1
|
Hoboth P, Sztacho M, Hozák P. Nuclear patterns of phosphatidylinositol 4,5- and 3,4-bisphosphate revealed by super-resolution microscopy differ between the consecutive stages of RNA polymerase II transcription. FEBS J 2024; 291:4240-4264. [PMID: 38734927 DOI: 10.1111/febs.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/12/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Phosphatidylinositol phosphates are powerful signaling molecules that orchestrate signaling and direct membrane trafficking in the cytosol. Interestingly, phosphatidylinositol phosphates also localize within the membrane-less compartments of the cell nucleus, where they participate in the regulation of gene expression. Nevertheless, current models of gene expression, which include condensates of proteins and nucleic acids, do not include nuclear phosphatidylinositol phosphates. This gap is partly a result of the missing detailed analysis of the subnuclear distribution of phosphatidylinositol phosphates and their relationships with gene expression. Here, we used quantitative dual-color direct stochastic optical reconstruction microscopy to analyze the nanoscale co-patterning between RNA polymerase II transcription initiation and elongation markers with respect to phosphatidylinositol 4,5- or 3,4-bisphosphate in the nucleoplasm and nuclear speckles and compared it with randomized data and cells with inhibited transcription. We found specific co-patterning of the transcription initiation marker P-S5 with phosphatidylinositol 4,5-bisphosphate in the nucleoplasm and with phosphatidylinositol 3,4-bisphosphate at the periphery of nuclear speckles. We showed the specific accumulation of the transcription elongation marker PS-2 and of nascent RNA in the proximity of phosphatidylinositol 3,4-bisphosphate associated with nuclear speckles. Taken together, this shows that the distinct spatial associations between the consecutive stages of RNA polymerase II transcription and nuclear phosphatidylinositol phosphates exhibit specificity within the gene expression compartments. Thus, in analogy to the cellular membranes, where phospholipid composition orchestrates signaling pathways and directs membrane trafficking, we propose a model in which the phospholipid identity of gene expression compartments orchestrates RNA polymerase II transcription.
Collapse
Affiliation(s)
- Peter Hoboth
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Viničná Microscopy Core Facility, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Sztacho
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Hozák
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Escudeiro-Lopes S, Filimonenko VV, Jarolimová L, Hozák P. Lamin A/C and PI(4,5)P2-A Novel Complex in the Cell Nucleus. Cells 2024; 13:399. [PMID: 38474363 DOI: 10.3390/cells13050399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/14/2024] Open
Abstract
Lamins, the nuclear intermediate filaments, are important regulators of nuclear structural integrity as well as nuclear functional processes such as DNA transcription, replication and repair, and epigenetic regulations. A portion of phosphorylated lamin A/C localizes to the nuclear interior in interphase, forming a lamin A/C pool with specific properties and distinct functions. Nucleoplasmic lamin A/C molecular functions are mainly dependent on its binding partners; therefore, revealing new interactions could give us new clues on the lamin A/C mechanism of action. In the present study, we show that lamin A/C interacts with nuclear phosphoinositides (PIPs), and with nuclear myosin I (NM1). Both NM1 and nuclear PIPs have been previously reported as important regulators of gene expression and DNA damage/repair. Furthermore, phosphorylated lamin A/C forms a complex with NM1 in a phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent manner in the nuclear interior. Taken together, our study reveals a previously unidentified interaction between phosphorylated lamin A/C, NM1, and PI(4,5)P2 and suggests new possible ways of nucleoplasmic lamin A/C regulation, function, and importance for the formation of functional nuclear microdomains.
Collapse
Affiliation(s)
- Sara Escudeiro-Lopes
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Vlada V Filimonenko
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Electron Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Lenka Jarolimová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
3
|
Li Y, Wang J, Chen X, Czajkowsky DM, Shao Z. Quantitative Super-Resolution Microscopy Reveals the Relationship between CENP-A Stoichiometry and Centromere Physical Size. Int J Mol Sci 2023; 24:15871. [PMID: 37958853 PMCID: PMC10649757 DOI: 10.3390/ijms242115871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Centromeric chromatin is thought to play a critical role in ensuring the faithful segregation of chromosomes during mitosis. However, our understanding of this role is presently limited by our poor understanding of the structure and composition of this unique chromatin. The nucleosomal variant, CENP-A, localizes to narrow regions within the centromere, where it plays a major role in centromeric function, effectively serving as a platform on which the kinetochore is assembled. Previous work found that, within a given cell, the number of microtubules within kinetochores is essentially unchanged between CENP-A-localized regions of different physical sizes. However, it is unknown if the amount of CENP-A is also unchanged between these regions of different sizes, which would reflect a strict structural correspondence between these two key characteristics of the centromere/kinetochore assembly. Here, we used super-resolution optical microscopy to image and quantify the amount of CENP-A and DNA within human centromere chromatin. We found that the amount of CENP-A within CENP-A domains of different physical sizes is indeed the same. Further, our measurements suggest that the ratio of CENP-A- to H3-containing nucleosomes within these domains is between 8:1 and 11:1. Thus, our results not only identify an unexpectedly strict relationship between CENP-A and microtubules stoichiometries but also that the CENP-A centromeric domain is almost exclusively composed of CENP-A nucleosomes.
Collapse
Affiliation(s)
- Yaqian Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (Z.S.)
| | - Jiabin Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Xuecheng Chen
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Daniel M. Czajkowsky
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (Z.S.)
| | - Zhifeng Shao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (Z.S.)
| |
Collapse
|
4
|
Hoboth P, Sztacho M, Quaas A, Akgül B, Hozák P. Quantitative super-resolution microscopy reveals the differences in the nanoscale distribution of nuclear phosphatidylinositol 4,5-bisphosphate in human healthy skin and skin warts. Front Cell Dev Biol 2023; 11:1217637. [PMID: 37484912 PMCID: PMC10361526 DOI: 10.3389/fcell.2023.1217637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Imaging of human clinical formalin-fixed paraffin-embedded (FFPE) tissue sections provides insights into healthy and diseased states and therefore represents a valuable resource for basic research, as well as for diagnostic and clinical purposes. However, conventional light microscopy does not allow to observe the molecular details of tissue and cell architecture due to the diffraction limit of light. Super-resolution microscopy overcomes this limitation and provides access to the nanoscale details of tissue and cell organization. Methods: Here, we used quantitative multicolor stimulated emission depletion (STED) nanoscopy to study the nanoscale distribution of the nuclear phosphatidylinositol 4,5-bisphosphate (nPI(4,5)P2) with respect to the nuclear speckles (NS) marker SON. Results: Increased nPI(4,5)P2 signals were previously linked to human papillomavirus (HPV)-mediated carcinogenesis, while NS-associated PI(4,5)P2 represents the largest pool of nPI(4,5)P2 visualized by staining and microscopy. The implementation of multicolor STED nanoscopy in human clinical FFPE skin and wart sections allowed us to provide here the quantitative evidence for higher levels of NS-associated PI(4,5)P2 in HPV-induced warts compared to control skin. Discussion: These data expand the previous reports of HPV-induced increase of nPI(4,5)P2 levels and reveal for the first time the functional, tissue-specific localization of nPI(4,5)P2 within NS in clinically relevant samples. Moreover, our approach is widely applicable to other human clinical FFPE tissues as an informative addition to the classical histochemistry.
Collapse
Affiliation(s)
- Peter Hoboth
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Sztacho
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Alexander Quaas
- Institute of Pathology, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Yuan Z, Lu X, Lei F, Sun H, Jiang J, Xing D, Du L. Novel Effect of p-Coumaric Acid on Hepatic Lipolysis: Inhibition of Hepatic Lipid-Droplets. Molecules 2023; 28:4641. [PMID: 37375195 DOI: 10.3390/molecules28124641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
p-coumaric acid (p-CA), a common plant phenolic acid with multiple bioactivities, has a lipid-lowering effect. As a dietary polyphenol, its low toxicity, with the advantages of prophylactic and long-term administration, makes it a potential drug for prophylaxis and the treatment of nonalcoholic fatty liver disease (NAFLD). However, the mechanism by which it regulates lipid metabolism is still unclear. In this study, we studied the effect of p-CA on the down-regulation of accumulated lipids in vivo and in vitro. p-CA increased a number of lipase expressions, including hormone-sensitive lipase (HSL), monoacylglycerol lipase (MGL) and hepatic triglyceride lipase (HTGL), as well as the expression of genes related to fatty acid oxidation, including long-chain fatty acyl-CoA synthetase 1 (ACSL1), carnitine palmitoyltransferase-1 (CPT1), by activating peroxisome proliferator-activated receptor α, and γ (PPARα and γ). Furthermore, p-CA promoted adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and enhanced the expression of the mammalian suppressor of Sec4 (MSS4), a critical protein that can inhibit lipid droplet growth. Thus, p-CA can decrease lipid accumulation and inhibit lipid droplet fusion, which are correlated with the enhancement of liver lipases and genes related to fatty acid oxidation as an activator of PPARs. Therefore, p-CA is capable of regulating lipid metabolism and is a potential therapeutic drug or health care product for hyperlipidemia and fatty liver.
Collapse
Affiliation(s)
- Zhiyi Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xi Lu
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fan Lei
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hong Sun
- Institute of Medicinal Plant and Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100094, China
| | - Jingfei Jiang
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongming Xing
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lijun Du
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Carmichael RE, Richards DM, Fahimi HD, Schrader M. Organelle Membrane Extensions in Mammalian Cells. BIOLOGY 2023; 12:biology12050664. [PMID: 37237478 DOI: 10.3390/biology12050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Organelles within eukaryotic cells are not isolated static compartments, instead being morphologically diverse and highly dynamic in order to respond to cellular needs and carry out their diverse and cooperative functions. One phenomenon exemplifying this plasticity, and increasingly gaining attention, is the extension and retraction of thin tubules from organelle membranes. While these protrusions have been observed in morphological studies for decades, their formation, properties and functions are only beginning to be understood. In this review, we provide an overview of what is known and still to be discovered about organelle membrane protrusions in mammalian cells, focusing on the best-characterised examples of these membrane extensions arising from peroxisomes (ubiquitous organelles involved in lipid metabolism and reactive oxygen species homeostasis) and mitochondria. We summarise the current knowledge on the diversity of peroxisomal/mitochondrial membrane extensions, as well as the molecular mechanisms by which they extend and retract, necessitating dynamic membrane remodelling, pulling forces and lipid flow. We also propose broad cellular functions for these membrane extensions in inter-organelle communication, organelle biogenesis, metabolism and protection, and finally present a mathematical model that suggests that extending protrusions is the most efficient way for an organelle to explore its surroundings.
Collapse
Affiliation(s)
- Ruth E Carmichael
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - David M Richards
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - H Dariush Fahimi
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Schrader
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
7
|
Balaban C, Sztacho M, Antiga L, Miladinović A, Harata M, Hozák P. PIP2-Effector Protein MPRIP Regulates RNA Polymerase II Condensation and Transcription. Biomolecules 2023; 13:biom13030426. [PMID: 36979361 PMCID: PMC10046169 DOI: 10.3390/biom13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The specific post-translational modifications of the C-terminal domain (CTD) of the Rpb1 subunit of RNA polymerase II (RNAPII) correlate with different stages of transcription. The phosphorylation of the Ser5 residues of this domain associates with the initiation condensates, which are formed through liquid-liquid phase separation (LLPS). The subsequent Tyr1 phosphorylation of the CTD peaks at the promoter-proximal region and is involved in the pause-release of RNAPII. By implementing super-resolution microscopy techniques, we previously reported that the nuclear Phosphatidylinositol 4,5-bisphosphate (PIP2) associates with the Ser5-phosphorylated-RNAPII complex and facilitates the RNAPII transcription. In this study, we identified Myosin Phosphatase Rho-Interacting Protein (MPRIP) as a novel regulator of the RNAPII transcription that recruits Tyr1-phosphorylated CTD (Tyr1P-CTD) to nuclear PIP2-containing structures. The depletion of MPRIP increases the number of the initiation condensates, indicating a defect in the transcription. We hypothesize that MPRIP regulates the condensation and transcription through affecting the association of the RNAPII complex with nuclear PIP2-rich structures. The identification of Tyr1P-CTD as an interactor of PIP2 and MPRIP further points to a regulatory role in RNAPII pause-release, where the susceptibility of the transcriptional complex to leave the initiation condensate depends on its association with nuclear PIP2-rich structures. Moreover, the N-terminal domain of MPRIP, which is responsible for the interaction with the Tyr1P-CTD, contains an F-actin binding region that offers an explanation of how nuclear F-actin formations can affect the RNAPII transcription and condensation. Overall, our findings shed light on the role of PIP2 in RNAPII transcription through identifying the F-actin binding protein MPRIP as a transcription regulator and a determinant of the condensation of RNAPII.
Collapse
Affiliation(s)
- Can Balaban
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Martin Sztacho
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Correspondence: (M.S.); (P.H.)
| | - Ludovica Antiga
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Ana Miladinović
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Masahiko Harata
- Laboratory of Molecular Biochemistry, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Correspondence: (M.S.); (P.H.)
| |
Collapse
|
8
|
Michalik S, Siegerist F, Palankar R, Franzke K, Schindler M, Reder A, Seifert U, Cammann C, Wesche J, Steil L, Hentschker C, Gesell-Salazar M, Reisinger E, Beer M, Endlich N, Greinacher A, Völker U. Comparative analysis of ChAdOx1 nCoV-19 and Ad26.COV2.S SARS-CoV-2 vector vaccines. Haematologica 2022; 107:947-957. [PMID: 35045692 PMCID: PMC8968905 DOI: 10.3324/haematol.2021.280154] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/05/2021] [Indexed: 11/26/2022] Open
Abstract
Vector-based SARS-CoV-2 vaccines have been associated with vaccine- induced thrombosis with thrombocytopenia syndrome (VITT/TTS), but the causative factors are still unresolved. We comprehensively analyzed the ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S (Johnson and Johnson) vaccines. ChAdOx1 nCoV-19 contains significant amounts of host cell protein impurities, including functionally active proteasomes, and adenoviral proteins. A much smaller amount of impurities was found in Ad26.COV2.S. Platelet factor 4 formed complexes with ChAdOx1 nCoV-19 constituents, but not with purified virions from ChAdOx1 nCoV-19 or with Ad26.COV2.S. Vascular hyperpermeability was induced by ChAdOx nCoV-19 but not by Ad26.COV2.S. These differences in impurities together with EDTAinduced capillary leakage might contribute to the higher incidence rate of VITT associated with ChAdOx1 nCoV-19 compared to Ad26.COV2.S.
Collapse
Affiliation(s)
- Stephan Michalik
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Florian Siegerist
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Raghavendra Palankar
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Kati Franzke
- Institute of Infectiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Maximilian Schindler
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Clemens Cammann
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Jan Wesche
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christian Hentschker
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manuela Gesell-Salazar
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Emil Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
9
|
Sharing data, sharing methods, sharing science. MethodsX 2022; 9:101607. [PMID: 35024349 PMCID: PMC8728097 DOI: 10.1016/j.mex.2021.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Hoboth P, Šebesta O, Hozák P. How Single-Molecule Localization Microscopy Expanded Our Mechanistic Understanding of RNA Polymerase II Transcription. Int J Mol Sci 2021; 22:6694. [PMID: 34206594 PMCID: PMC8269275 DOI: 10.3390/ijms22136694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 11/16/2022] Open
Abstract
Classical models of gene expression were built using genetics and biochemistry. Although these approaches are powerful, they have very limited consideration of the spatial and temporal organization of gene expression. Although the spatial organization and dynamics of RNA polymerase II (RNAPII) transcription machinery have fundamental functional consequences for gene expression, its detailed studies have been abrogated by the limits of classical light microscopy for a long time. The advent of super-resolution microscopy (SRM) techniques allowed for the visualization of the RNAPII transcription machinery with nanometer resolution and millisecond precision. In this review, we summarize the recent methodological advances in SRM, focus on its application for studies of the nanoscale organization in space and time of RNAPII transcription, and discuss its consequences for the mechanistic understanding of gene expression.
Collapse
Affiliation(s)
- Peter Hoboth
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic;
| | - Ondřej Šebesta
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic;
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
- Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|