and its isoform-dependent role in the cellular metabolism.
Collapse
Affiliation(s)
- Johanna Rueter
- Devision of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| | - Gerald Rimbach
- Devision of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany.
| | - Patricia Huebbe
- Devision of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| |
Collapse
|
11
|
Chen H, Chen F, Jiang Y, Zhang L, Hu G, Sun F, Zhang M, Ji Y, Chen Y, Che G, Zhou X, Zhang Y. A Review of ApoE4 Interference Targeting Mitophagy Molecular Pathways for Alzheimer's Disease. Front Aging Neurosci 2022; 14:881239. [PMID: 35669462 PMCID: PMC9166238 DOI: 10.3389/fnagi.2022.881239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is one of the major worldwide causes of dementia that is characterized by irreversible decline in learning, memory loss, and behavioral impairments. Mitophagy is selective autophagy through the clearance of aberrant mitochondria, specifically for degradation to maintain energy generation and neuronal and synaptic function in the brain. Accumulating evidence shows that defective mitophagy is believed to be as one of the early and prominent features in AD pathogenesis and has drawn attention in the recent few years. APOE ε4 allele is the greatest genetic determinant for AD and is widely reported to mediate detrimental effects on mitochondria function and mitophagic process. Given the continuity of the physiological process, this review takes the mitochondrial dynamic and mitophagic core events into consideration, which highlights the current knowledge about the molecular alterations from an APOE-genotype perspective, synthesizes ApoE4-associated regulations, and the cross-talk between these signaling, along with the focuses on general autophagic process and several pivotal processes of mitophagy, including mitochondrial dynamic (DRP1, MFN-1), mitophagic induction (PINK1, Parkin). These may shed new light on the link between ApoE4 and AD and provide novel insights for promising mitophagy-targeted therapeutic strategies for AD.
Collapse
Affiliation(s)
- Huiyi Chen
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
| | - Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ying Jiang
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
| | - Lu Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guizhen Hu
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
| | - Furong Sun
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yao Ji
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gang Che
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejian University School of Medicine, Hangzhou, China
| | - Xu Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
12
|
Tsujioka T, Sasaki D, Takeda A, Harashima H, Yamada Y. Resveratrol-Encapsulated Mitochondria-Targeting Liposome Enhances Mitochondrial Respiratory Capacity in Myocardial Cells. Int J Mol Sci 2021; 23:112. [PMID: 35008537 PMCID: PMC8745115 DOI: 10.3390/ijms23010112] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
The development of drug delivery systems for use in the treatment of cardiovascular diseases is an area of great interest. We report herein on an evaluation of the therapeutic potential of a myocardial mitochondria-targeting liposome, a multifunctional envelope-type nano device for targeting pancreatic β cells (β-MEND) that was previously developed in our laboratory. Resveratrol (RES), a natural polyphenol compound that has a cardioprotective effect, was encapsulated in the β-MEND (β-MEND (RES)), and its efficacy was evaluated using rat myocardioblasts (H9c2 cells). The β-MEND (RES) was readily taken up by H9c2 cells, as verified by fluorescence-activated cell sorter data, and was observed to be colocalized with intracellular mitochondria by confocal laser scanning microscopy. Myocardial mitochondrial function was evaluated by a Seahorse XF Analyzer and the results showed that the β-MEND (RES) significantly activated cellular maximal respiratory capacity. In addition, the β-MEND (RES) showed no cellular toxicity for H9c2 cells as evidenced by Premix WST-1 assays. This is the first report of the use of a myocardial mitochondria-targeting liposome encapsulating RES for activating mitochondrial function, which was clearly confirmed based on analyses using a Seahorse XF Analyzer.
Collapse
Affiliation(s)
- Takao Tsujioka
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan; (T.T.); (D.S.); (A.T.)
| | - Daisuke Sasaki
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan; (T.T.); (D.S.); (A.T.)
| | - Atsuhito Takeda
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan; (T.T.); (D.S.); (A.T.)
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan;
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan;
| |
Collapse
|
13
|
The Differential Effects of HDL Subpopulations on Lipoprotein Lipase (LPL)-Mediated VLDL Catabolism. Biomedicines 2021; 9:biomedicines9121839. [PMID: 34944655 PMCID: PMC8698418 DOI: 10.3390/biomedicines9121839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
High-density lipoprotein (HDL) subpopulations functional assessment is more relevant for HDL anti-atherogenic activity than cholesterol level. The aim of the study was to assess the impact of HDL-2 and HDL-3 on lipoprotein lipase (LPL)-mediated very-low-density lipoprotein (VLDL) catabolism related to hypertriglyceridemia development. VLDL and HDLs were isolated from serum by ultracentrifugation. VLDL was incubated with LPL in the absence and presence of total HDL or HDL subpopulations. Next, VLDL remnants were separated, and their composition and electrophoretic mobility was assessed. Both HDL subpopulations increased the efficiency of triglyceride lipolysis and apolipoprotein CII and CIII removal from VLDL up to ~90%. HDL-3 exerted significantly greater impact than HDL-2 on apolipoprotein E (43% vs. 18%, p < 0.001), free cholesterol (26% vs. 18%, p < 0.05) and phospholipids (53% vs. 43%, p < 0.05) removal from VLDL and VLDL remnant electrophoretic mobility (0.18 vs. 0.20, p < 0.01). A greater release of these components was also observed in the presence of total HDL with a low HDL-2/HDL-3 cholesterol ratio. Both HDL subpopulations affect VLDL composition during lipolysis, but HDL-3 exhibited a greater effect on this process. Altered composition of HDL related to significant changes in the distribution between HDL-2 and HDL-3 can influence the VLDL remnant features, affecting atherosclerosis progression.
Collapse
|
14
|
Molecular Dysfunctions of Mitochondria-Associated Endoplasmic Reticulum Contacts in Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2424509. [PMID: 34336087 PMCID: PMC8321742 DOI: 10.1155/2021/2424509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/11/2021] [Indexed: 02/05/2023]
Abstract
Atherosclerosis is a chronic lipid-driven inflammatory disease that results in the formation of lipid-rich and immune cell-rich plaques in the arterial wall, which has high morbidity and mortality in the world. The mechanism of atherosclerosis is still unclear now. Potential hypotheses involved in atherosclerosis are chronic inflammation theory, lipid percolation theory, mononuclear-macrophage theory, endothelial cell (EC) injury theory, and smooth muscle cell (SMC) mutation theory. Changes of phospholipids, glucose, critical proteins, etc. on mitochondria-associated endoplasmic reticulum membrane (MAM) can cause the progress of atherosclerosis. This review describes the structural and functional interaction between mitochondria and endoplasmic reticulum (ER) and explains the role of critical molecules in the structure of MAM during atherosclerosis.
Collapse
|
15
|
Chang X, Zhao Z, Zhang W, Liu D, Ma C, Zhang T, Meng Q, Yan P, Zou L, Zhang M. Natural Antioxidants Improve the Vulnerability of Cardiomyocytes and Vascular Endothelial Cells under Stress Conditions: A Focus on Mitochondrial Quality Control. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6620677. [PMID: 33552385 PMCID: PMC7847351 DOI: 10.1155/2021/6620677] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease has become one of the main causes of human death. In addition, many cardiovascular diseases are accompanied by a series of irreversible damages that lead to organ and vascular complications. In recent years, the potential therapeutic strategy of natural antioxidants in the treatment of cardiovascular diseases through mitochondrial quality control has received extensive attention. Mitochondria are the main site of energy metabolism in eukaryotic cells, including myocardial and vascular endothelial cells. Mitochondrial quality control processes ensure normal activities of mitochondria and cells by maintaining stable mitochondrial quantity and quality, thus protecting myocardial and endothelial cells against stress. Various stresses can affect mitochondrial morphology and function. Natural antioxidants extracted from plants and natural medicines are becoming increasingly common in the clinical treatment of diseases, especially in the treatment of cardiovascular diseases. Natural antioxidants can effectively protect myocardial and endothelial cells from stress-induced injury by regulating mitochondrial quality control, and their safety and effectiveness have been preliminarily verified. This review summarises the damage mechanisms of various stresses in cardiomyocytes and vascular endothelial cells and the mechanisms of natural antioxidants in improving the vulnerability of these cell types to stress by regulating mitochondrial quality control. This review is aimed at paving the way for novel treatments for cardiovascular diseases and the development of natural antioxidant drugs.
Collapse
Affiliation(s)
- Xing Chang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
- Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Zhenyu Zhao
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
| | - Wenjin Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Dong Liu
- China Academy of Chinese Medical Sciences, Institute of the History of Chinese Medicine and Medical Literature, Beijing, China
| | - Chunxia Ma
- Shandong Analysis and Test Centre, Qilu University of Technology, Jinan, China
| | - Tian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qingyan Meng
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Peizheng Yan
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Longqiong Zou
- Chongqing Sanxia Yunhai Pharmaceutical Co., Ltd., Chongqing, China
| | - Ming Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
| |
Collapse
|
16
|
Ke LY, Law SH, Mishra VK, Parveen F, Chan HC, Lu YH, Chu CS. Molecular and Cellular Mechanisms of Electronegative Lipoproteins in Cardiovascular Diseases. Biomedicines 2020; 8:biomedicines8120550. [PMID: 33260304 PMCID: PMC7760527 DOI: 10.3390/biomedicines8120550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of glucose and lipid metabolism increases plasma levels of lipoproteins and triglycerides, resulting in vascular endothelial damage. Remarkably, the oxidation of lipid and lipoprotein particles generates electronegative lipoproteins that mediate cellular deterioration of atherosclerosis. In this review, we examined the core of atherosclerotic plaque, which is enriched by byproducts of lipid metabolism and lipoproteins, such as oxidized low-density lipoproteins (oxLDL) and electronegative subfraction of LDL (LDL(−)). We also summarized the chemical properties, receptors, and molecular mechanisms of LDL(−). In combination with other well-known markers of inflammation, namely metabolic diseases, we concluded that LDL(−) can be used as a novel prognostic tool for these lipid disorders. In addition, through understanding the underlying pathophysiological molecular routes for endothelial dysfunction and inflammation, we may reassess current therapeutics and might gain a new direction to treat atherosclerotic cardiovascular diseases, mainly targeting LDL(−) clearance.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
- Graduate Institute of Medicine, College of Medicine and Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Vineet Kumar Mishra
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Ye-Hsu Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Correspondence: ; Tel.: +886-73121101 (ext. 2297); Fax: +886-73111996
| |
Collapse
|
17
|
Chu CS, Law SH, Lenzen D, Tan YH, Weng SF, Ito E, Wu JC, Chen CH, Chan HC, Ke LY. Clinical Significance of Electronegative Low-Density Lipoprotein Cholesterol in Atherothrombosis. Biomedicines 2020; 8:biomedicines8080254. [PMID: 32751498 PMCID: PMC7460408 DOI: 10.3390/biomedicines8080254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the numerous risk factors for atherosclerotic cardiovascular diseases (ASCVD), cumulative evidence shows that electronegative low-density lipoprotein (L5 LDL) cholesterol is a promising biomarker. Its toxicity may contribute to atherothrombotic events. Notably, plasma L5 LDL levels positively correlate with the increasing severity of cardiovascular diseases. In contrast, traditional markers such as LDL-cholesterol and triglyceride are the therapeutic goals in secondary prevention for ASCVD, but that is controversial in primary prevention for patients with low risk. In this review, we point out the clinical significance and pathophysiological mechanisms of L5 LDL, and the clinical applications of L5 LDL levels in ASCVD can be confidently addressed. Based on the previously defined cut-off value by receiver operating characteristic curve, the acceptable physiological range of L5 concentration is proposed to be below 1.7 mg/dL. When L5 LDL level surpass this threshold, clinically relevant ASCVD might be present, and further exams such as carotid intima-media thickness, pulse wave velocity, exercise stress test, or multidetector computed tomography are required. Notably, the ultimate goal of L5 LDL concentration is lower than 1.7 mg/dL. Instead, with L5 LDL greater than 1.7 mg/dL, lipid-lowering treatment may be required, including statin, ezetimibe or PCSK9 inhibitor, regardless of the low-density lipoprotein cholesterol (LDL-C) level. Since L5 LDL could be a promising biomarker, we propose that a high throughput, clinically feasible methodology is urgently required not only for conducting a prospective, large population study but for developing therapeutics strategies to decrease L5 LDL in the blood.
Collapse
Affiliation(s)
- Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan;
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - David Lenzen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - Yong-Hong Tan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - Shih-Feng Weng
- Department of Healthcare Administration and Medical Informatics, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Etsuro Ito
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Jung-Chou Wu
- Division of Cardiology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung 90059, Taiwan;
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA;
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan;
- Correspondence: (H.-C.C.); (L.-Y.K.); Tel.: +886-73121101 (ext. 2296); Fax: +886-73111996 (L.-Y.K.)
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
- Graduate Institute of Medicine, College of Medicine, & Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (H.-C.C.); (L.-Y.K.); Tel.: +886-73121101 (ext. 2296); Fax: +886-73111996 (L.-Y.K.)
| |
Collapse
|