1
|
Afecto Gonçalves MJ, González-Fernández C, Greses S. Assessing the effect of temperature drop on a stable anaerobic fermentation for volatile fatty acids production. Bioengineered 2025; 16:2458369. [PMID: 39895564 PMCID: PMC11792825 DOI: 10.1080/21655979.2025.2458369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Anaerobic fermentation (AF) processes are sensitive to temperature fluctuations, which can influence the microbial activity and overall metabolic performances. Anaerobic reactors can face unforeseen temperature control failures, leading to instabilities in the process. The present study investigated the effect of two short-term temperature perturbations (down to 20°C and 15°C) on AF of food wastes (FWs). While 20°C did not exhibit a negative impact on AF performance maintaining the bioconversion yields over 40%, the reactor subjected to 15°C presented an acidogenic limitation, which decreased the bioconversion yields (36.4 ± 1.8%). As a result, 2.2 ± 0.5 g/L of succinic acid was accumulated in the reactor, being identified as a temperature failure indicator. Once the conditions were reestablished (operation temperature of 25ºC), the metabolic redundancies identified in the reactors allowed the AFs recovery to initial fermentation yields. 20°C was further tested as operational temperature resulting in stable bioconversion yield similar to the Control Reactor (43.2 ± 0.3%). These results showed the feasibility of conducting AF under low temperatures, indicating the potential of this technology to increase the cost-effectiveness of AF at psychrophilic conditions.
Collapse
Affiliation(s)
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
- Institute of Sustainable Processes, Valladolid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
- CALAGUA – Unidad Mixta UV-UPV, Department of Chemical Engineering, Universitat de València, Spain
| |
Collapse
|
2
|
Qiao W, Dong G, Xu S, Li L, Shi S. Engineering propionyl-CoA pools for de novo biosynthesis of odd-chain fatty acids in microbial cell factories. Crit Rev Biotechnol 2023; 43:1063-1072. [PMID: 35994297 DOI: 10.1080/07388551.2022.2100736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
Odd-chain fatty acids (OcFAs) and their derivatives have attracted great interest due to their wide applications in the food, pharmaceutical and petrochemical industries. Microorganisms can naturally de novo produce fatty acids (FAs), where mainly, even-chain with acetyl-CoA instead of odd-chain with propionyl-CoA is used as the primer. Usually, the absence of the precursor propionyl-CoA is considered the main reason that limits the efficient production of OcFAs. It is thus crucial to explore/evaluate/identify promising propionyl-CoA biosynthetic pathways to achieve large-scale biosynthesis of OcFAs. This review discusses the latest advances in microbial metabolism engineering toward producing propionyl-CoA and considers future research directions and challenges toward optimized production of OcFAs.
Collapse
Affiliation(s)
- Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Genlai Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Lingyun Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| |
Collapse
|
3
|
Benito-Vaquerizo S, Parera Olm I, de Vroet T, Schaap PJ, Sousa DZ, Martins Dos Santos VAP, Suarez-Diez M. Genome-scale metabolic modelling enables deciphering ethanol metabolism via the acrylate pathway in the propionate-producer Anaerotignum neopropionicum. Microb Cell Fact 2022; 21:116. [PMID: 35710409 PMCID: PMC9205015 DOI: 10.1186/s12934-022-01841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microbial production of propionate from diluted streams of ethanol (e.g., deriving from syngas fermentation) is a sustainable alternative to the petrochemical production route. Yet, few ethanol-fermenting propionigenic bacteria are known, and understanding of their metabolism is limited. Anaerotignum neopropionicum is a propionate-producing bacterium that uses the acrylate pathway to ferment ethanol and CO2 to propionate and acetate. In this work, we used computational and experimental methods to study the metabolism of A. neopropionicum and, in particular, the pathway for conversion of ethanol into propionate. RESULTS Our work describes iANEO_SB607, the first genome-scale metabolic model (GEM) of A. neopropionicum. The model was built combining the use of automatic tools with an extensive manual curation process, and it was validated with experimental data from this and published studies. The model predicted growth of A. neopropionicum on ethanol, lactate, sugars and amino acids, matching observed phenotypes. In addition, the model was used to implement a dynamic flux balance analysis (dFBA) approach that accurately predicted the fermentation profile of A. neopropionicum during batch growth on ethanol. A systematic analysis of the metabolism of A. neopropionicum combined with model simulations shed light into the mechanism of ethanol fermentation via the acrylate pathway, and revealed the presence of the electron-transferring complexes NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (Nfn) and acryloyl-CoA reductase-EtfAB, identified for the first time in this bacterium. CONCLUSIONS The realisation of the GEM iANEO_SB607 is a stepping stone towards the understanding of the metabolism of the propionate-producer A. neopropionicum. With it, we have gained insight into the functioning of the acrylate pathway and energetic aspects of the cell, with focus on the fermentation of ethanol. Overall, this study provides a basis to further exploit the potential of propionigenic bacteria as microbial cell factories.
Collapse
Affiliation(s)
- Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Ivette Parera Olm
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Thijs de Vroet
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands.,Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Vening Meinesz building C, Princetonlaan 6, Utrecht, 3584 CB, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands.,Bioprocess Engineering, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands.
| |
Collapse
|
4
|
Collins SM, Gibson GR, Kennedy OB, Walton G, Rowland I, Commane DM. Development of a prebiotic blend to influence in vitro fermentation effects, with a focus on propionate, in the gut. FEMS Microbiol Ecol 2021; 97:6319498. [PMID: 34251412 DOI: 10.1093/femsec/fiab101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Short chain fatty acids (SCFAs) derived from the human gut microbiota, and in particular propionate, may beneficially influence metabolic processes such as appetite regulation. Development of prebiotics that induce high propionate levels during fermentation is desirable. A total of 11 candidate prebiotics were screened to investigate their fermentation characteristics, with a focus on propionate production in mixed anaerobic batch culture of faecal bacteria. Further to this, a continuous 3-stage colonic fermentation model (simulating the human colon) was used to evaluate changes in microbial ecology, lactate and SCFA production of three 50:50 blends, comprising both slow and rapidly fermented prebiotics. In mixed batch culture: xylo-oligosaccharide, polydextrose and α-gluco-oligosaccharide were associated with the greatest increase in propionate. Polydextrose, α-gluco-oligosaccharide, β-1,4 glucan and oat fibre induced the greatest reductions in the acetate to propionate ratio. The most bifidogenic prebiotics were the oligosaccharides. Fermentation of a 50:50 blend of inulin and arabinoxylan, through the continuous 3-stage colonic fermentation model, induced a substantial and sustained release of propionate. The sustained release of propionate through the colon, if replicable in vivo, could potentially influence blood glucose, blood lipids and appetite regulation, however, dietary intervention studies are needed. Bifidogenic effects were also observed for the inulin and arabinoxylan blend and an increase synthesis of butyrate and lactate, thus indicating wider prebiotic potential.
Collapse
Affiliation(s)
- Sineaid M Collins
- Department of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, UK
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK
| | - Orla B Kennedy
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK
| | - Gemma Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK
| | - Ian Rowland
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK
| | - Daniel M Commane
- Department of Applied and Health Sciences, Northumbria University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
5
|
Wei Y, Ren B, Zheng S, Feng X, He Y, Zhu X, Zhou L, Li D. Effect of high concentration of ammonium on production of n-caproate: Recovery of a high-value biochemical from food waste via lactate-driven chain elongation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 128:25-35. [PMID: 33957431 DOI: 10.1016/j.wasman.2021.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/08/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Ammonium accumulation is inevitable during the fermentation of food waste (FW), challenging the application of chain elongation process upgrading FW into the high-value biochemical n-caproate, which is a medium chain carboxylate. This study is the first to investigate ammonium inhibition of lactate-driven chain elongation process. The short-term exposure of a Clostridium IV-dominated chain elongating reactor microbiome at an ammonium concentration of 1-4 g L-1 linearly decreased n-caproate production by 25-80%. High levels of ammonium (≥5 g L-1) could cause failure of chain elongation, shifting the product from n-caproate to propionate. The involved mechanisms revealed that ammonium reshaped the microbial community from Clostridium IV domination to Clostridium IV and Propionibacterium co-domination (based on 16S rRNA sequencing) and reduced the activities of key enzymes involved in the reversed β-oxidization pathway. We propose an effective strategy from our study, which is the first one to do in our knowledge, to upgrade raw FW without dilution to n-caproate: lowering the ammonium accumulation to 1.0 g L-1 at the setup phase for adaptation and prolonging the hydraulic retention time (10 days) during the operation phase for the colonization of chain-elongation bacteria. These findings lay a foundation for the implementation of the LCE process on FW, providing an alternative way to alleviate the global FW crisis.
Collapse
Affiliation(s)
- Yong Wei
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213000, PR China
| | - Bing Ren
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213000, PR China; Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province; Chengdu Institute of Biology, Chinese Academy of Sciences. Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing 100864, PR China
| | - Shaorui Zheng
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province; Chengdu Institute of Biology, Chinese Academy of Sciences. Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing 100864, PR China; Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210014, PR China
| | - Xin Feng
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province; Chengdu Institute of Biology, Chinese Academy of Sciences. Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing 100864, PR China
| | - Yong He
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213000, PR China; Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province; Chengdu Institute of Biology, Chinese Academy of Sciences. Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing 100864, PR China
| | - Xiaoyu Zhu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province; Chengdu Institute of Biology, Chinese Academy of Sciences. Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing 100864, PR China.
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210014, PR China
| | - Dong Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province; Chengdu Institute of Biology, Chinese Academy of Sciences. Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing 100864, PR China
| |
Collapse
|
6
|
Xu L, Zhang K, Nawaz MA, Liu D. Kinetic study of carbonylation of ethanol using homogeneous Rh complex catalyst. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lin Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Kai Zhang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Muhammad A. Nawaz
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Dianhua Liu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
7
|
A Pan-Genome Guided Metabolic Network Reconstruction of Five Propionibacterium Species Reveals Extensive Metabolic Diversity. Genes (Basel) 2020; 11:genes11101115. [PMID: 32977700 PMCID: PMC7650540 DOI: 10.3390/genes11101115] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023] Open
Abstract
Propionibacteria have been studied extensively since the early 1930s due to their relevance to industry and importance as human pathogens. Still, their unique metabolism is far from fully understood. This is partly due to their signature high GC content, which has previously hampered the acquisition of quality sequence data, the accurate annotation of the available genomes, and the functional characterization of genes. The recent completion of the genome sequences for several species has led researchers to reassess the taxonomical classification of the genus Propionibacterium, which has been divided into several new genres. Such data also enable a comparative genomic approach to annotation and provide a new opportunity to revisit our understanding of their metabolism. Using pan-genome analysis combined with the reconstruction of the first high-quality Propionibacterium genome-scale metabolic model and a pan-metabolic model of current and former members of the genus Propionibacterium, we demonstrate that despite sharing unique metabolic traits, these organisms have an unexpected diversity in central carbon metabolism and a hidden layer of metabolic complexity. This combined approach gave us new insights into the evolution of Propionibacterium metabolism and led us to propose a novel, putative ferredoxin-linked energy conservation strategy. The pan-genomic approach highlighted key differences in Propionibacterium metabolism that reflect adaptation to their environment. Results were mathematically captured in genome-scale metabolic reconstructions that can be used to further explore metabolism using metabolic modeling techniques. Overall, the data provide a platform to explore Propionibacterium metabolism and a tool for the rational design of strains.
Collapse
|
8
|
Castro PGM, Maeda RN, Rocha VAL, Fernandes RP, Pereira N. Improving propionic acid production from a hemicellulosic hydrolysate of sorghum bagasse by means of cell immobilization and sequential batch operation. Biotechnol Appl Biochem 2020; 68:1120-1127. [PMID: 32942342 DOI: 10.1002/bab.2031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Propionic acid (PA) is an important organic compound with extensive application in different industrial sectors and is currently produced by petrochemical processes. The production of PA by large-scale fermentation processes presents a bottleneck, particularly due to low volumetric productivity. In this context, the present work aimed to produce PA by a biochemical route from a hemicellulosic hydrolysate of sorghum bagasse using the strain Propionibacterium acidipropionici CIP 53164. Conditions were optimized to increase volumetric productivity and process efficiency. Initially, in simple batch fermentation, a final concentration of PA of 17.5 g⋅L-1 was obtained. Next, fed batch operation with free cells was adopted to minimize substrate inhibition. Although a higher concentration of PA was achieved (38.0 g⋅L-1 ), the response variables (YP/S = 0.409 g⋅g-1 and QP = 0.198 g⋅L-1 ⋅H-1 ) were close to those of the simple batch experiment. Finally, the fermentability of the hemicellulosic hydrolysate was investigated in a sequential batch with immobilized cells. The PA concentration achieved a maximum of 35.3 g⋅L-1 in the third cycle; moreover, the volumetric productivity was almost sixfold higher (1.17 g⋅L-1 ⋅H-1 ) in sequential batch than in simple batch fermentation. The results are highly promising, providing preliminary data for studies on scaling up the production of this organic acid.
Collapse
Affiliation(s)
- Patrycia G M Castro
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Roberto N Maeda
- Novozymes Latin America, Barigui, Rua Professor Francisco Ribeiro, Araucaria, Parana, CEP, Brazil
| | - Vanessa A L Rocha
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Rodrigo P Fernandes
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Nei Pereira
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| |
Collapse
|
9
|
Gonzalez-Garcia RA, McCubbin T, Turner MS, Nielsen LK, Marcellin E. Engineering Escherichia coli for propionic acid production through the Wood-Werkman cycle. Biotechnol Bioeng 2019; 117:167-183. [PMID: 31556457 DOI: 10.1002/bit.27182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022]
Abstract
Native to propionibacteria, the Wood-Werkman cycle enables propionate production via succinate decarboxylation. Current limitations in engineering propionibacteria strains have redirected attention toward the heterologous production in model organisms. Here, we report the functional expression of the Wood-Werkman cycle in Escherichia coli to enable propionate and 1-propanol production. The initial proof-of-concept attempt showed that the cycle can be used for production. However, production levels were low (0.17 mM). In silico optimization of the expression system by operon rearrangement and ribosomal-binding site tuning improved performance by fivefold. Adaptive laboratory evolution further improved performance redirecting almost 30% of total carbon through the Wood-Werkman cycle, achieving propionate and propanol titers of 9 and 5 mM, respectively. Rational engineering to reduce the generation of byproducts showed that lactate (∆ldhA) and formate (∆pflB) knockout strains exhibit an improved propionate and 1-propanol production, while the ethanol (∆adhE) knockout strain only showed improved propionate production.
Collapse
Affiliation(s)
- Ricardo A Gonzalez-Garcia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Timothy McCubbin
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Mark S Turner
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.,Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|