1
|
O’Reilly S, Byrne J, Feeney ER, Mallon PWG, Gautier V. Navigating the Landscape of B Cell Mediated Immunity and Antibody Monitoring in SARS-CoV-2 Vaccine Efficacy: Tools, Strategies and Clinical Trial Insights. Vaccines (Basel) 2024; 12:1089. [PMID: 39460256 PMCID: PMC11511438 DOI: 10.3390/vaccines12101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Correlates of Protection (CoP) are biomarkers above a defined threshold that can replace clinical outcomes as primary endpoints, predicting vaccine effectiveness to support the approval of new vaccines or follow up studies. In the context of COVID-19 vaccination, CoPs can help address challenges such as demonstrating vaccine effectiveness in special populations, against emerging SARS-CoV-2 variants or determining the durability of vaccine-elicited immunity. While anti-spike IgG titres and viral neutralising capacity have been characterised as CoPs for COVID-19 vaccination, the contribution of other components of the humoral immune response to immediate and long-term protective immunity is less well characterised. This review examines the evidence supporting the use of CoPs in COVID-19 clinical vaccine trials, and how they can be used to define a protective threshold of immunity. It also highlights alternative humoral immune biomarkers, including Fc effector function, mucosal immunity, and the generation of long-lived plasma and memory B cells and discuss how these can be applied to clinical studies and the tools available to study them.
Collapse
Affiliation(s)
- Sophie O’Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Byrne
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Debnath N, Live LS, Poudineh M. A microfluidic plasma separation device combined with a surface plasmon resonance biosensor for biomarker detection in whole blood. LAB ON A CHIP 2023; 23:572-579. [PMID: 36723239 DOI: 10.1039/d2lc00693f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biomarker detection in whole blood enables understanding of the cause, progression, relapse or outcome of treatment of a disease. Conventional biomarker detection techniques, such as enzyme-linked immunosorbent assay, polymerase chain reaction, and immunofluorescence, require long assay time, costly laboratory instruments, large reagent volume and sample pre-processing. Hence, there is an unmet need for reliable capture and detection of biomarkers in unprocessed blood which are adaptable to point-of-care (POC) testing. Here, we present a simple, low-cost, and rapid protein detection device from whole blood samples which has the potential to be employed in a POC setting. The platform consists of two components: a plasma separation device that extracts plasma from whole blood without the application of any external active forces and a SPR sensor chip that uses a label-free optical technique for the detection of biomarkers in the extracted plasma. We have demonstrated the detection of IgG and IgM biomolecules in unprocessed blood at concentrations lower than the physiological value within 15 min. The proposed technique has the potential for improving the diagnosis and screening of many diseases, including cancer, influenza, human immunodeficiency virus, and SARS-Cov2 at POC.
Collapse
Affiliation(s)
- Nandini Debnath
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | | | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
3
|
Pohanka M. Progress in Biosensors for the Point-of-Care Diagnosis of COVID-19. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197423. [PMID: 36236521 PMCID: PMC9571584 DOI: 10.3390/s22197423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 05/31/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly virulent infection that has caused a pandemic since 2019. Early diagnosis of the disease has been recognized as one of the important approaches to minimize the pathological impact and spread of infection. Point-of-care tests proved to be substantial analytical tools, and especially lateral flow immunoassays (lateral flow tests) serve the purpose. In the last few years, biosensors have gained popularity. These are simple but highly sensitive and accurate analytical devices composed from a selective molecule such as an antibody or antigen and a sensor platform. Biosensors would be an advanced alternative to current point-of-care tests for COVID-19 diagnosis and standard laboratory methods as well. Recent discoveries related to point-of-care diagnostic tests for COVID-19, the development of biosensors for specific antibodies and specific virus parts or their genetic information are reviewed.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, CZ-50001 Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Hendriks J, Schasfoort R, Koerselman M, Dannenberg M, Cornet AD, Beishuizen A, van der Palen J, Krabbe J, Mulder AHL, Karperien M. High Titers of Low Affinity Antibodies in COVID-19 Patients Are Associated With Disease Severity. Front Immunol 2022; 13:867716. [PMID: 35493512 PMCID: PMC9043688 DOI: 10.3389/fimmu.2022.867716] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Almost 2 years from the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there is still a lot unknown how the humoral response affects disease progression. In this study, we investigated humoral antibody responses against specific SARS-CoV2 proteins, their strength of binding, and their relationship with COVID severity and clinical information. Furthermore, we studied the interactions of the specific receptor-binding domain (RBD) in more depth by characterizing specific antibody response to a peptide library. Materials and Methods We measured specific antibodies of isotypes IgM, IgG, and IgA, as well as their binding strength against the SARS-CoV2 antigens RBD, NCP, S1, and S1S2 in sera of 76 COVID-19 patients using surface plasmon resonance imaging. In addition, these samples were analyzed using a peptide epitope mapping assay, which consists of a library of peptides originating from the RBD. Results A positive association was observed between disease severity and IgG antibody titers against all SARS-CoV2 proteins and additionally for IgM and IgA antibodies directed against RBD. Interestingly, in contrast to the titer of antibodies, the binding strength went down with increasing disease severity. Within the critically ill patient group, a positive association with pulmonary embolism, d-dimer, and antibody titers was observed. Conclusion In critically ill patients, antibody production is high, but affinity is low, and maturation is impaired. This may play a role in disease exacerbation and could be valuable as a prognostic marker for predicting severity.
Collapse
Affiliation(s)
- Jan Hendriks
- Department of Developmental BioEngineering, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Richard Schasfoort
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Michelle Koerselman
- Department of Developmental BioEngineering, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Maureen Dannenberg
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | | | | | - Job van der Palen
- Medical School, Medisch Spectrum Twente, Enschede, Netherlands.,Section Cognition, Education and Data, Faculty of Behavioural, Management and Social Sciences, University of Twente, Enschede, Netherlands
| | - Johannes Krabbe
- Department of Clinical Chemistry, Medlon BV, Enschede, Netherlands.,Department of Clinical Chemistry and Laboratory Medicine, Medisch Spectrum Twente, Enschede, Netherlands
| | - Alide H L Mulder
- Department of Clinical Chemistry, Medlon BV, Enschede, Netherlands.,Department of Clinical Chemistry, Ziekenhuis Groep Twente, Almelo, Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| |
Collapse
|
5
|
Steglich P, Lecci G, Mai A. Surface Plasmon Resonance (SPR) Spectroscopy and Photonic Integrated Circuit (PIC) Biosensors: A Comparative Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:2901. [PMID: 35458884 PMCID: PMC9028357 DOI: 10.3390/s22082901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022]
Abstract
Label-free direct-optical biosensors such as surface-plasmon resonance (SPR) spectroscopy has become a gold standard in biochemical analytics in centralized laboratories. Biosensors based on photonic integrated circuits (PIC) are based on the same physical sensing mechanism: evanescent field sensing. PIC-based biosensors can play an important role in healthcare, especially for point-of-care diagnostics, if challenges for a transfer from research laboratory to industrial applications can be overcome. Research is at this threshold, which presents a great opportunity for innovative on-site analyses in the health and environmental sectors. A deeper understanding of the innovative PIC technology is possible by comparing it with the well-established SPR spectroscopy. In this work, we shortly introduce both technologies and reveal similarities and differences. Further, we review some latest advances and compare both technologies in terms of surface functionalization and sensor performance.
Collapse
Affiliation(s)
- Patrick Steglich
- IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany; (G.L.); (A.M.)
- Department of Photonics, Technische Hochschule Wildau, 15745 Wildau, Germany
| | - Giulia Lecci
- IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany; (G.L.); (A.M.)
| | - Andreas Mai
- IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany; (G.L.); (A.M.)
- Department of Photonics, Technische Hochschule Wildau, 15745 Wildau, Germany
| |
Collapse
|