1
|
Liu H, Zheng S, Hou G, Dai J, Zhao Y, Yang F, Xiang Z, Zhang W, Wang X, Gong Y, Li L, Zhang N, Hu Y. AKAP1/PKA-mediated GRP75 phosphorylation at mitochondria-associated endoplasmic reticulum membranes protects cancer cells against ferroptosis. Cell Death Differ 2024:10.1038/s41418-024-01414-2. [PMID: 39537840 DOI: 10.1038/s41418-024-01414-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Emerging evidence suggests that signaling pathways can be spatially regulated to ensure rapid and efficient responses to dynamically changing local cues. Ferroptosis is a recently defined form of lipid peroxidation-driven cell death. Although the molecular mechanisms underlying ferroptosis are emerging, spatial aspects of its signaling remain largely unexplored. By analyzing a public database, we found that a mitochondrial chaperone protein, glucose-regulated protein 75 (GRP75), may have a previously undefined role in regulating ferroptosis. This was subsequently validated. Interestingly, under ferroptotic conditions, GRP75 translocated from mitochondria to mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) and the cytosol. Further mechanistic studies revealed a highly spatial regulation of GRP75-mediated antiferroptotic signaling. Under ferroptotic conditions, lipid peroxidation predominantly accumulated at the ER, which activated protein kinase A (PKA) in a cAMP-dependent manner. In particular, a signaling microdomain, the outer mitochondrial membrane protein A-kinase anchor protein 1 (AKAP1)-anchored PKA, phosphorylated GRP75 at S148 in MAMs. This caused GRP75 to be sequestered outside the mitochondria, where it competed with Nrf2 for Keap1 binding through a conserved high-affinity RGD-binding motif, ETGE. Nrf2 was then stabilized and activated, leading to the transcriptional activation of a panel of antiferroptotic genes. Blockade of the PKA/GRP75 axis dramatically increased the responses of cancer cells to ferroptosis both in vivo and in vitro. Our identification a localized signaling cascade involved in protecting cancer cells from ferroptosis broadens our understanding of cellular defense mechanisms against ferroptosis and also provides a new target axis (AKAP1/PKA/GRP75) to improve the responses of cancer cells to ferroptosis.
Collapse
Affiliation(s)
- Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, Henan Province, 450000, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Guixue Hou
- BGI-SHENZHEN, Shenzhen, Guangdong Province, 518083, China
| | - Junren Dai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Yanan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Zhiyuan Xiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, Henan Province, 450000, China
| | - Wenxin Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, Henan Province, 450000, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Yafan Gong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, Henan Province, 450000, China
| | - Li Li
- The third affiliated hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150040, China
| | - Ning Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, Henan Province, 450000, China.
| |
Collapse
|
2
|
Cai A, Meng Y, Zhou H, Cai H, Shao X, Wang Q, Xu Y, Zhou Y, Zhou W, Chen L, Mou S. Podocyte Pathogenic Bone Morphogenetic Protein-2 Pathway and Immune Cell Behaviors in Primary Membranous Nephropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404151. [PMID: 38785168 PMCID: PMC11304328 DOI: 10.1002/advs.202404151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Primary membranous nephropathy (PMN) is one of the leading causes of end-stage renal disease, and the most frequent cause of massive proteinuria in nondiabetic adults, resulting in fatal complications. However, the underlying pathomechanisms of PMN remain largely unclear. Here, single-cell RNA sequencing is employed to analyze kidney biopsies from eleven PMN patients and seven healthy subjects. Profiling 44 060 cells from patients allowed us to characterize the cellular composition and cell-type-specific gene expression in the PMN kidney. The complement-induced BMP2/pSMAD1/COL4 pathway is identified as the pathogenic pathway in podocytes, bridging two key events, i.e., complement system activation and glomerular basement membrane thickening in PMN. Augmented infiltration and activation of myeloid leukocytes and B lymphocytes are found, profiling delicate crosstalk of immune cells in PMN kidneys. Overall, these results provide valuable insights into the roles of podocytes and immune cells in PMN, and comprehensive resources toward the complete understanding of PMN pathophysiology.
Collapse
Affiliation(s)
- Anxiang Cai
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yiwei Meng
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- Institute of Molecular Medicine, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hang Zhou
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hong Cai
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Xinghua Shao
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qin Wang
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yao Xu
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yin Zhou
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Wenyan Zhou
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- School of Life Science and TechnologyShanghai Tech UniversityShanghai201210China
| | - Shan Mou
- Department of Nephrology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
3
|
Bandala C, Carro-Rodríguez J, Cárdenas-Rodríguez N, Peña-Montero I, Gómez-López M, Hernández-Roldán AP, Huerta-Cruz JC, Muñoz-González F, Ignacio-Mejía I, Domínguez B, Lara-Padilla E. Comparative Effects of Gymnema sylvestre and Berberine on Adipokines, Body Composition, and Metabolic Parameters in Obese Patients: A Randomized Study. Nutrients 2024; 16:2284. [PMID: 39064727 PMCID: PMC11280467 DOI: 10.3390/nu16142284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Gymnema sylvestre (GS) and berberine (BBR) are natural products that have demonstrated therapeutic potential for the management of obesity and its comorbidities, as effective and safe alternatives to synthetic drugs. Although their anti-obesogenic and antidiabetic properties have been widely studied, comparative research on their impact on the gene expression of adipokines, such as resistin (Res), omentin (Ome), visfatin (Vis) and apelin (Ap), has not been reported. METHODOLOGY We performed a comparative study in 50 adult Mexican patients with obesity treated with GS or BBR for 3 months. The baseline and final biochemical parameters, body composition, blood pressure, gene expression of Res, Ome, Vis, and Ap, and safety parameters were evaluated. RESULTS BBR significantly decreased (p < 0.05) body weight, blood pressure and Vis and Ap gene expression and increased Ome, while GS decreased fasting glucose and Res gene expression (p < 0.05). A comparative analysis of the final measurements revealed a lower gene expression of Ap and Vis (p < 0.05) in patients treated with BBR than in those treated with GS. The most frequent adverse effects in both groups were gastrointestinal symptoms, which attenuated during the first month of treatment. CONCLUSION In patients with obesity, BBR has a better effect on body composition, blood pressure, and the gene expression of adipokines related to metabolic risk, while GS has a better effect on fasting glucose and adipokines related to insulin resistance, with minimal side effects.
Collapse
Affiliation(s)
- Cindy Bandala
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | - Jazmín Carro-Rodríguez
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | | | - Itzel Peña-Montero
- Laboratorio de Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (I.P.-M.); (M.G.-L.)
| | - Modesto Gómez-López
- Laboratorio de Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (I.P.-M.); (M.G.-L.)
| | - Ana Paola Hernández-Roldán
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | - Juan Carlos Huerta-Cruz
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosio Villegas, Secretaria de Salud, Mexico City 14080, Mexico;
| | - Felipe Muñoz-González
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Mexico City 11340, Mexico
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados en Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | - Brayan Domínguez
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | - Eleazar Lara-Padilla
- Laboratorio de Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (I.P.-M.); (M.G.-L.)
| |
Collapse
|
4
|
Li G, Yang Z, Yang C, Xie Y, Gong S, Lv S, Xiao B, Wang J, Weng Q, Wang J, Yu F. Single-cell RNA sequencing reveals cell-cell communication and potential biomarker in sepsis and septic shock patients. Int Immunopharmacol 2024; 132:111938. [PMID: 38593502 DOI: 10.1016/j.intimp.2024.111938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Sepsis is a disease characterized by infection-induced multiorgan dysfunction, which can progress to septic shock if not promptly treated. Early identification of sepsis is crucial for its treatment. However, there are currently limited specific biomarkers for sepsis or septic shock. This study aims to identify potential biomarkers for sepsis and septic shock. METHODS We analyzed single-cell transcriptomic data of peripheral blood mononuclear cells (PBMCs) from healthy individuals, sepsis and septic shock patients, identified differences in gene expression and cell-cell communication between different cell types during disease progression. Moreover, our analyses were further validated with flow cytometry and bulk RNA-seq data. RESULTS Our study elucidates the alterations in cellular proportions and cell-cell communication among healthy controls, sepsis, and septic shock patients. We identified a specific augmentation in the Resistin signaling within sepsis monocytes, mediated via RETN-CAP1 ligand-receptor pairs. Additionally, we observed enhanced IL16 signaling within monocytes from septic shock patients, mediated through IL16-CD4 ligand-receptor pairs. Subsequently, we confirmed our findings by validating the increase in CAP-1+ monocytes in sepsis and IL16+ monocytes in septic shock in mouse models. And a significant upregulation of CAP-1 and IL16 was also observed in the bulk RNA-seq data from patients with sepsis and septic shock. Furthermore, we identified four distinct clusters of CD14+ monocytes, highlighting the heterogeneity of monocytes in the progress of sepsis. CONCLUSIONS In summary, our work demonstrates changes in cell-cell communication of healthy controls, sepsis and septic shock, confirming that the molecules CAP-1 and IL16 on monocytes may serve as potential diagnostic markers for sepsis and septic shock, respectively. These findings provide new insights for early diagnosis and stratified treatment of the disease.
Collapse
Affiliation(s)
- Guilin Li
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Zhaoxu Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Chen Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Yaochen Xie
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Shuchen Gong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Shuying Lv
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Boneng Xiao
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Taizhou 318000, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Taizhou 318000, China; Beijing Life Science Academy, Beijing 102200, China.
| | - Feng Yu
- Department of Colorectal Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| |
Collapse
|
5
|
Yang HM, Kim J, Kim BK, Seo HJ, Kim JY, Lee JE, Lee J, You J, Jin S, Kwon YW, Jang HD, Kim HS. Resistin Regulates Inflammation and Insulin Resistance in Humans via the Endocannabinoid System. RESEARCH (WASHINGTON, D.C.) 2024; 7:0326. [PMID: 39050819 PMCID: PMC11267475 DOI: 10.34133/research.0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/01/2024] [Indexed: 07/27/2024]
Abstract
Resistin plays an important role in the pathophysiology of obesity-mediated insulin resistance in mice. However, the biology of resistin in humans is quite different from that in rodents. Therefore, the association between resistin and insulin resistance remains unclear in humans. Here, we tested whether and how the endocannabinoid system (ECS) control circulating peripheral blood mononuclear cells (PBMCs) that produce resistin and infiltrate into the adipose tissue, heart, skeletal muscle, and liver, resulting in inflammation and insulin resistance. Using human PBMCs, we investigate whether the ECS is connected to human resistin. To test whether the ECS regulates inflammation and insulin resistance in vivo, we used 2 animal models such as "humanized" nonobese diabetic/Shi-severe combined immunodeficient interleukin-2Rγ (null) (NOG) mice and "humanized" resistin mouse models, which mimic human body. In human atheromatous plaques, cannabinoid 1 receptor (CB1R)-positive macrophage was colocalized with the resistin expression. In addition, resistin was exclusively expressed in the sorted CB1R-positive cells from human PBMCs. In CB1R-positive cells, endocannabinoid ligands induced resistin expression via the p38-Sp1 pathway. In both mouse models, a high-fat diet increased the accumulation of endocannabinoid ligands in adipose tissue, which recruited the CB1R-positive cells that secrete resistin, leading to adipose tissue inflammation and insulin resistance. This phenomenon was suppressed by CB1R blockade or in resistin knockout mice. Interestingly, this process was accompanied by mitochondrial change that was induced by resistin treatment. These results provide important insights into the ECS-resistin axis, leading to the development of metabolic diseases. Therefore, the regulation of resistin via the CB1R could be a potential therapeutic strategy for cardiometabolic diseases.
Collapse
Affiliation(s)
- Han-Mo Yang
- Department of Internal Medicine,
Seoul National University Hospital, Seoul, Korea
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Joonoh Kim
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Baek-Kyung Kim
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Hyun Ju Seo
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Ju-Young Kim
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Joo-Eun Lee
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Jaewon Lee
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Jihye You
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Sooryeonhwa Jin
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Yoo-Wook Kwon
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Hyun-Duk Jang
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Hyo-Soo Kim
- Department of Internal Medicine,
Seoul National University Hospital, Seoul, Korea
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
- Molecular Medicine and Biopharmaceutical Sciences,
Seoul National University, Seoul, 03080, Korea
| |
Collapse
|
6
|
Wang Y, Yang J, Zhang Y, Zhou J. Focus on Mitochondrial Respiratory Chain: Potential Therapeutic Target for Chronic Renal Failure. Int J Mol Sci 2024; 25:949. [PMID: 38256023 PMCID: PMC10815764 DOI: 10.3390/ijms25020949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The function of the respiratory chain is closely associated with kidney function, and the dysfunction of the respiratory chain is a primary pathophysiological change in chronic kidney failure. The incidence of chronic kidney failure caused by defects in respiratory-chain-related genes has frequently been overlooked. Correcting abnormal metabolic reprogramming, rescuing the "toxic respiratory chain", and targeting the clearance of mitochondrial reactive oxygen species are potential therapies for treating chronic kidney failure. These treatments have shown promising results in slowing fibrosis and inflammation progression and improving kidney function in various animal models of chronic kidney failure and patients with chronic kidney disease (CKD). The mitochondrial respiratory chain is a key target worthy of attention in the treatment of chronic kidney failure. This review integrated research related to the mitochondrial respiratory chain and chronic kidney failure, primarily elucidating the pathological status of the mitochondrial respiratory chain in chronic kidney failure and potential therapeutic drugs. It provided new ideas for the treatment of kidney failure and promoted the development of drugs targeting the mitochondrial respiratory chain.
Collapse
Affiliation(s)
| | | | | | - Jianhua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China; (Y.W.); (J.Y.); (Y.Z.)
| |
Collapse
|
7
|
Zhang X, Liu Q, Liu A, Leng S, Wang X, Zhao R, Sheng Z, Feng Q, Yang X, Wang S, Hou M, Peng J, Feng G. Obesity is associated with poor outcomes of corticosteroid treatment in patients with primary immune thrombocytopenia. Br J Haematol 2023; 203:295-303. [PMID: 37488467 DOI: 10.1111/bjh.18997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/24/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Emerging evidence has demonstrated that obesity impacts multiple immune-related diseases. It remains unclear whether and how obesity alters treatment outcomes in patients with primary immune thrombocytopenia (ITP). Thus, we retrospectively investigated 214 treatment-naïve patients who received standard high-dose dexamethasone therapy in Qilu Hospital. Patients with obesity showed significantly lower overall initial response (underweight vs. normal vs. overweight vs. obese: 85.7% vs. 85.2% vs. 72.0% vs. 52.3%, p = 0.001) and initial complete response ([CR], 71.4% vs. 70.4% vs. 53.3% vs. 27.3%, p < 0.001) rates. The same trend was observed in the 6-month sustained response (63.6% vs. 52.3% vs. 35.6% vs. 22.7%, p = 0.03) and sustained CR (36.4% vs. 44.6% vs. 24.4% vs. 9.1%, p = 0.01). The Kaplan-Meier analysis revealed a shortened duration of remission in the obese group (median duration of remission, not reached vs. 16 months vs. 2 months vs. 1 month, p = 0.002). In multivariate regression analysis, obesity was independently associated with poor initial and sustained responses, and an increased risk for relapse. In conclusion, obesity is a negative predictor for outcomes of corticosteroid treatment. A stratified strategy according to body mass index status may facilitate the precision management of ITP.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Qiang Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Anli Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Shaoqiu Leng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaolin Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Ruxia Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Zi Sheng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Shuwen Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Gege Feng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
8
|
Al-Shuhaib MBS, Alam S, Khan SA, Hashim HO, Obayes DH, Al-Shuhaib JMB. Masoprocol: a promising candidate for targeting insulin resistance by inhibiting resistin with optimal druglikeness Potentials: an in silico approach. J Biomol Struct Dyn 2023; 42:10044-10056. [PMID: 37671847 DOI: 10.1080/07391102.2023.2254842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
Resistin is a cysteine-rich secretory hormone that induces resistance to insulin, and its elevated expression is correlated with the onset of diabetes and several related metabolic disorders. Resistin performs its inhibitory role by connecting three identical subunits through Cys22-based disulfide linkages. The necessity to inhibit the formation of resistin trimer is one of the essential means to prevent the aggravation of diabetes mellitus type 2, obesity, and atherosclerosis. This study was conducted to screen the clinically approved drugs to find the most potent one to inhibit resistin with the best pharmacokinetics and drug-likeness properties. A total of 4654 clinically approved drugs were docked against the Cys22 residue of resistin. The top ten drugs with the highest high-precision (XP) docking scores were selected. Ioversol and masoprocol showed the highest XP docking and Molecular Mechanics-Generalized Born Surface Area (MMGBSA) scores, respectively, with double hydrogen bonding with the targeted Cys22. Molecular dynamics (MD) simulations showed that the masoprocol-resistin complex exhibited lower root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) values than those observed in the ioversol-resistin complex. Both drugs induced drastic conformational changes in resistin monomer interactions. However, ioversol did not prove satisfying drug-likeness properties, while masoprocol showed the most favourable pharmacokinetic and drug-likeness properties. This study has demonstrated that masoprocol offers a novel inhibitory effect on resistin with the highest ligand affinity, making it a promising drug for combating insulin resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Sarfaraz Alam
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Salman Ali Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Hayder O Hashim
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Babylon, Babil, Iraq
| | - Daniel H Obayes
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | | |
Collapse
|
9
|
Khan H, Shaikh F, Syed MH, Mamdani M, Saposnik G, Qadura M. Current Biomarkers for Carotid Artery Stenosis: A Comprehensive Review of the Literature. Metabolites 2023; 13:919. [PMID: 37623863 PMCID: PMC10456624 DOI: 10.3390/metabo13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Carotid artery stenosis (CAS), an atherosclerotic disease of the carotid artery, is one of the leading causes of transient ischemic attacks (TIA) and cerebrovascular attacks (CVA). The atherogenic process of CAS affects a wide range of physiological processes, such as inflammation, endothelial cell function, smooth muscle cell migration and many more. The current gold-standard test for CAS is Doppler ultrasound; however, there is yet to be determined a strong, clinically validated biomarker in the blood that can diagnose patients with CAS and/or predict adverse outcomes in such patients. In this comprehensive literature review, we evaluated all of the current research on plasma and serum proteins that are current contenders for biomarkers for CAS. In this literature review, 36 proteins found as potential biomarkers for CAS were categorized in to the following nine categories based on protein function: (1) Inflammation and Immunity, (2) Lipid Metabolism, (3) Haemostasis, (4) Cardiovascular Markers, (5) Markers of Kidney Function, (6) Bone Health, (7) Cellular Structure, (8) Growth Factors, and (9) Hormones. This literature review is the most up-to-date and current comprehensive review of research on biomarkers of CAS, and the only review that demonstrated the several pathways that contribute to the initiation and progression of the disease. With this review, future studies can determine if any new markers, or a panel of the proteins explored in this study, may be contenders as diagnostic or prognostic markers for CAS.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Muzammil H. Syed
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Muhammad Mamdani
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
- Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, 55 Queen St E, Toronto, ON M5C 1R6, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, 55 Queen St E, Toronto, ON M5C 1R6, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
10
|
Martino E, Luce A, Balestrieri A, Mele L, Anastasio C, D'Onofrio N, Balestrieri ML, Campanile G. Whey Improves In Vitro Endothelial Mitochondrial Function and Metabolic Redox Status in Diabetic State. Antioxidants (Basel) 2023; 12:1311. [PMID: 37372041 DOI: 10.3390/antiox12061311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Endothelial dysfunction plays a critical role in the progression of type 2 diabetes mellitus (T2DM), leading to cardiovascular complications. Current preventive antioxidant strategies to reduce oxidative stress and improve mitochondrial function in T2DM highlight dietary interventions as a promising approach, stimulating the deepening of knowledge of food sources rich in bioactive components. Whey (WH), a dairy by-product with a considerable content of bioactive compounds (betaines and acylcarnitines), modulates cancer cell metabolism by acting on mitochondrial energy metabolism. Here, we aimed at covering the lack of knowledge on the possible effect of WH on the mitochondrial function in T2DM. The results showed that WH improved human endothelial cell (TeloHAEC) function during the in vitro diabetic condition mimicked by treating cells with palmitic acid (PA) (0.1 mM) and high glucose (HG) (30 mM). Of note, WH protected endothelial cells from PA+HG-induced cytotoxicity (p < 0.01) and prevented cell cycle arrest, apoptotic cell death, redox imbalance, and metabolic alteration (p < 0.01). Moreover, WH counteracted mitochondrial injury and restored SIRT3 levels (p < 0.01). The SiRNA-mediated suppression of SIRT3 abolished the protective effects exerted by WH on the mitochondrial and metabolic impairment caused by PA+HG. These in vitro results reveal the efficacy of whey as a redox and metabolic modulator in the diabetic state and pave the way for future studies to consider whey as the source of dietary bioactive molecules with health benefits in preventive strategies against chronic diseases.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Amalia Luce
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138 Naples, Italy
| | - Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| |
Collapse
|
11
|
Aragón-Vela J, Alcalá-Bejarano Carrillo J, Moreno-Racero A, Plaza-Diaz J. The Role of Molecular and Hormonal Factors in Obesity and the Effects of Physical Activity in Children. Int J Mol Sci 2022; 23:15413. [PMID: 36499740 PMCID: PMC9737554 DOI: 10.3390/ijms232315413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity and overweight are defined as abnormal fat accumulations. Adipose tissue consists of more than merely adipocytes; each adipocyte is closely coupled with the extracellular matrix. Adipose tissue stores excess energy through expansion. Obesity is caused by the abnormal expansion of adipose tissue as a result of adipocyte hypertrophy and hyperplasia. The process of obesity is controlled by several molecules, such as integrins, kindlins, or matrix metalloproteinases. In children with obesity, metabolomics studies have provided insight into the existence of unique metabolic profiles. As a result of low-grade inflammation in the system, abnormalities were observed in several metabolites associated with lipid, carbohydrate, and amino acid pathways. In addition, obesity and related hormones, such as leptin, play an instrumental role in regulating food intake and contributing to childhood obesity. The World Health Organization states that physical activity benefits the heart, the body, and the mind. Several noncommunicable diseases, such as cardiovascular disease, cancer, and diabetes, can be prevented and managed through physical activity. In this work, we reviewed pediatric studies that examined the molecular and hormonal control of obesity and the influence of physical activity on children with obesity or overweight. The purpose of this review was to examine some orchestrators involved in this disease and how they are related to pediatric populations. A larger number of randomized clinical trials with larger sample sizes and long-term studies could lead to the discovery of new key molecules as well as the detection of significant factors in the coming years. In order to improve the health of the pediatric population, omics analyses and machine learning techniques can be combined in order to improve treatment decisions.
Collapse
Affiliation(s)
- Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Jesús Alcalá-Bejarano Carrillo
- Department of Health, University of the Valley of Mexico, Robles 600, Tecnologico I, San Luis Potosí 78220, Mexico
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain
| | - Aurora Moreno-Racero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Instituto de Investigación Biosanitaria IBS, Granada, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| |
Collapse
|