1
|
Wu H, Kren BT, Lane AN, Cassel TA, Higashi RM, Fan TWM, Scaria GS, Shekels LL, Klein MA, Albrecht JH. Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes. J Biol Chem 2023; 299:105407. [PMID: 38152849 PMCID: PMC10687208 DOI: 10.1016/j.jbc.2023.105407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 12/29/2023] Open
Abstract
Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent kinase 4 (Cdk4), is a pivotal cell cycle regulator and driver oncogene that is overexpressed in many cancers. Here, we examine hepatocyte proliferation to define novel effects of cyclin D1 on biosynthetic metabolism. Metabolomic studies reveal that cyclin D1 broadly promotes biosynthetic pathways including glycolysis, the pentose phosphate pathway, and the purine and pyrimidine nucleotide synthesis in hepatocytes. Proteomic analyses demonstrate that overexpressed cyclin D1 binds to numerous metabolic enzymes including those involved in glycolysis and pyrimidine synthesis. In the glycolysis pathway, cyclin D1 activates aldolase and GAPDH, and these proteins are phosphorylated by cyclin D1/Cdk4 in vitro. De novo pyrimidine synthesis is particularly dependent on cyclin D1. Cyclin D1/Cdk4 phosphorylates the initial enzyme of this pathway, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and metabolomic analysis indicates that cyclin D1 depletion markedly reduces the activity of this enzyme. Pharmacologic inhibition of Cdk4 along with the downstream pyrimidine synthesis enzyme dihydroorotate dehydrogenase synergistically inhibits proliferation and survival of hepatocellular carcinoma cells. These studies demonstrate that cyclin D1 promotes a broad network of biosynthetic pathways in hepatocytes, and this model may provide insights into potential metabolic vulnerabilities in cancer cells.
Collapse
Affiliation(s)
- Heng Wu
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Teresa A Cassel
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Teresa W M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - George S Scaria
- Hematology and Oncology Division, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Laurie L Shekels
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Mark A Klein
- Hematology and Oncology Division, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Jeffrey H Albrecht
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
2
|
Beltman RJ, Pflum MKH. Kinase-Catalyzed Crosslinking and Immunoprecipitation (K-CLIP) to Explore Kinase-Substrate Pairs. Curr Protoc 2022; 2:e539. [PMID: 36135312 PMCID: PMC9885979 DOI: 10.1002/cpz1.539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Kinases are responsible for phosphorylation of proteins and are involved in many biological processes, including cell signaling. Identifying the kinases that phosphorylate specific phosphoproteins is critical to augment the current understanding of cellular events. Herein, we report a general protocol to study the kinases of a target substrate phosphoprotein using kinase-catalyzed crosslinking and immunoprecipitation (K-CLIP). K-CLIP uses a photocrosslinking γ-phosphoryl-modified ATP analog, such as ATP-arylazide, to covalently crosslink substrates to kinases with UV irradiation. Crosslinked kinase-substrate complexes can then be enriched by immunoprecipitating the target substrate phosphoprotein, with bound kinase(s) identified using Western blot or mass spectrometry analysis. K-CLIP is an adaptable chemical tool to investigate and discover kinase-substrate pairs, which will promote characterization of complex phosphorylation-mediated cell biology. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Kinase-catalyzed crosslinking of lysates Basic Protocol 2: Kinase-catalyzed crosslinking and immunoprecipitation (K-CLIP).
Collapse
|
3
|
Hanaki Y, Miyoshi S, Sugiyama Y, Yanagita RC, Sato M. 12-O-Tetradecanoylphorbol 13-acetate promotes proliferation and epithelial-mesenchymal transition in HHUA cells cultured on collagen type I gel: A feasible model to find new therapies for endometrial diseases. Biosci Biotechnol Biochem 2022; 86:1417-1422. [PMID: 35973688 DOI: 10.1093/bbb/zbac136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022]
Abstract
HHUA endometrial adenocarcinoma cells aggregated into spheroids when cultured on collagen type I gels. 12-O-Tetradecanoylphorbol 13-acetate, a PKC activator, disassembled the spheroids through epithelial-mesenchymal transition and increased their proliferation rate, while inducing cell death under monolayer culture conditions. These unusual behaviors of endometrial epithelial cells with collagen fibers could be a target for the treatment of some endometrial diseases.
Collapse
Affiliation(s)
- Yusuke Hanaki
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Sena Miyoshi
- Division of Applied Biological and Rare Sugar Sciences, Graduate School of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Yasunori Sugiyama
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Ryo C Yanagita
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Masashi Sato
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| |
Collapse
|
4
|
Analysis of protein kinases by Phos-tag SDS-PAGE. J Proteomics 2022; 255:104485. [DOI: 10.1016/j.jprot.2022.104485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/18/2022]
|
5
|
Nakane T, Matsumoto S, Iida S, Ido A, Fukunaga K, Murao K, Sugiyama Y. Candidate plasticity gene 16 and jun dimerization protein 2 are involved in the suppression of insulin gene expression in rat pancreatic INS-1 β-cells. Mol Cell Endocrinol 2021; 527:111240. [PMID: 33676985 DOI: 10.1016/j.mce.2021.111240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
Chronic hyperglycemia causes pancreatic β-cell dysfunction, impaired insulin secretion and the suppression of insulin gene expression. This phenomenon is referred to as glucotoxicity, and is a critical component of the pathogenesis of type 2 diabetes. We previously reported that the expression of candidate plasticity gene 16 (CPG16) was higher in rat pancreatic INS-1 β-cells under glucotoxic conditions and CPG16 suppressed insulin promoter activity. However, the molecular mechanisms of the CPG16-mediated suppression of insulin gene expression are unclear. In this study, we found that CPG16 directly bound and phosphorylated jun dimerization protein 2 (JDP2), an AP-1 family transcription factor. CPG16 co-localized with JDP2 in the nucleus of INS-1 cells. JDP2 bound to the G1 element of the insulin promoter and up-regulated promoter activity. Finally, CPG16 suppressed the up-regulation of insulin promoter activity by JDP2 in a kinase activity-dependent manner. These results suggest that CPG16 suppresses insulin promoter activity by phosphorylating JDP2.
Collapse
Affiliation(s)
- Tatsuto Nakane
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Suzuka Matsumoto
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Satoshi Iida
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Ayae Ido
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Kensaku Fukunaga
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, Japan.
| |
Collapse
|
6
|
Kinoshita E, Kinoshita-Kikuta E, Koike T. Determining Protein Phosphorylation Status Using Antibody Arrays and Phos-Tag Biotin. Methods Mol Biol 2020; 2237:217-224. [PMID: 33237421 DOI: 10.1007/978-1-0716-1064-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
We describe here a standard protocol for determining the phosphorylation status of protein multiplexes using antibody arrays and a biotinylated Phos-tag with a dodeca(ethylene glycol) spacer (Phos-tag Biotin). The procedure is based on an antibody microarray technique used in conjunction with an enhanced chemiluminescence system, and it permits the simultaneous and highly sensitive detection of multiple phosphoproteins in a cell lysate. By using this procedure, we have demonstrated the quantitative detection of the entire phosphorylation status of a target protein involved in intracellular signaling.
Collapse
Affiliation(s)
- Eiji Kinoshita
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tohru Koike
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Nakane T, Ido A, Higuchi T, Todaka H, Morisawa K, Nagamine T, Fukunaga K, Sakamoto S, Murao K, Sugiyama Y. Candidate plasticity gene 16 mediates suppression of insulin gene expression in rat insulinoma INS-1 cells under glucotoxic conditions. Biochem Biophys Res Commun 2019; 512:189-195. [DOI: 10.1016/j.bbrc.2019.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 11/29/2022]
|
8
|
Straightforward and rapid method for detection of cyclin-dependent kinase-like 5 activity. Anal Biochem 2019; 566:58-61. [DOI: 10.1016/j.ab.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/28/2023]
|
9
|
Uezato Y, Kameshita I, Morisawa K, Sakamoto S, Kinoshita E, Kinoshita-Kikuta E, Koike T, Sugiyama Y. A method for profiling the phosphorylation state of tyrosine protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:71-75. [PMID: 29753089 DOI: 10.1016/j.bbapap.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/14/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023]
Abstract
Protein kinases are known to be implicated in various biological phenomena and diseases through their involvement in protein phosphorylation. Therefore, analysis of the activity of protein kinases by examination of their phosphorylation state is important to elucidate their mechanisms. However, a method for analyzing the phosphorylation state of entire protein kinases in cells is not established. In the present study, we developed a new profiling method to analyze the expression and phosphorylation state of protein kinases using a Multi-PK antibody and Phos-tag 2D-PAGE. When HL-60 cells were differentiated into macrophage-like cells induced by 12-O-tetradecanoylphorbol-13-acetate, we observed significant changes in the expression and phosphorylation state of immunoreactive spots by this method. These results show that tyrosine kinase expression levels and phosphorylation state are changed by differentiation. Taken together, the developed method will be a useful tool for analysis of intracellular tyrosine protein kinases.
Collapse
Affiliation(s)
- Yuuki Uezato
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Keiko Morisawa
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi 783-8505, Japan
| | - Shuji Sakamoto
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi 783-8505, Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tohru Koike
- Department of Functional Molecular Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan.
| |
Collapse
|
10
|
Sugiyama Y, Kameshita I. Multi-PK antibodies: Powerful analytical tools to explore the protein kinase world. Biochem Biophys Rep 2017; 11:40-45. [PMID: 28955766 PMCID: PMC5614692 DOI: 10.1016/j.bbrep.2017.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/07/2017] [Accepted: 06/20/2017] [Indexed: 11/25/2022] Open
Abstract
Diverse biological events are regulated through protein phosphorylation mediated by protein kinases. Some of these protein kinases are known to be involved in the pathogenesis of various diseases. Although 518 protein kinase genes were identified in the human genome, it remains unclear how many and what kind of protein kinases are expressed and activated in cells and tissues under varying situations. To investigate cellular signaling by protein kinases, we developed monoclonal antibodies, designated as Multi-PK antibodies, that can recognize multiple protein kinases in various biological species. These Multi-PK antibodies can be used to profile the kinases expressed in cells and tissues, identify the kinases of special interest, and analyze protein kinase expression and phosphorylation state. Here we introduce some applications of Multi-PK antibodies to identify and characterize the protein kinases involved in epigenetics, glucotoxicity in type 2 diabetes, and pathogenesis of ulcerative colitis. In this review, we focus on the recently developed technologies for kinomics studies using the powerful analytical tools of Multi-PK antibodies. Multi-PK antibodies recognize a wide variety of protein kinases. New analytical methods using Multi-PK antibodies for protein kinase studies are explained. Kinomics studies using Multi-PK antibodies are introduced.
Collapse
Key Words
- 2D-PAGE, two-dimensional polyacrylamide gel electrophoresis
- CDKL5, cyclin-dependent kinase-like 5
- CNBr, cyanogen bromide
- CaMK, Ca2+/calmodulin-dependent protein kinase
- DCLK, double-cortin like protein kinase
- Dnmt1, DNA methyltransferase 1
- FAK, focal adhesion kinase
- IEF, isoelectric focusing
- IPG, immobilized pH gradient
- Kinomics
- MAPK, mitogen-activated protein kinase
- MeCP2, methylated-CpG-binding protein 2
- Monoclonal antibody
- Protein kinase
- Protein phosphorylation
- Proteomics
Collapse
|
11
|
Sugiyama Y, Yamashita S, Uezato Y, Senga Y, Katayama S, Goshima N, Shigeri Y, Sueyoshi N, Kameshita I. Phosphorylated TandeMBP: A unique protein substrate for protein phosphatase assay. Anal Biochem 2016; 513:47-53. [DOI: 10.1016/j.ab.2016.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|