1
|
Fina A, Millard P, Albiol J, Ferrer P, Heux S. High throughput 13C-metabolic flux analysis of 3-hydroxypropionic acid producing Pichia pastoris reveals limited availability of acetyl-CoA and ATP due to tight control of the glycolytic flux. Microb Cell Fact 2023; 22:117. [PMID: 37380999 DOI: 10.1186/s12934-023-02123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/27/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Production of 3-hydroxypropionic acid (3-HP) through the malonyl-CoA pathway has yielded promising results in Pichia pastoris (Komagataella phaffii), demonstrating the potential of this cell factory to produce this platform chemical and other acetyl-CoA-derived products using glycerol as a carbon source. However, further metabolic engineering of the original P. pastoris 3-HP-producing strains resulted in unexpected outcomes, e.g., significantly lower product yield and/or growth rate. To gain an understanding on the metabolic constraints underlying these observations, the fluxome (metabolic flux phenotype) of ten 3-HP-producing P. pastoris strains has been characterized using a high throughput 13C-metabolic flux analysis platform. Such platform enabled the operation of an optimised workflow to obtain comprehensive maps of the carbon flux distribution in the central carbon metabolism in a parallel-automated manner, thereby accelerating the time-consuming strain characterization step in the design-build-test-learn cycle for metabolic engineering of P. pastoris. RESULTS We generated detailed maps of the carbon fluxes in the central carbon metabolism of the 3-HP producing strain series, revealing the metabolic consequences of different metabolic engineering strategies aimed at improving NADPH regeneration, enhancing conversion of pyruvate into cytosolic acetyl-CoA, or eliminating by-product (arabitol) formation. Results indicate that the expression of the POS5 NADH kinase leads to a reduction in the fluxes of the pentose phosphate pathway reactions, whereas an increase in the pentose phosphate pathway fluxes was observed when the cytosolic acetyl-CoA synthesis pathway was overexpressed. Results also show that the tight control of the glycolytic flux hampers cell growth due to limited acetyl-CoA biosynthesis. When the cytosolic acetyl-CoA synthesis pathway was overexpressed, the cell growth increased, but the product yield decreased due to higher growth-associated ATP costs. Finally, the six most relevant strains were also cultured at pH 3.5 to assess the effect of a lower pH on their fluxome. Notably, similar metabolic fluxes were observed at pH 3.5 compared to the reference condition at pH 5. CONCLUSIONS This study shows that existing fluoxomics workflows for high-throughput analyses of metabolic phenotypes can be adapted to investigate P. pastoris, providing valuable information on the impact of genetic manipulations on the metabolic phenotype of this yeast. Specifically, our results highlight the metabolic robustness of P. pastoris's central carbon metabolism when genetic modifications are made to increase the availability of NADPH and cytosolic acetyl-CoA. Such knowledge can guide further metabolic engineering of these strains. Moreover, insights into the metabolic adaptation of P. pastoris to an acidic pH have also been obtained, showing the capability of the fluoxomics workflow to assess the metabolic impact of environmental changes.
Collapse
Affiliation(s)
- Albert Fina
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, 08193, Spain
| | - Pierre Millard
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, 31077, France
| | - Joan Albiol
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, 08193, Spain
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, 08193, Spain.
| | - Stephanie Heux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, 31077, France
| |
Collapse
|
2
|
Fenner ED, Scapini T, da Costa Diniz M, Giehl A, Treichel H, Álvarez-Pérez S, Alves SL. Nature's Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms. J Fungi (Basel) 2022; 8:984. [PMID: 36294549 PMCID: PMC9605484 DOI: 10.3390/jof8100984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 07/30/2023] Open
Abstract
The importance of insects for angiosperm pollination is widely recognized. In fact, approximately 90% of all plant species benefit from animal-mediated pollination. However, only recently, a third part player in this story has been properly acknowledged. Microorganisms inhabiting floral nectar, among which yeasts have a prominent role, can ferment glucose, fructose, sucrose, and/or other carbon sources in this habitat. As a result of their metabolism, nectar yeasts produce diverse volatile organic compounds (VOCs) and other valuable metabolites. Notably, some VOCs of yeast origin can influence insects' foraging behavior, e.g., by attracting them to flowers (although repelling effects have also been reported). Moreover, when insects feed on nectar, they also ingest yeast cells, which provide them with nutrients and protect them from pathogenic microorganisms. In return, insects serve yeasts as transportation and a safer habitat during winter when floral nectar is absent. From the plant's point of view, the result is flowers being pollinated. From humanity's perspective, this ecological relationship may also be highly profitable. Therefore, prospecting nectar-inhabiting yeasts for VOC production is of major biotechnological interest. Substances such as acetaldehyde, ethyl acetate, ethyl butyrate, and isobutanol have been reported in yeast volatomes, and they account for a global market of approximately USD 15 billion. In this scenario, the present review addresses the ecological, environmental, and biotechnological outlooks of this three-party mutualism, aiming to encourage researchers worldwide to dig into this field.
Collapse
Affiliation(s)
- Eduardo D. Fenner
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Campus Cerro Largo, Cerro Largo 97900-000, RS, Brazil
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Thamarys Scapini
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Campus Erechim, Erechim 99700-970, RS, Brazil
| | - Mariana da Costa Diniz
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Anderson Giehl
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Campus Erechim, Erechim 99700-970, RS, Brazil
| | - Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sérgio L. Alves
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Campus Cerro Largo, Cerro Largo 97900-000, RS, Brazil
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| |
Collapse
|
3
|
Liebal UW, Fabry BA, Ravikrishnan A, Schedel CV, Schmitz S, Blank LM, Ebert BE. Genome-scale model reconstruction of the methylotrophic yeast Ogataea polymorpha. BMC Biotechnol 2021; 21:23. [PMID: 33722219 PMCID: PMC7962355 DOI: 10.1186/s12896-021-00675-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background Ogataea polymorpha is a thermotolerant, methylotrophic yeast with significant industrial applications. While previously mainly used for protein synthesis, it also holds promise for producing platform chemicals. O. polymorpha has the distinct advantage of using methanol as a substrate, which could be potentially derived from carbon capture and utilization streams. Full development of the organism into a production strain and estimation of the metabolic capabilities require additional strain design, guided by metabolic modeling with a genome-scale metabolic model. However, to date, no genome-scale metabolic model is available for O. polymorpha. Results To overcome this limitation, we used a published reconstruction of the closely related yeast Komagataella phaffii as a reference and corrected reactions based on KEGG and MGOB annotation. Additionally, we conducted phenotype microarray experiments to test the suitability of 190 substrates as carbon sources. Over three-quarter of the substrate use was correctly reproduced by the model and 27 new substrates were added, that were not present in the K. phaffii reference model. Conclusion The developed genome-scale metabolic model of O. polymorpha will support the engineering of synthetic metabolic capabilities and enable the optimization of production processes, thereby supporting a sustainable future methanol economy. Supplementary Information The online version contains supplementary material available at (10.1186/s12896-021-00675-w).
Collapse
Affiliation(s)
- Ulf W Liebal
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Brigida A Fabry
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Aarthi Ravikrishnan
- Genome Institute of Singapore, 60 Biopolis Street, Genome, 03-01, Singapore, 138672, Singapore
| | - Constantin Vl Schedel
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Simone Schmitz
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Lars M Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany.
| | - Birgitta E Ebert
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.,CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT 2601, Australia
| |
Collapse
|
4
|
Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv 2021; 47:107695. [PMID: 33465474 DOI: 10.1016/j.biotechadv.2021.107695] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/14/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Microbial bioproduction of chemicals, proteins, and primary metabolites from cheap carbon sources is currently an advancing area in industrial research. The model yeast, Saccharomyces cerevisiae, is a well-established biorefinery host that has been used extensively for commercial manufacturing of bioethanol from myriad carbon sources. However, its Crabtree-positive nature often limits the use of this organism for the biosynthesis of commercial molecules that do not belong in the fermentative pathway. To avoid extensive strain engineering of S. cerevisiae for the production of metabolites other than ethanol, non-conventional yeasts can be selected as hosts based on their natural capacity to produce desired commodity chemicals. Non-conventional yeasts like Kluyveromyces marxianus, K. lactis, Yarrowia lipolytica, Pichia pastoris, Scheffersomyces stipitis, Hansenula polymorpha, and Rhodotorula toruloides have been considered as potential industrial eukaryotic hosts owing to their desirable phenotypes such as thermotolerance, assimilation of a wide range of carbon sources, as well as ability to secrete high titers of protein and lipid. However, the advanced metabolic engineering efforts in these organisms are still lacking due to the limited availability of systems and synthetic biology methods like in silico models, well-characterised genetic parts, and optimized genome engineering tools. This review provides an insight into the recent advances and challenges of systems and synthetic biology as well as metabolic engineering endeavours towards the commercial usage of non-conventional yeasts. Particularly, the approaches in emerging non-conventional yeasts for the production of enzymes, therapeutic proteins, lipids, and metabolites for commercial applications are extensively discussed here. Various attempts to address current limitations in designing novel cell factories have been highlighted that include the advances in the fields of genome-scale metabolic model reconstruction, flux balance analysis, 'omics'-data integration into models, genome-editing toolkit development, and rewiring of cellular metabolisms for desired chemical production. Additionally, the understanding of metabolic networks using 13C-labelling experiments as well as the utilization of metabolomics in deciphering intracellular fluxes and reactions have also been discussed here. Application of cutting-edge nuclease-based genome editing platforms like CRISPR/Cas9, and its optimization towards efficient strain engineering in non-conventional yeasts have also been described. Additionally, the impact of the advances in promising non-conventional yeasts for efficient commercial molecule synthesis has been meticulously reviewed. In the future, a cohesive approach involving systems and synthetic biology will help in widening the horizon of the use of unexplored non-conventional yeast species towards industrial biotechnology.
Collapse
Affiliation(s)
- Pradipta Patra
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
5
|
Sailwal M, Das AJ, Gazara RK, Dasgupta D, Bhaskar T, Hazra S, Ghosh D. Connecting the dots: Advances in modern metabolomics and its application in yeast system. Biotechnol Adv 2020; 44:107616. [DOI: 10.1016/j.biotechadv.2020.107616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
|
6
|
Biological insights into non-model microbial hosts through stable-isotope metabolic flux analysis. Curr Opin Biotechnol 2020; 64:32-38. [DOI: 10.1016/j.copbio.2019.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022]
|
7
|
GC-MS-based 13C metabolic flux analysis resolves the parallel and cyclic glucose metabolism of Pseudomonas putida KT2440 and Pseudomonas aeruginosa PAO1. Metab Eng 2019; 54:35-53. [DOI: 10.1016/j.ymben.2019.01.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
|
8
|
Lehnen M, Ebert BE, Blank LM. Elevated temperatures do not trigger a conserved metabolic network response among thermotolerant yeasts. BMC Microbiol 2019; 19:100. [PMID: 31101012 PMCID: PMC6525440 DOI: 10.1186/s12866-019-1453-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Thermotolerance is a highly desirable trait of microbial cell factories and has been the focus of extensive research. Yeast usually tolerate only a narrow temperature range and just two species, Kluyveromyces marxianus and Ogataea polymorpha have been described to grow at reasonable rates above 40 °C. However, the complex mechanisms of thermotolerance in yeast impede its full comprehension and the rare physiological data at elevated temperatures has so far not been matched with corresponding metabolic analyses. RESULTS To elaborate on the metabolic network response to increased fermentation temperatures of up to 49 °C, comprehensive physiological datasets of several Kluyveromyces and Ogataea strains were generated and used for 13C-metabolic flux analyses. While the maximum growth temperature was very similar in all investigated strains, the metabolic network response to elevated temperatures was not conserved among the different species. In fact, metabolic flux distributions were remarkably irresponsive to increasing temperatures in O. polymorpha, while the K. marxianus strains exhibited extensive flux rerouting at elevated temperatures. CONCLUSIONS While a clear mechanism of thermotolerance is not deducible from the fluxome level alone, the generated data can be valued as a knowledge repository for using temperature to modulate the metabolic activity towards engineering goals.
Collapse
Affiliation(s)
- Mathias Lehnen
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| | - Birgitta E. Ebert
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| |
Collapse
|
9
|
Metabolic engineering of Pichia pastoris. Metab Eng 2018; 50:2-15. [PMID: 29704654 DOI: 10.1016/j.ymben.2018.04.017] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
Besides its use for efficient production of recombinant proteins the methylotrophic yeast Pichia pastoris (syn. Komagataella spp.) has been increasingly employed as a platform to produce metabolites of varying origin. We summarize here the impressive methodological developments of the last years to model and analyze the metabolism of P. pastoris, and to engineer its genome and metabolic pathways. Efficient methods to insert, modify or delete genes via homologous recombination and CRISPR/Cas9, supported by modular cloning techniques, have been reported. An outstanding early example of metabolic engineering in P. pastoris was the humanization of protein glycosylation. More recently the cell metabolism was engineered also to enhance the productivity of heterologous proteins. The last few years have seen an increased number of metabolic pathway design and engineering in P. pastoris, mainly towards the production of complex (secondary) metabolites. In this review, we discuss the potential role of P. pastoris as a platform for metabolic engineering, its strengths, and major requirements for future developments of chassis strains based on synthetic biology principles.
Collapse
|