1
|
Ansari A, Yadav PK, Valmiki S, Laine A, Rimbert A, Islam S, Osman I, Najafi-Shoushtari SH, Hussain MM. MicroRNA-615-3p decreases apo B expression in human liver cells. J Lipid Res 2024; 65:100659. [PMID: 39332527 PMCID: PMC11513542 DOI: 10.1016/j.jlr.2024.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024] Open
Abstract
Plasma lipids are mainly carried in apolipoprotein B (apoB) containing lipoproteins. High levels of these lipoproteins are associated with several metabolic diseases and lowering their plasma levels is associated with reduced incidence of atherosclerotic cardiovascular disease. MicroRNAs (miRs) are small non-coding RNAs that reduce the protein expression of their target mRNAs and are potential therapeutic agents. Here, we identified a novel miR-615-3p that interacts with human 3'-UTR of apoB mRNA, induces post-transcriptional mRNA degradation, and reduces cellular and secreted apoB100 in human hepatoma Huh-7 cells. Reducing cellular miR-615-3p levels by CRISPR-sgRNA increased cellular and secreted apoB100 indicating endogenous miR regulates apoB expression. Overexpression of miR-615-3p along with or without palmitic acid treatment decreased cellular and media apoB and increased cellular triglyceride levels without inducing endoplasmic reticulum stress. These studies have identified miR-615-3p as a negative regulator of apoB expression in human liver-derived cells. It is likely that there are more miRs that regulate apoB-containing lipoprotein assembly and secretion. Discovery of additional miRs may uncover novel mechanisms that control lipoprotein assembly and secretion.
Collapse
Affiliation(s)
- Abulaish Ansari
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA; Department of Research, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Pradeep Kumar Yadav
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, USA; Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, India
| | - Swati Valmiki
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, USA
| | - Antoine Laine
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Antoine Rimbert
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Shahidul Islam
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, USA
| | - Iman Osman
- Department of Medicine, New York University Langone Medical Center, New York, NY, USA
| | - S Hani Najafi-Shoushtari
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA; Department of Research, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - M Mahmood Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, USA; Research Department, New York Harbor Healthcare System, Brooklyn, NY, USA.
| |
Collapse
|
2
|
Cabodevilla AG, Son N, Goldberg IJ. Intracellular lipase and regulation of the lipid droplet. Curr Opin Lipidol 2024; 35:85-92. [PMID: 38447014 PMCID: PMC10919935 DOI: 10.1097/mol.0000000000000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW Lipid droplets are increasingly recognized as distinct intracellular organelles that have functions exclusive to the storage of energetic lipids. Lipid droplets modulate macrophage inflammatory phenotype, control the availability of energy for muscle function, store excess lipid, sequester toxic lipids, modulate mitochondrial activity, and allow transfer of fatty acids between tissues. RECENT FINDINGS There have been several major advances in our understanding of the formation, dissolution, and function of this organelle during the past two years. These include new information on movement and partition of amphipathic proteins between the cytosol and lipid droplet surface, molecular determinants of lipid droplet formation, and pathways leading to lipid droplet hydrophobic lipid formation. Rapid advances in mitochondrial biology have also begun to define differences in their function and partnering with lipid droplets to modulate lipid storage versus oxidation. SUMMARY This relationship of lipid droplets biology and cellular function provides new understanding of an important cellular organelle that influences muscle function, adipose lipid storage, and diseases of lipotoxicity.
Collapse
Affiliation(s)
- Ainara G Cabodevilla
- Division of Endocrinology, New York University Grossman School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
3
|
Kulminskaya N, Rodriguez Gamez CF, Hofer P, Cerk IK, Dubey N, Viertlmayr R, Sagmeister T, Pavkov-Keller T, Zechner R, Oberer M. Unmasking crucial residues in adipose triglyceride lipase for coactivation with comparative gene identification-58. J Lipid Res 2024; 65:100491. [PMID: 38135254 PMCID: PMC10828586 DOI: 10.1016/j.jlr.2023.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Lipolysis is an essential metabolic process that releases unesterified fatty acids from neutral lipid stores to maintain energy homeostasis in living organisms. Adipose triglyceride lipase (ATGL) plays a key role in intracellular lipolysis and can be coactivated upon interaction with the protein comparative gene identification-58 (CGI-58). The underlying molecular mechanism of ATGL stimulation by CGI-58 is incompletely understood. Based on analysis of evolutionary conservation, we used site directed mutagenesis to study a C-terminally truncated variant and full-length mouse ATGL providing insights in the protein coactivation on a per-residue level. We identified the region from residues N209-N215 in ATGL as essential for coactivation by CGI-58. ATGL variants with amino acids exchanges in this region were still able to hydrolyze triacylglycerol at the basal level and to interact with CGI-58, yet could not be activated by CGI-58. Our studies also demonstrate that full-length mouse ATGL showed higher tolerance to specific single amino acid exchanges in the N209-N215 region upon CGI-58 coactivation compared to C-terminally truncated ATGL variants. The region is either directly involved in protein-protein interaction or essential for conformational changes required in the coactivation process. Three-dimensional models of the ATGL/CGI-58 complex with the artificial intelligence software AlphaFold demonstrated that a large surface area is involved in the protein-protein interaction. Mapping important amino acids for coactivation of both proteins, ATGL and CGI-58, onto the 3D model of the complex locates these essential amino acids at the predicted ATGL/CGI-58 interface thus strongly corroborating the significance of these residues in CGI-58-mediated coactivation of ATGL.
Collapse
Affiliation(s)
| | | | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Ines Kathrin Cerk
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Noopur Dubey
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Roland Viertlmayr
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Theo Sagmeister
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria.
| |
Collapse
|
4
|
Hu Y, Wang R, Liu J, Wang Y, Dong J. Lipid droplet deposition in the regenerating liver: A promoter, inhibitor, or bystander? Hepatol Commun 2023; 7:e0267. [PMID: 37708445 PMCID: PMC10503682 DOI: 10.1097/hc9.0000000000000267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/29/2023] [Indexed: 09/16/2023] Open
Abstract
Liver regeneration (LR) is a complex process involving intricate networks of cellular connections, cytokines, and growth factors. During the early stages of LR, hepatocytes accumulate lipids, primarily triacylglycerol, and cholesterol esters, in the lipid droplets. Although it is widely accepted that this phenomenon contributes to LR, the impact of lipid droplet deposition on LR remains a matter of debate. Some studies have suggested that lipid droplet deposition has no effect or may even be detrimental to LR. This review article focuses on transient regeneration-associated steatosis and its relationship with the liver regenerative response.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics. Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Wang Y, Yan W, Lu Y, Du J, Tian X, Wu B, Peng S, Gu B, Cai W, Xiao Y. Intestinal Reg4 deficiency confers susceptibility to high-fat diet-induced liver steatosis by increasing intestinal fat absorption in mice. JHEP Rep 2023; 5:100700. [PMID: 37138677 PMCID: PMC10149362 DOI: 10.1016/j.jhepr.2023.100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 05/05/2023] Open
Abstract
Background & Aims Regenerating gene family member 4 (REG4) is a novel marker for enteroendocrine cells and is selectively expressed in specialised enteroendocrine cells of the small intestine. However, the exact roles of REG4 are largely unknown. In this study we investigate the effects of REG4 on the development of dietary fat-dependent liver steatosis and the mechanisms involved. Methods Mice with intestinal-specific Reg4 deficiency (Reg4 ΔIEC ) and Reg4-floxed alleles (Reg4 fl/fl ) were generated to investigate the effects of Reg4 on diet-induced obesity and liver steatosis. Serum levels of REG4 were also measured in children with obesity using ELISA. Results Reg4 ΔIEC mice fed a high-fat diet demonstrated significantly increased intestinal fat absorption and were prone to obesity and hepatic steatosis. Importantly, Reg4 ΔIEC mice exhibit enhanced activation of adenosine monophosphate-activated protein kinase (AMPK) signalling and increased protein abundance of the intestinal fat transporters, as well as enzymes involved in triglyceride synthesis and packaging at the proximal small intestine. Moreover, REG4 administration reduced fat absorption, and decreased the expression of intestinal fat absorption-related proteins in cultured intestinal cells possibly via the CaMKK2-AMPK pathway. Serum REG4 levels were markedly lower in children with obesity with advanced liver steatosis (p <0.05). Serum REG4 levels were inversely correlated with levels of liver enzymes, homeostasis model assessment of insulin resistance, low-density lipoprotein cholesterol, and triglycerides. Conclusions Our findings directly link Reg4 deficiency with increased fat absorption and obesity-related liver steatosis, and suggest that REG4 may provide a potential target for prevention and treatment of liver steatosis in children. Impact and Implications Hepatic steatosis is a key histological feature of non-alcoholic fatty liver disease, which is the leading chronic liver disease in children leading to the development of metabolic diseases; however, little is known about mechanisms induced by dietary fat. Intestinal REG4 acts as a novel enteroendocrine hormone reducing high-fat-diet-induced liver steatosis with decreasing intestinal fat absorption. REG4 may be a novel target for treatment of paediatric liver steatosis from the perspective of crosstalk between intestine and liver.
Collapse
Affiliation(s)
- Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Weihui Yan
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jun Du
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xinbei Tian
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Bo Wu
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shicheng Peng
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Beilin Gu
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Corresponding authors. Addresses: Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University No. 1665, Kong Jiang Road, Shanghai 200092, China. Tel.: +86-21-25076441; Fax: +86-21-65791316.
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, Shanghai 200092, China. Tel.: +86-21-25076445; Fax: +86-21-65791316.
| |
Collapse
|