1
|
Mohammed ET, Safwat GM, Bahnasawy EA, Abdel-Razik ARH, Mohamed DS. Zinc Oxide Nanoparticles and Vitamin C Ameliorate Atrazine-Induced Hepatic Apoptosis in Rat via CYP450s/ROS Pathway and Immunomodulation. Biol Trace Elem Res 2023; 201:5257-5271. [PMID: 36790584 PMCID: PMC10509061 DOI: 10.1007/s12011-023-03587-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Atrazine, as an herbicide, is used widely worldwide. Because of its prolonged persistence in the environment and accumulation in the body, atrazine exposure is a potential threat to human health. The present study evaluated the possible protective effects of zinc oxide nanoparticles and vitamin C against atrazine-induced hepatotoxicity in rats. Atrazine administered to rats orally at a dose of 300 mg/kg for 21 days caused liver oxidative stress as it increased malondialdehyde (MDA) formation and decreased reduced glutathione (GSH) contents. Atrazine induced inflammation accompanied by apoptosis via upregulation of hepatic gene expression levels of NF-κB, TNF-α, BAX, and caspase-3 and downregulation of Bcl-2 gene expression levels. Additionally, it disturbed the metabolic activities of cytochrome P450 as it downregulated hepatic gene expression levels of CYP1A1, CYP1B1, CYP2E1. The liver function biomarkers were greatly affected upon atrazine administration, and the serum levels of AST and ALT were significantly increased, while BWG%, albumin, globulins, and total proteins levels were markedly decreased. As a result of the above-mentioned influences of atrazine, histopathological changes in liver tissue were recorded in our findings. The administration of zinc oxide nanoparticles or vitamin C orally at a dose of 10 mg/kg and 200 mg/kg, respectively, for 30 days prior and along with atrazine, could significantly ameliorate the oxidative stress, inflammation, and apoptosis induced by atrazine and regulated the hepatic cytochrome P450 activities. Furthermore, they improved liver function biomarkers and histopathology. In conclusion, our results revealed that zinc oxide nanoparticles and vitamin C supplementations could effectively protect against atrazine-induced hepatotoxicity.
Collapse
Affiliation(s)
- Eman T Mohammed
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62512, Egypt.
| | - Ghada M Safwat
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62512, Egypt
| | - Esraa A Bahnasawy
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62512, Egypt
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Doaa Sh Mohamed
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62512, Egypt
| |
Collapse
|
2
|
Dai Y, Zhou S, Qiao L, Peng Z, Zhao J, Xu D, Wu C, Li M, Zeng X, Wang Q. Non-apoptotic programmed cell deaths in diabetic pulmonary dysfunction: the new side of advanced glycation end products. Front Endocrinol (Lausanne) 2023; 14:1126661. [PMID: 37964954 PMCID: PMC10641270 DOI: 10.3389/fendo.2023.1126661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that affects multiple organs and systems, including the pulmonary system. Pulmonary dysfunction in DM patients has been observed and studied for years, but the underlying mechanisms have not been fully understood. In addition to traditional mechanisms such as the production and accumulation of advanced glycation end products (AGEs), angiopathy, tissue glycation, oxidative stress, and systemic inflammation, recent studies have focused on programmed cell deaths (PCDs), especially the non-apoptotic ones, in diabetic pulmonary dysfunction. Non-apoptotic PCDs (NAPCDs) including autophagic cell death, necroptosis, pyroptosis, ferroptosis, and copper-induced cell death have been found to have certain correlations with diabetes and relevant complications. The AGE-AGE receptor (RAGE) axis not only plays an important role in the traditional pathogenesis of diabetes lung disease but also plays an important role in non-apoptotic cell death. In this review, we summarize novel studies about the roles of non-apoptotic PCDs in diabetic pulmonary dysfunction and focus on their interactions with the AGE-RAGE axis.
Collapse
Affiliation(s)
- Yimin Dai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lin Qiao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhao Peng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Li G, Chen Y, Wu M, Chen K, Zhang D, Zhang R, Yang G, Huang X. Di (2-ethyl) hexyl phthalate induces liver injury in chickens by regulating PTEN/PI3K/AKT signaling pathway via reactive oxygen species. Comp Biochem Physiol C Toxicol Pharmacol 2023; 270:109639. [PMID: 37259793 DOI: 10.1016/j.cbpc.2023.109639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023]
Abstract
Di (2-ethyl) hexyl phthalate (DEHP) is a common environmental endocrine disruptor that induces oxidative stress, posing a significant threat to human and animal health. Oxidative stress can activate the PTEN/PI3K/AKT pathway, which is closely related to cell apoptosis. However, it is unclear whether DEHP induces apoptosis of chicken liver cells by regulating the PTEN/PI3K/AKT pathway through oxidative stress. In this experiment, male laying hens were continuously exposed to 400 mg/kg, 800 mg/kg, and 1600 mg/kg DEHP for 14 d, 28 d, and 42 d. The results showed that liver injury was aggravated with the dose of DEHP gavage, and the ROS/MDA levels in L, M, and H DEHP exposure groups were significantly increased, while the T-AOC/T-SOD/GSH-PX levels were decreased. Meanwhile, DEHP exposure up-regulated the mRNA and protein expression levels of PTEN/Bax/Caspase-9/Caspase-3 and down-regulated the mRNA and protein expression levels of PI3K/AKT/BCL-2, indicating that DEHP may lead to hepatocyte apoptosis through ROS regulation of PTEN/PI3K/AKT axis. In order to further clarify the relationship between oxidative stress and liver injury, we treated chicken hepatocellular carcinoma cell line (LMH) with 2.5 mM N-acetylcysteine (NAC). NAC attenuated these phenomena. In summary, our study suggests that DEHP can induce apoptosis of chicken liver through ROS activation of the PTEN/PI3K/AKT axis.
Collapse
Affiliation(s)
- Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Menglin Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kaiting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Di Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guijun Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Somade OT, Oyinloye BE, Ajiboye BO, Osukoya OA. Syringic acid demonstrates an anti-inflammatory effect via modulation of the NF-κB-iNOS-COX-2 and JAK-STAT signaling pathways in methyl cellosolve-induced hepato-testicular inflammation in rats. Biochem Biophys Rep 2023; 34:101484. [PMID: 37197735 PMCID: PMC10184048 DOI: 10.1016/j.bbrep.2023.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Syringic acid (SACI) is an emerging nutraceutical and antioxidant used in modern Chinese medicine. It has potential neuroprotective, anti-hyperglycemic, and anti-angiogenic properties. Methyl cellosolve (MCEL) has been reported to induce tissue inflammation in the testis, kidney, liver, and lung. This study aimed to investigate the effect and probable mechanism of action of SACI on MCEL-induced hepatic and testicular inflammation in male rats. Compared to the control group, administration of MCEL to rats significantly increased the levels of IL-6, TNF-α, iNOS, COX-2, and NF-κB in the liver and testis. Additionally, the total mRNA expressions of JAK1 (in the liver only), STAT1, and SOCS1 were significantly increased in both the liver and testis, while testicular JAK1 total mRNA levels were significantly decreased. The expression of PIAS1 protein was significantly higher in the liver and testis. Treatments with SACI at 25 (except liver iNOS), 50, and 75 mg/kg significantly decreased the levels of IL-6, TNF-α, iNOS, COX-2, and NF-κB compared to the control group. Furthermore, the total mRNA expressions of JAK1 and SOCS1 in the liver were significantly reduced by all doses of SACI investigated, while the total mRNA levels of liver and testis STAT1 were significantly reduced by 25 and 50 mg/kg of SACI only. In the testis, the mRNA level of SOCS1 was significantly reduced by all doses of SACI compared to MCEL only. Additionally, SACI (at 75 mg/kg) significantly reduced PIAS1 protein expression in the liver, while in the testis, SACI at all investigated doses significantly reduced the expression of PIAS1. In conclusion, SACI demonstrated a hepatic and testicular anti-inflammatory effect by inhibiting the MCEL-induced activation of the NF-κB and JAK-STAT signaling pathways in rats.
Collapse
Affiliation(s)
- Oluwatobi T. Somade
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
| | - Babatunji E. Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
- Institute of Drug Research and Development, S.E Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Basiru O. Ajiboye
- Institute of Drug Research and Development, S.E Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria
| | - Olukemi A. Osukoya
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
| |
Collapse
|
5
|
Li J, Yin K, Hou L, Zhang Y, Lu H, Ma C, Xing M. Polystyrene microplastics mediate inflammatory responses in the chicken thymus by Nrf2/NF-κB pathway and trigger autophagy and apoptosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104136. [PMID: 37127111 DOI: 10.1016/j.etap.2023.104136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs) are now a hot environmental contaminant. However, researchers paid little attention to their effects on immune organs such as the thymus. Here, we exposed chickens to a concentration gradient of polystyrene microplastics (PS-MPs) and then followed the decrease in the thymus index. HE staining showed cellular infiltration in the thymus. The assay kit corroborated that PS-MPs impelled oxidative stress in the thymus: increased MDA levels, downregulated antioxidants such as SOD, CAT, and GSH, and significantly undermined total antioxidant capacity. Western blotting and qRT-PCR results showed that Nrf2/NF-κB, Bcl-2/Bax, and AKT signaling pathways were activated in the thymus after exposure to PS-MPs. It stimulated the increased expression of downstream such as IL-1β, caspase-3, and Beclin1, triggering thymus inflammation, apoptosis, and autophagy. This study provides new insights into the field of microplastic immunotoxicity and highlights potential environmental hazards in poultry farming.
Collapse
Affiliation(s)
- Junbo Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Chengxue Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
6
|
Hu J, Atsuta I, Luo Y, Wang X, Jiang Q. Promotional Effect and Molecular Mechanism of Synthesized Zinc Oxide Nanocrystal on Zirconia Abutment Surface for Soft Tissue Sealing. J Dent Res 2023; 102:505-513. [PMID: 36883651 DOI: 10.1177/00220345221150161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Studies have confirmed that tooth loss is closely related to systemic diseases, such as obesity, diabetes, cardiovascular diseases, some types of tumors, and Alzheimer's disease. Among many methods for tooth restoration, implant restoration is the most commonly used method. After implantation, long-term stability of implants requires not only good bone bonding but also good soft tissue sealing between implants and surrounding soft tissues. The zirconia abutment is used in clinical implant restoration treatment, but due to the strong biological inertia of zirconia, it is difficult to form stable chemical or biological bonds with surrounding tissues. In this study, we investigated synthesized zinc oxide (ZnO) nanocrystal on the zirconia abutment surface by the hydrothermal method to make it more beneficial for soft tissue early sealing and the molecular mechanism. In vitro experiments found that different hydrothermal treatment temperatures affect the formation of ZnO crystals. The crystal diameter of ZnO changes from micron to nanometer at different temperatures, and the crystal morphology also changes. In vitro, scanning electron microscopy, energy dispersive spectrometry, and real-time polymerase chain reaction results show that ZnO nanocrystal can promote the attachment and proliferation of oral epithelial cells on the surface of zirconia by promoting the binding of laminin 332 and integrin β4, regulating the PI3K/AKT pathway. In vivo, ZnO nanocrystal ultimately promotes the formation of soft tissue seals. Collectively, ZnO nanocrystal can be synthesized on a zirconia surface by hydrothermal treatment. It can help to form a seal between the implant abutment and surrounding soft tissue. This method is beneficial to the long-term stability of the implant and also can be applied to other medical fields.
Collapse
Affiliation(s)
- J Hu
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - I Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Y Luo
- Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - X Wang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Q Jiang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Zhang Y, Li L, Qin S, Yuan J, Xie X, Wang F, Hu S, Yi Y, Chen M. C-phycocyanin alleviated cisplatin-induced oxidative stress and inflammation via gut microbiota—metabolites axis in mice. Front Nutr 2022; 9:996614. [PMID: 36225866 PMCID: PMC9549462 DOI: 10.3389/fnut.2022.996614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
C-phycocyanin is a natural protein extracted from Spirulina platensis. We aim to investigate the preventive effect of C-phycocyanin on cisplatin chemotherapy-induced oxidative damage and inflammation. The result showed that C-phycocyanin treatment reduced cisplatin-induced mortality and inflammation including decreased levels of serum IL6, kidney MCP1, and liver IL1β. Furthermore, C-phycocyanin also exerted antioxidant effects on mice, including increased GSH-Px, GGT, and GSH levels in the liver and increased CAT and SOD levels in the kidney. HepG2 cells experiments showed that C-phycocyanin exhibited none of the prevention effects on cisplatin injury. Faecalibaculum showed the greatest reduction among genera after cisplatin treatment, which was related to the enrichment of Romboutsia and Lactobacillus genera. C-phycocyanin treatment reduced the populations of harmful bacteria of Enterococcus faecalis, which was positively correlated with inflammation induced by cisplatin. C-phycocyanin increased the contents of 23-nordeoxycholic acid and β-muricholic acid. Moreover, C-phycocyanin increased amino acid-related metabolites, Nα-acetyl-arginine and trimethyl-lysine contents, and decreased fatty acid esters of hydroxy fatty acids (FAHFAs) contents. In conclusion, C-phycocyanin inhibited inflammation via the 23-nordeoxycholic acid-Enterococcus faecalis-inflammation axis, and enhanced the antioxidant capacity of kidney via Lactobacillus-NRF2 pathway. C-phycocyanin alleviated cisplatin injury via the modulation of gut microbiota, especially Lactobacillus and Enterococcus, as well as regulation of metabolites, especially bile acid and FAHFAs, which highlight the effect of C-phycocyanin and provide a new strategy to prevent cisplatin injury.
Collapse
Affiliation(s)
- Yubing Zhang
- College of Life Sciences, Yantai University, Yantai, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Lili Li
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jingyi Yuan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaonan Xie
- College of Life Sciences, Yantai University, Yantai, China
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, China
| | - Fan Wang
- College of Life Sciences, Yantai University, Yantai, China
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, China
| | - Shanliang Hu
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Yuetao Yi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Min Chen
- College of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
8
|
Park SM, Jung CJ, Lee DG, Choi BR, Ku TH, La IJ, Cho IJ, Ku SK. Adenophora Stricta Root Extract Protects Lung Injury from Exposure to Particulate Matter 2.5 in Mice. Antioxidants (Basel) 2022; 11:antiox11071376. [PMID: 35883867 PMCID: PMC9312037 DOI: 10.3390/antiox11071376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 02/02/2023] Open
Abstract
Chronic exposure of particulate matter of less than 2.5 μm (PM2.5) has been considered as one of the major etiologies for various respiratory diseases. Adenophora stricta Miq. is a medicinal herb that has been used for treating respiratory diseases in East Asia. The present study investigated the effect of A. stricta root extract (AsE) on PM2.5-induced lung injury in mice. Oral administration of 100-400 mg/kg AsE for 10 days significantly reduced the PM2.5-mediated increase in relative lung weight, but there was no difference in body weight with AsE administration. In addition, AsE dose-dependently decreased congested region of the lung tissue, prevented apoptosis and matrix degradation, and alleviated mucus stasis induced by PM2.5. Moreover, cytological analysis of bronchioalveolar lavage fluid revealed that AsE significantly inhibited the infiltration of immune cells into the lungs. Consistently, AsE also decreased expression of proinflammatory cytokines and chemokines in lung tissue. Furthermore, AsE administration blocked reactive oxygen species production and lipid peroxidation through attenuating the PM2.5-dependent reduction of antioxidant defense system in the lungs. Therefore, A. stricta root would be a promising candidate for protecting lung tissue from air pollution such as PM2.5.
Collapse
Affiliation(s)
- Seok-Man Park
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (S.-M.P.); (D.-G.L.)
- Central Research Center, Okchundang Inc., Daegu 41059, Korea;
| | - Cheol-Jong Jung
- Central Research Center, Okchundang Inc., Daegu 41059, Korea;
| | - Dae-Geon Lee
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (S.-M.P.); (D.-G.L.)
- Central Research Center, Okchundang Inc., Daegu 41059, Korea;
| | - Beom-Rak Choi
- Research Institute, Nutracore Co., Ltd., Gwanggyo SK Viewlake A-3206, Beobjo-Ro 25, Suwon 16514, Korea;
| | - Tae-Hun Ku
- Okchungdang Korean Medicine Clinic, Ulsan 44900, Korea;
| | | | - Il-Je Cho
- Central Research Center, Okchundang Inc., Daegu 41059, Korea;
- Correspondence: (I.-J.C.); (S.-K.K.); Tel.: +82-53-950-0011 (I.-J.C.); +82-53-819-1549 (S.-K.K.)
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (S.-M.P.); (D.-G.L.)
- Correspondence: (I.-J.C.); (S.-K.K.); Tel.: +82-53-950-0011 (I.-J.C.); +82-53-819-1549 (S.-K.K.)
| |
Collapse
|
9
|
Khalifa A, Sheikh A, Ibrahim HIM. Bacillus amyloliquefaciens Enriched Camel Milk Attenuated Colitis Symptoms in Mice Model. Nutrients 2022; 14:1967. [PMID: 35565934 PMCID: PMC9101272 DOI: 10.3390/nu14091967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Fermented camel's milk has various health beneficial prebiotics and probiotics. This study aimed to evaluate the preventive efficacy of Bacillus amyloliquefaciens enriched camel milk (BEY) in 2-, 4- and 6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis mice models. To this end, the immune modulatory effects of Bacillus amyloliquefaciens (BA) on TNF-α challenged HT29 colon cells were estimated using the cell proliferation and cytokines ELISA method. BEY was prepared using the incubation method and nutritional value was quantified by comparing it to commercial yogurt. Furthermore, TNBS-induced colitis was established and the level of disease index, pathological scores, and inflammatory markers of BEY-treated mice using macroscopic and microscopic examinations, qPCR and immunoblot were investigated. The results demonstrate that BA is non-toxic to HT29 colon cells and balanced the inflammatory cytokines. BEY reduced the colitis disease index, and improved the body weight and colon length of the TNBS-induced mice. Additionally, Myeloperoxidase (MPO) and pro-inflammatory cytokines (IL1β, IL6, IL8 and TNF-α) were attenuated by BEY treatment. Moreover, the inflammatory progress mRNA and protein markers nuclear factor kappa B (NFκB), phosphatase and tensin homolog (PTEN), proliferating cell nuclear antigen (PCNA), cyclooxygenase-2 (COX-2) and occludin were significantly down-regulated by BEY treatment. Interestingly, significant suppression of PCNA was observed in colonic tissues using the immunohistochemical examination. Treatment with BEY increased the epigenetic (microRNA217) interactions with PCNA. In conclusion, the BEY clearly alleviated the colitis symptoms and in the future could be used to formulate a probiotic-based diet for the host gut health and control the inflammatory bowel syndrome in mammals.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdullah Sheikh
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
| | - Hairul Islam Mohamed Ibrahim
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Molecular Biology Division, Pondicherry Centre for Biological Sciences and Educational Trust, Kottakuppam 605104, India
| |
Collapse
|