1
|
Arhar S, Pfaller R, Athenstaedt K, Lins T, Gogg-Fassolter G, Züllig T, Natter K. Retargeting of heterologous enzymes results in improved β-carotene synthesis in Saccharomyces cerevisiae. J Appl Microbiol 2024; 135:lxae224. [PMID: 39215465 DOI: 10.1093/jambio/lxae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
AIMS Carotenoids are a class of hydrophobic substances that are important as food and feed colorants and as antioxidants. The pathway for β-carotene synthesis has been expressed in various yeast species, albeit with rather low yields and titers. The inefficient conversion of phytoene to lycopene is often regarded as a bottleneck in the pathway. In this study, we aimed at the improvement of β-carotene production in Saccharomyces cerevisiae by specifically engineering the enzymatic reactions producing and converting phytoene. METHODS AND RESULTS We show that phytoene is stored in intracellular lipid droplets, whereas the enzyme responsible for its conversion, phytoene dehydrogenase, CrtI, is located at the endoplasmic reticulum, like the bifunctional enzyme CrtYB that catalyses the reaction before and after CrtI. To improve the accessibility of phytoene for CrtI and to delay its storage in lipid droplets, we tested the relocation of CrtI and CrtYB to mitochondria. However, only the retargeting of CrtYB resulted in an improvement of the β-carotene content, whereas the mitochondrial variant of CrtI was not functional. Surprisingly, a cytosolic variant of this enzyme, which we obtained through the elimination of its carboxy-terminal membrane anchor, caused an increase in β-carotene accumulation. Overexpression of this CrtI variant in an optimized medium resulted in a strain with a β-carotene content of 79 mg g-1 cell dry weight, corresponding to a 76-fold improvement over the starting strain. CONCLUSIONS The retargeting of heterologously expressed pathway enzymes improves β-carotene production in S. cerevisiae, implicating extensive inter-organellar transport phenomena of carotenoid precursors. In addition, strong overexpression of carotenoid biosynthetic enzymes and the optimization of cultivation conditions are required for high contents.
Collapse
Affiliation(s)
- Simon Arhar
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Rupert Pfaller
- Wacker Chemie AG, Consortium für elektrochemische Industrie, Zielstattstraße 20, 81379 München, Germany
| | - Karin Athenstaedt
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Thomas Lins
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Gabriela Gogg-Fassolter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Klaus Natter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| |
Collapse
|
2
|
Tang R, Wen Q, Li M, Zhang W, Wang Z, Yang J. Recent Advances in the Biosynthesis of Farnesene Using Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15468-15483. [PMID: 34905684 DOI: 10.1021/acs.jafc.1c06022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Farnesene, as an important sesquiterpene isoprenoid polymer of acetyl-CoA, is a renewable feedstock for diesel fuel, polymers, and cosmetics. It has been widely applied in agriculture, medicine, energy, and other fields. In recent years, farnesene biosynthesis is considered a green and economical approach because of its mild reaction conditions, low environmental pollution, and sustainability. Metabolic engineering has been widely applied to construct cell factories for farnesene biosynthesis. In this paper, the research progress, common problems, and strategies of farnesene biosynthesis are reviewed. They are mainly described from the perspectives of the current status of farnesene biosynthesis in different host cells, optimization of the metabolic pathway for farnesene biosynthesis, and key enzymes for farnesene biosynthesis. Furthermore, the challenges and prospects for future farnesene biosynthesis are discussed.
Collapse
Affiliation(s)
- Ruohao Tang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Qifeng Wen
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Meijie Li
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Wei Zhang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Zhaobao Wang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Jianming Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| |
Collapse
|
3
|
Liu Y, Lin Y, Guo Y, Wu F, Zhang Y, Qi X, Wang Z, Wang Q. Stress tolerance enhancement via SPT15 base editing in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:155. [PMID: 34229745 PMCID: PMC8259078 DOI: 10.1186/s13068-021-02005-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/26/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae is widely used in traditional brewing and modern fermentation industries to produce biofuels, chemicals and other bioproducts, but challenged by various harsh industrial conditions, such as hyperosmotic, thermal and ethanol stresses. Thus, its stress tolerance enhancement has been attracting broad interests. Recently, CRISPR/Cas-based genome editing technology offers unprecedented tools to explore genetic modifications and performance improvement of S. cerevisiae. RESULTS Here, we presented that the Target-AID (activation-induced cytidine deaminase) base editor of enabling C-to-T substitutions could be harnessed to generate in situ nucleotide changes on the S. cerevisiae genome, thereby introducing protein point mutations in cells. The general transcription factor gene SPT15 was targeted, and total 36 mutants with diversified stress tolerances were obtained. Among them, the 18 tolerant mutants against hyperosmotic, thermal and ethanol stresses showed more than 1.5-fold increases of fermentation capacities. These mutations were mainly enriched at the N-terminal region and the convex surface of the saddle-shaped structure of Spt15. Comparative transcriptome analysis of three most stress-tolerant (A140G, P169A and R238K) and two most stress-sensitive (S118L and L214V) mutants revealed common and distinctive impacted global transcription reprogramming and transcriptional regulatory hubs in response to stresses, and these five amino acid changes had different effects on the interactions of Spt15 with DNA and other proteins in the RNA Polymerase II transcription machinery according to protein structure alignment analysis. CONCLUSIONS Taken together, our results demonstrated that the Target-AID base editor provided a powerful tool for targeted in situ mutagenesis in S. cerevisiae and more potential targets of Spt15 residues for enhancing yeast stress tolerance.
Collapse
Affiliation(s)
- Yanfang Liu
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuping Lin
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yufeng Guo
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Fengli Wu
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yuanyuan Zhang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xianni Qi
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Zhen Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinhong Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Wang Z, Zhang R, Yang Q, Zhang J, Zhao Y, Zheng Y, Yang J. Recent advances in the biosynthesis of isoprenoids in engineered Saccharomyces cerevisiae. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:1-35. [PMID: 33934850 DOI: 10.1016/bs.aambs.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Isoprenoids, as the largest group of chemicals in the domains of life, constitute more than 50,000 members. These compounds consist of different numbers of isoprene units (C5H8), by which they are typically classified into hemiterpenoids (C5), monoterpenoids (C10), sesquiterpenoids (C15), diterpenoids (C20), triterpenoids (C30), and tetraterpenoids (C40). In recent years, isoprenoids have been employed as food additives, in the pharmaceutical industry, as advanced biofuels, and so on. To realize the sufficient and efficient production of valuable isoprenoids on an industrial scale, fermentation using engineered microorganisms is a promising strategy compared to traditional plant extraction and chemical synthesis. Due to the advantages of mature genetic manipulation, robustness and applicability to industrial bioprocesses, Saccharomyces cerevisiae has become an attractive microbial host for biochemical production, including that of various isoprenoids. In this review, we summarized the advances in the biosynthesis of isoprenoids in engineered S. cerevisiae over several decades, including synthetic pathway engineering, microbial host engineering, and central carbon pathway engineering. Furthermore, the challenges and corresponding strategies towards improving isoprenoid production in engineered S. cerevisiae were also summarized. Finally, suggestions and directions for isoprenoid production in engineered S. cerevisiae in the future are discussed.
Collapse
Affiliation(s)
- Zhaobao Wang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Rubing Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Qun Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jintian Zhang
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Youxi Zhao
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianming Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
5
|
Arhar S, Natter K. Common aspects in the engineering of yeasts for fatty acid- and isoprene-based products. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158513. [PMID: 31465888 DOI: 10.1016/j.bbalip.2019.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/26/2019] [Accepted: 08/20/2019] [Indexed: 11/18/2022]
Abstract
The biosynthetic pathways for most lipophilic metabolites share several common principles. These substances are built almost exclusively from acetyl-CoA as the donor for the carbon scaffold and NADPH is required for the reductive steps during biosynthesis. Due to their hydrophobicity, the end products are sequestered into the same cellular compartment, the lipid droplet. In this review, we will summarize the efforts in the metabolic engineering of yeasts for the production of two major hydrophobic substance classes, fatty acid-based lipids and isoprenoids, with regard to these common aspects. We will compare and discuss the results of genetic engineering strategies to construct strains with enhanced synthesis of the precursor acetyl-CoA and with modified redox metabolism for improved NADPH supply. We will also discuss the role of the lipid droplet in the storage of the hydrophobic product and review the strategies to either optimize this organelle for higher capacity or to achieve excretion of the product into the medium.
Collapse
Affiliation(s)
- Simon Arhar
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Klaus Natter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria.
| |
Collapse
|
6
|
A Genetic Screen for the Isolation of Mutants with Increased Flux in the Isoprenoid Pathway of Yeast. Methods Mol Biol 2019; 1927:231-246. [PMID: 30788796 DOI: 10.1007/978-1-4939-9142-6_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The yeast Saccharomyces cerevisiae is one of the preferred hosts for the production of terpenoids through metabolic engineering. A genetic screen to identify novel mutants that can increase the flux in the isoprenoid pathway has been lacking. We present here the method that has led to the development of a carotenoid based visual screen by exploiting the carotenogenic genes from the red yeast Rhodosporidium toruloides, an organism known to have high levels of carotenoids. We also discuss the methods to use this screen for the identification of mutants that can lead to higher isoprenoid flux. The carotenoid based screen was developed in S. cerevisiae using phytoene synthase RtPSY1 and a hyperactive mutant of the enzyme phytoene dehydrogenase, RtCRTI(A393T) from Rhodosporidium toruloides. As validation of the genetic screen is critical at all stages, we describe the method to validate the screen using a known flux increasing gene, a truncated HMG1 (tHMG1). To demonstrate how this screen can be exploited to isolate mutants, we described how targeted mutagenesis of candidate gene, SPT15 a TATA binding protein involved in the global transcription machinery can be carried out to yield novel mutants with increased metabolic flux. Since it is also important to ensure that the isolated mutants are enhancing general isoprenoid flux, we describe how this can be established using an alternate isoprenoid, α-farnesene.
Collapse
|
7
|
Yang J, Kim B, Kim GY, Jung GY, Seo SW. Synthetic biology for evolutionary engineering: from perturbation of genotype to acquisition of desired phenotype. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:113. [PMID: 31086565 PMCID: PMC6506968 DOI: 10.1186/s13068-019-1460-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
With the increased attention on bio-based industry, demands for techniques that enable fast and effective strain improvement have been dramatically increased. Evolutionary engineering, which is less dependent on biological information, has been applied to strain improvement. Currently, synthetic biology has made great innovations in evolutionary engineering, particularly in the development of synthetic tools for phenotypic perturbation. Furthermore, discovering biological parts with regulatory roles and devising novel genetic circuits have promoted high-throughput screening and selection. In this review, we first briefly explain basics of synthetic biology tools for mutagenesis and screening of improved variants, and then describe how these strategies have been improved and applied to phenotypic engineering. Evolutionary engineering using advanced synthetic biology tools will enable further innovation in phenotypic engineering through the development of novel genetic parts and assembly into well-designed logic circuits that perform complex tasks.
Collapse
Affiliation(s)
- Jina Yang
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea
- Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea
| | - Beomhee Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea
| | - Gi Yeon Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 South Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea
- Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea
| |
Collapse
|
8
|
Wadhwa M, Srinivasan S, Bachhawat AK, Venkatesh KV. Role of phosphate limitation and pyruvate decarboxylase in rewiring of the metabolic network for increasing flux towards isoprenoid pathway in a TATA binding protein mutant of Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:152. [PMID: 30241525 PMCID: PMC6149198 DOI: 10.1186/s12934-018-1000-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Background Production of isoprenoids, a large and diverse class of commercially important chemicals, can be achieved through engineering metabolism in microorganisms. Several attempts have been made to reroute metabolic flux towards isoprenoid pathway in yeast. Most approaches have focused on the core isoprenoid pathway as well as on meeting the increased precursors and cofactor requirements. To identify unexplored genetic targets that positively influence the isoprenoid pathway activity, a carotenoid based genetic screen was previously developed and three novel mutants of a global TATA binding protein SPT15 was isolated for heightened isoprenoid flux in Saccharomyces cerevisiae. Results In this study, we investigated how one of the three spt15 mutants, spt15_Ala101Thr, was leading to enhanced isoprenoid pathway flux in S. cerevisiae. Metabolic flux analysis of the spt15_Ala101Thr mutant initially revealed a rerouting of the central carbon metabolism for the production of the precursor acetyl-CoA through activation of pyruvate-acetaldehyde-acetate cycle in the cytoplasm due to high flux in the reaction caused by pyruvate decarboxylase (PDC). This led to alternate routes of cytosolic NADPH generation, increased mitochondrial ATP production and phosphate demand in the mutant strain. Comparison of the transcriptomics of the spt15_Ala101Thr mutant cell with SPT15WT bearing cells shows upregulation of phosphate mobilization genes and pyruvate decarboxylase 6 (PDC6). Increasing the extracellular phosphate led to an increase in the growth rate and biomass but diverted flux away from the isoprenoid pathway. PDC6 is also shown to play a critical role in isoprenoid pathway flux under phosphate limitation conditions. Conclusion The study not only proposes a probable mechanism as to how a spt15_Ala101Thr mutant (a global TATA binding protein mutant) could increase flux towards the isoprenoid pathway, but also PDC as a new route of metabolic manipulation for increasing the isoprenoid flux in yeast. Electronic supplementary material The online version of this article (10.1186/s12934-018-1000-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manisha Wadhwa
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Mohali, India
| | - Sumana Srinivasan
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Anand K Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Mohali, India.
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Mumbai, India.
| |
Collapse
|
9
|
Seong YJ, Park H, Yang J, Kim SJ, Choi W, Kim KH, Park YC. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations. Appl Microbiol Biotechnol 2017; 101:3567-3575. [PMID: 28168313 DOI: 10.1007/s00253-017-8139-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/20/2017] [Indexed: 12/01/2022]
Abstract
The SPT15 gene encodes a Saccharomyces cerevisiae TATA-binding protein, which is able to globally control the transcription levels of various metabolic and regulatory genes. In this study, a SPT15 gene mutant (S42N, S78R, S163P, and I212N) was expressed in S. cerevisiae BY4741 (BSPT15-M3), of which effects on fermentative yeast properties were evaluated in a series of culture types. By applying different nitrogen sources and air supply conditions in batch culture, organic nitrogen sources and microaerobic condition were decided to be more favorable for both cell growth and ethanol production of the BSPT15-M3 strain than the control S. cerevisiae BY4741 strain expressing the SPT15 gene (BSPT15wt). Microaerobic fed-batch cultures of BSPT15-M3 with glucose shock in the presence of high ethanol content resulted in a 9.5-13.4% higher glucose consumption rate and ethanol productivity than those for the BSPT15wt strain. In addition, BSPT15-M3 showed 4.5 and 3.9% increases in ethanol productivity from cassava hydrolysates and corn starch in simultaneous saccharification and fermentation processes, respectively. It was concluded that overexpression of the mutated SPT15 gene would be a potent strategy to develop robust S. cerevisiae strains with enhanced cell growth and ethanol production abilities.
Collapse
Affiliation(s)
- Yeong-Je Seong
- Department of Bio and Fermentation Convergence Technology, and BK21 PLUS Program, Kookmin University, Seoul, 136-702, South Korea
| | - Haeseong Park
- Department of Bio and Fermentation Convergence Technology, and BK21 PLUS Program, Kookmin University, Seoul, 136-702, South Korea
| | - Jungwoo Yang
- Department of Biotechnology, Graduate School, Korea University, Seoul, 136-713, South Korea
| | - Soo-Jung Kim
- Center for Food and Bioconvergence, Seoul National University, Seoul, 151-742, South Korea
| | - Wonja Choi
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul, 120-750, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 136-713, South Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, and BK21 PLUS Program, Kookmin University, Seoul, 136-702, South Korea.
| |
Collapse
|