1
|
Diebold CA, Lawlor J, Allen K, Capshaw G, Humphrey MG, Cintron-De Leon D, Kuchibhotla KV, Moss CF. Rapid sensorimotor adaptation to auditory midbrain silencing in free-flying bats. Curr Biol 2024; 34:5507-5517.e3. [PMID: 39549701 PMCID: PMC11614681 DOI: 10.1016/j.cub.2024.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
Echolocating bats rely on rapid processing of auditory information to guide moment-to-moment decisions related to echolocation call design and flight path selection. The fidelity of sonar echoes, however, can be disrupted in natural settings due to occlusions, noise, and conspecific jamming signals. Behavioral sensorimotor adaptation to external blocks of relevant cues has been studied extensively, but little is known about adaptations that mitigate internal sensory flow interruption. How do bats modify their sensory-guided behaviors in natural tasks when central auditory processing is interrupted? Here, we induced internal sensory interruptions by reversibly inactivating excitatory neurons in the inferior colliculus (IC) using ligand-activated inhibitory designer receptors exclusively activated by designer drugs (DREADDs). Bats were trained to navigate through one of three open windows in a curtain to obtain a food reward, while their echolocation and flight behaviors were quantified with synchronized ultrasound microphone and stereo video recordings. Under control conditions, bats reliably steered through the open window, only occasionally contacting the curtain edge. Suppressing IC excitatory activity elevated hearing thresholds, disrupted overall performance in the task, increased the frequency of curtain contact, and led to striking compensatory sensorimotor adjustments. DREADDs-treated bats modified flight trajectories to maximize returning echo information and adjusted sonar call design to boost detection of obstacles. Sensorimotor adaptations appeared immediately and did not change over successive trials, suggesting that these behavioral adaptations are mediated through existing neural circuitry. Our findings highlight the remarkable rapid adaptive strategies bats employ to compensate for internal sensory interruptions to effectively navigate their environments.
Collapse
Affiliation(s)
- Clarice A Diebold
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Kathryne Allen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Megan G Humphrey
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Diego Cintron-De Leon
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kishore V Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Capshaw G, Diebold CA, Adams DM, Rayner JG, Wilkinson GS, Moss CF, Lauer AM. Resistance to age-related hearing loss in the echolocating big brown bat ( Eptesicus fuscus). Proc Biol Sci 2024; 291:20241560. [PMID: 39500378 DOI: 10.1098/rspb.2024.1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 11/13/2024] Open
Abstract
Hearing mediates many behaviours critical for survival in echolocating bats, including foraging and navigation. Although most mammals are susceptible to progressive age-related hearing loss, the evolution of biosonar, which requires the ability to hear low-intensity echoes from outgoing sonar signals, may have selected against the development of hearing deficits in bats. Many echolocating bats exhibit exceptional longevity and rely on acoustic behaviours for survival to old age; however, relatively little is known about the ageing bat auditory system. In this study, we used DNA methylation to estimate the ages of wild-caught big brown bats (Eptesicus fuscus) and measured hearing sensitivity in young and ageing bats using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We found no evidence for hearing deficits in bats up to 12.5 years of age, demonstrated by comparable thresholds and similar ABR and DPOAE amplitudes across age groups. We additionally found no significant histological evidence for cochlear ageing, with similar hair cell counts, afferent and efferent innervation patterns in young and ageing bats. Here, we demonstrate that big brown bats show minimal evidence for age-related hearing loss and therefore represent informative models for investigating mechanisms that may preserve hearing function over a long lifetime.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Clarice A Diebold
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Danielle M Adams
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Jack G Rayner
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Gerald S Wilkinson
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
- The Solomon H. Snyder Dept of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Amanda M Lauer
- The Solomon H. Snyder Dept of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Capshaw G, Diebold CA, Sterbing SJ, Lauer AM, Moss CF. Echolocating bats show species-specific variation in susceptibility to acoustic forward masking. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:511-523. [PMID: 39013168 PMCID: PMC11254387 DOI: 10.1121/10.0026624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
Echolocating bats rely on precise auditory temporal processing to detect echoes generated by calls that may be emitted at rates reaching 150-200 Hz. High call rates can introduce forward masking perceptual effects that interfere with echo detection; however, bats may have evolved specializations to prevent repetition suppression of auditory responses and facilitate detection of sounds separated by brief intervals. Recovery of the auditory brainstem response (ABR) was assessed in two species that differ in the temporal characteristics of their echolocation behaviors: Eptesicus fuscus, which uses high call rates to capture prey, and Carollia perspicillata, which uses lower call rates to avoid obstacles and forage for fruit. We observed significant species differences in the effects of forward masking on ABR wave 1, in which E. fuscus maintained comparable ABR wave 1 amplitudes when stimulated at intervals of <3 ms, whereas post-stimulus recovery in C. perspicillata required 12 ms. When the intensity of the second stimulus was reduced by 20-30 dB relative to the first, however, C. perspicillata showed greater recovery of wave 1 amplitudes. The results demonstrate that species differences in temporal resolution are established at early levels of the auditory pathway and that these differences reflect auditory processing requirements of species-specific echolocation behaviors.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Clarice A Diebold
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Susanne J Sterbing
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
4
|
Burke K, Screven LA, Vicencio-Jimenez S, Lauer AM. Auditory brainstem response audiometry in tauopathy mouse model of human Alzheimer's disease. JASA EXPRESS LETTERS 2024; 4:071201. [PMID: 38980136 PMCID: PMC11240211 DOI: 10.1121/10.0026602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder in which changes in hearing sensitivity precede cognitive decline. Despite a well-known link between dementia and hearing loss, few AD model mouse lines have hearing characterized. We screened for hearing loss using auditory brainstem responses (ABR) in young (3-4 months) and aging (9-10 months) mice with a P301S tauopathy (PS19 mice). Compared to wild types, aging PS19 mice did not show accelerated hearing loss but did show latency differences in centrally generated ABR waveform components. These results suggest that tauopathy causes mild central auditory dysfunction in the absence of overt hearing loss.
Collapse
Affiliation(s)
- Kali Burke
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Laurel A Screven
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Sergio Vicencio-Jimenez
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, ; ; ;
| |
Collapse
|
5
|
Erra A, Chen J, Chrysostomou E, Barret S, Miller C, Kassim YM, Friedman RA, Ceriani F, Marcotti W, Carroll C, Manor U. An Open-Source Deep Learning-Based GUI Toolbox For Automated Auditory Brainstem Response Analyses (ABRA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599815. [PMID: 38948763 PMCID: PMC11213013 DOI: 10.1101/2024.06.20.599815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In this paper, we introduce a new, open-source software developed in Python for analyzing Auditory Brainstem Response (ABR) waveforms. ABRs are a far-field recording of synchronous neural activity generated by the auditory fibers in the ear in response to sound, and used to study acoustic neural information traveling along the ascending auditory pathway. Common ABR data analysis practices are subject to human interpretation and are labor-intensive, requiring manual annotations and visual estimation of hearing thresholds. The proposed new Auditory Brainstem Response Analyzer (ABRA) software is designed to facilitate the analysis of ABRs by supporting batch data import/export, waveform visualization, and statistical analysis. Techniques implemented in this software include algorithmic peak finding, threshold estimation, latency estimation, time warping for curve alignment, and 3D plotting of ABR waveforms over stimulus frequencies and decibels. The excellent performance on a large dataset of ABR collected from three labs in the field of hearing research that use different experimental recording settings illustrates the efficacy, flexibility, and wide utility of ABRA.
Collapse
Affiliation(s)
- Abhijeeth Erra
- Data Institute, University of San Francisco, San Francisco, CA
| | - Jeffrey Chen
- Data Institute, University of San Francisco, San Francisco, CA
| | - Elena Chrysostomou
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA
| | - Shannon Barret
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA
| | - Cayla Miller
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA
| | - Yasmin M. Kassim
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA
| | - Rick A. Friedman
- Dept. of Otolaryngology, University of California San Diego, La Jolla, CA
| | - Federico Ceriani
- Dept. of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Walter Marcotti
- Dept. of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Cody Carroll
- Data Institute, University of San Francisco, San Francisco, CA
- Dept. of Mathematics and Statistics, University of San Francisco, San Francisco, CA
| | - Uri Manor
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA
- Dept. of Otolaryngology, University of California San Diego, La Jolla, CA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA
| |
Collapse
|
6
|
Mondul JA, Burke K, Morley B, Lauer AM. Alpha9alpha10 knockout mice show altered physiological and behavioral responses to signals in masking noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:3183-3194. [PMID: 38738939 PMCID: PMC11093617 DOI: 10.1121/10.0025985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Medial olivocochlear (MOC) efferents modulate outer hair cell motility through specialized nicotinic acetylcholine receptors to support encoding of signals in noise. Transgenic mice lacking the alpha9 subunits of these receptors (α9KOs) have normal hearing in quiet and noise, but lack classic cochlear suppression effects and show abnormal temporal, spectral, and spatial processing. Mice deficient for both the alpha9 and alpha10 receptor subunits (α9α10KOs) may exhibit more severe MOC-related phenotypes. Like α9KOs, α9α10KOs have normal auditory brainstem response (ABR) thresholds and weak MOC reflexes. Here, we further characterized auditory function in α9α10KO mice. Wild-type (WT) and α9α10KO mice had similar ABR thresholds and acoustic startle response amplitudes in quiet and noise, and similar frequency and intensity difference sensitivity. α9α10KO mice had larger ABR Wave I amplitudes than WTs in quiet and noise. Other ABR metrics of hearing-in-noise function yielded conflicting findings regarding α9α10KO susceptibility to masking effects. α9α10KO mice also had larger startle amplitudes in tone backgrounds than WTs. Overall, α9α10KO mice had grossly normal auditory function in quiet and noise, although their larger ABR amplitudes and hyperreactive startles suggest some auditory processing abnormalities. These findings contribute to the growing literature showing mixed effects of MOC dysfunction on hearing.
Collapse
Affiliation(s)
- Jane A Mondul
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kali Burke
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Barbara Morley
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
7
|
Mondul JA, Burke K, Morley B, Lauer AM. Alpha9alpha10 knockout mice show altered physiological and behavioral responses to signals in masking noise. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.567909. [PMID: 38045351 PMCID: PMC10690178 DOI: 10.1101/2023.11.21.567909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Medial olivocochlear (MOC) efferents modulate outer hair cell motility through specialized nicotinic acetylcholine receptors to support encoding of signals in noise. Transgenic mice lacking the alpha9 subunits of these receptors (α9KOs) have normal hearing in quiet and noise, but lack classic cochlear suppression effects and show abnormal temporal, spectral, and spatial processing. Mice deficient for both the alpha9 and alpha10 receptor subunits (α9α10KOs) may exhibit more severe MOC-related phenotypes. Like α9KOs, α9α10KOs have normal auditory brainstem response (ABR) thresholds and weak MOC reflexes. Here, we further characterized auditory function in α9α10KO mice. Wildtype and α9α10KO mice had similar ABR thresholds and acoustic startle response (ASR) amplitudes in quiet and noise, and similar frequency and intensity difference sensitivity. α9α10KO mice had larger ABR Wave I amplitudes than wildtypes in quiet and noise, but the noise:quiet amplitude ratio suggested α9α10KOs were more susceptible to masking effects for some stimuli. α9α10KO mice also had larger startle amplitudes in tone backgrounds than wildtypes. Overall, α9α10KO mice had grossly normal auditory function in quiet and noise, though their larger ABR amplitudes and hyperreactive startles suggest some auditory processing abnormalities. These findings contribute to the growing literature showing mixed effects of MOC dysfunction on hearing.
Collapse
|