1
|
Khan J, Bareja C, Dwivedi K, Mathur A, Kumar N, Saluja D. Identification and validation of a metabolic-related gene risk model predicting the prognosis of lung, colon, and breast cancers. Sci Rep 2025; 15:1374. [PMID: 39779736 PMCID: PMC11711664 DOI: 10.1038/s41598-025-85366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Metabolic reprogramming, vital for cancer cells to adapt to the altered microenvironment, remains a topic requiring further investigation for different tumor types. Our study aims to elucidate shared metabolic reprogramming across breast (BRC), colorectal (CRC), and lung (LUC) cancers. Leveraging gene expression data from the Gene Expression Omnibus and various bioinformatics tools like MSigDB, WebGestalt, String, and Cytoscape, we identified key/hub metabolism-related genes (MRGs) and their interactions. The functional characteristics including survival parameters and expression of the key MRGs were analyzed and validated through Gene Expression Profiling Interactive Analysis 2 and qRT-PCR. In addition, we employed machine learning algorithms such as k-nearest neighbours (KNN), support vector regressor (SVR), and extreme gradient boosting (XGBoost) to assess MRGs' effectiveness in predicting overall patient survival. Among 11,384 DEGs analyzed, 540 overlapped across BRC, CRC, and LUC, with 46 MRGs and 20 key/hub MRGs involved in all studied cancer types. Of these, 11 key MRGs were prognostically significant. The qRT-PCR validation of key MRGs in specific cancer cell lines confirmed their expression profiles, with some showing cell-type-specific patterns. SVR exhibited remarkable accuracy in predicting overall survival, emphasizing its clinical utility. Our integrated approach combining bioinformatics analyses and experimental validations underscores the potential of MRGs as biomarkers for metabolic therapies, with machine learning models enhancing predictive capabilities for patient outcomes.
Collapse
Affiliation(s)
- Jiyauddin Khan
- Dr B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Chanchal Bareja
- Dr B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Kountay Dwivedi
- Department of Computer Science, FacultyofMathematicalSciences, University of Delhi, Delhi, 110007, India
| | - Ankit Mathur
- Dr B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
- Delhi School of Public Health (DSPH), Institution of Eminence (IoE), University of Delhi, Delhi, 110007, India
| | - Naveen Kumar
- Department of Computer Science, FacultyofMathematicalSciences, University of Delhi, Delhi, 110007, India
| | - Daman Saluja
- Dr B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
- Delhi School of Public Health (DSPH), Institution of Eminence (IoE), University of Delhi, Delhi, 110007, India.
| |
Collapse
|
2
|
Kastendiek N, Coletti R, Gross T, Lopes MB. Exploring glioma heterogeneity through omics networks: from gene network discovery to causal insights and patient stratification. BioData Min 2024; 17:56. [PMID: 39696678 DOI: 10.1186/s13040-024-00411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Gliomas are primary malignant brain tumors with a typically poor prognosis, exhibiting significant heterogeneity across different cancer types. Each glioma type possesses distinct molecular characteristics determining patient prognosis and therapeutic options. This study aims to explore the molecular complexity of gliomas at the transcriptome level, employing a comprehensive approach grounded in network discovery. The graphical lasso method was used to estimate a gene co-expression network for each glioma type from a transcriptomics dataset. Causality was subsequently inferred from correlation networks by estimating the Jacobian matrix. The networks were then analyzed for gene importance using centrality measures and modularity detection, leading to the selection of genes that might play an important role in the disease. To explore the pathways and biological functions these genes are involved in, KEGG and Gene Ontology (GO) enrichment analyses on the disclosed gene sets were performed, highlighting the significance of the genes selected across several relevent pathways and GO terms. Spectral clustering based on patient similarity networks was applied to stratify patients into groups with similar molecular characteristics and to assess whether the resulting clusters align with the diagnosed glioma type. The results presented highlight the ability of the proposed methodology to uncover relevant genes associated with glioma intertumoral heterogeneity. Further investigation might encompass biological validation of the putative biomarkers disclosed.
Collapse
Affiliation(s)
- Nina Kastendiek
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| | - Roberta Coletti
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology (NOVA FCT), Caparica, 2829-516, Portugal
| | - Thilo Gross
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, 26129, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, 27570, Germany
| | - Marta B Lopes
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology (NOVA FCT), Caparica, 2829-516, Portugal.
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology (NOVA FCT), Caparica, 2829-516, Portugal.
| |
Collapse
|
3
|
Huang Z, Chen L, Xiao L, Ye Y, Mo W, Zheng Z, Li X. Monascus-fermented quinoa alleviates hyperlipidemia in mice by regulating the amino acid metabolism pathway. Food Funct 2024; 15:9210-9223. [PMID: 39158509 DOI: 10.1039/d4fo00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Monascus has the ability to produce secondary metabolites, such as monacolin K (MK), known for its physiological functions, including lipid-lowering effects. Widely utilized in industries such as health food and medicine, MK is a significant compound derived from Monascus. Quinoa, recognized by the Food and Agriculture Organization of the United Nations as "the only plant food that can meet human basic nutritional needs by itself", possesses dual advantages of high nutritional value and medicinal food homology. This study employed animal experiments to investigate the hypolipidemic activity of Monascus-fermented quinoa (MFQ) and explored the molecular mechanism underlying the lipid-lowering effect of MFQ on hyperlipidemic mice through transcriptomic and metabolomic analyses. The results demonstrated that high-dose MFQ intervention (1600 mg kg-1 d-1) effectively decreased weight gain in hyperlipidemic mice without significant changes in cardiac index, renal index, or spleen index. Moreover, hepatic steatosis in mice was significantly improved. Serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol were markedly reduced, demonstrating that the lipid-lowering effect of MFQ was comparable to the drug control lovastatin. Conversely, both low-dose MFQ (400 mg kg-1 d-1) and unfermented quinoa exhibited no significant lipid-lowering effect. Integrated analysis of the transcriptome and metabolome suggested that MFQ may regulate amino acid levels in hyperlipidemic mice by influencing metabolic pathways such as phenylalanine, tyrosine, and tryptophan metabolism. This regulation alleviates hyperlipidemia induced by a high-fat diet, resulting in a significant reduction in blood lipid levels in mice.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lichen Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lishi Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfang Ye
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenlan Mo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenghuai Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangyou Li
- Fujian Pinghuhong Biological Technology Co., Ltd, Ningde 352256, China
| |
Collapse
|
4
|
Liu Y, Wang L, Li Z, Li L, Chen S, Duan P, Wang X, Qiu Y, Ding X, Su J, Deng Y, Tian Y. DNA Methylation and Subgenome Dominance Reveal the Role of Lipid Metabolism in Jinhu Grouper Heterosis. Int J Mol Sci 2024; 25:9740. [PMID: 39273685 PMCID: PMC11396105 DOI: 10.3390/ijms25179740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Heterosis of growth traits in economic fish has benefited the production of aquaculture for many years, yet its genetic and molecular basis has remained obscure. Nowadays, a new germplasm of hybrid Jinhu grouper (Epinephelus fuscoguttatus ♀ × E. tukula ♂), abbreviated as EFT, exhibiting paternal-biased growth heterosis, has provided an excellent model for investigating the potential regulatory mechanisms of heterosis. We integrated transcriptome and methylome to unravel the changes of gene expression, epigenetic modification, and subgenome dominance in EFT compared with maternal E. fuscoguttatus. Integration analyses showed that the heterotic hybrids showed lower genomic DNA methylation levels than the purebred parent, and the up-regulated genes were mostly DNA hypomethylation. Furthermore, allele-specific expression (ASE) detected paternal subgenome dominance-regulated paternal-biased heterosis, and paternal bias differentially expressed genes (DEGs) were wholly up-regulated in the muscle. Multi-omics results highlighted the role of lipid metabolism, particularly "Fatty acid synthesis", "EPA biosynthesis", and "Signaling lipids", in EFT heterosis formation. Coherently, our studies have proved that the eicosapentaenoic acid (EPA) of EFT was greater than that of maternal E. fuscoguttatus (8.46% vs. 7.46%). Finally, we constructed a potential regulatory network for control of the heterosis formation in EFT. Among them, fasn, pparg, dgat1, igf1, pomca, fgf8a, and fgfr4 were identified as key genes. Our results provide new and valuable clues for understanding paternal-biased growth heterosis in EFT, taking a significant step towards the molecular basis of heterosis.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Linna Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Zhentong Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Linlin Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Shuai Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Pengfei Duan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xinyi Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yishu Qiu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaoyu Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jinzhi Su
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yuan Deng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yongsheng Tian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| |
Collapse
|
5
|
Danaie M, Yeganegi M, Dastgheib SA, Bahrami R, Jayervand F, Rahmani A, Aghasipour M, Golshan-Tafti M, Azizi S, Marzbanrad Z, Masoudi A, Shiri A, Lookzadeh MH, Noorishadkam M, Neamatzadeh H. The interaction of breastfeeding and genetic factors on childhood obesity. Eur J Obstet Gynecol Reprod Biol X 2024; 23:100334. [PMID: 39224127 PMCID: PMC11367475 DOI: 10.1016/j.eurox.2024.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Childhood obesity represents a pressing global public health concern due to its widespread prevalence and its close connection to early-life exposure to risk factors. The onset of obesity is contingent upon the interplay of genetic composition, lifestyle choices, and environmental as well as nutritional elements encountered during both fetal development and early childhood. This paper critically examines research discoveries in this area and concisely outlines the influence of breastfeeding on genetic predispositions associated with childhood obesity. Studies have demonstrated that breastfeeding has the potential to reduce childhood obesity by impacting anthropometric indicators. Moreover, the duration of breastfeeding is directly correlated with the degree to which it alters the risk of childhood obesity. Current explorations into the link between genetic factors transmitted through breast milk and childhood obesity predominantly focus on genes like FTO, Leptin, RXRα, PPAR-γ, and others. Numerous research endeavors have suggested that an extended period of exclusive breastfeeding is tied to a diminished likelihood of childhood obesity, particularly if sustained during the initial six months. The duration of breastfeeding also correlates with gene methylation, which could serve as the epigenetic mechanism underpinning breastfeeding's preventative influence against obesity. In summary, the thorough evaluation presented in this review underscores the intricate nature of the association between breastfeeding, genetic factors, and childhood obesity, providing valuable insights for future research efforts and policy formulation.
Collapse
Affiliation(s)
- Mahsa Danaie
- Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Yeganegi
- Department of Obstetrics and Gynecology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Jayervand
- Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Rahmani
- Department of Plastic Surgery, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Maryam Aghasipour
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Sepideh Azizi
- Shahid Akbarabadi Clinical Research Development Unit, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Marzbanrad
- Department of Obstetrics and Gynecology, Firoozgar Hospital, Firoozgar Clinical Research Development Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Masoudi
- General Practitioner, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirmasoud Shiri
- General Practitioner, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Hosein Lookzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmood Noorishadkam
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
6
|
Canali S, Fischer AW, Nguyen M, Anderson K, Wu L, Graham AR, Hsiao CJ, Bankar C, Dussault N, Ritchie V, Goodridge M, Sparrow T, Pannoni A, Tse SW, Woo V, Klovdahl K, Iacovelli J, Huang E. Lipid-encapsulated mRNA encoding an extended serum half-life interleukin-22 ameliorates metabolic disease in mice. Mol Metab 2024; 86:101965. [PMID: 38871178 PMCID: PMC11296054 DOI: 10.1016/j.molmet.2024.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVE Interleukin (IL)-22 is a potential therapeutic protein for the treatment of metabolic diseases such as obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease due to its involvement in multiple cellular pathways and observed hepatoprotective effects. The short serum half-life of IL-22 has previously limited its use in clinical applications; however, the development of mRNA-lipid nanoparticle (LNP) technology offers a novel therapeutic approach that uses a host-generated IL-22 fusion protein. In the present study, the effects of administration of an mRNA-LNP encoding IL-22 on metabolic disease parameters was investigated in various mouse models. METHODS C57BL/6NCrl mice were used to confirm mouse serum albumin (MSA)-IL-22 protein expression prior to assessments in C57BL/6NTac and CETP/ApoB transgenic mouse models of metabolic disease. Mice were fed either regular chow or a modified amylin liver nonalcoholic steatohepatitis-inducing diet prior to receiving either LNP-encapsulated MSA-IL-22 or MSA mRNA via intravenous or intramuscular injection. Metabolic markers were monitored for the duration of the experiments, and postmortem histology assessment and analysis of metabolic gene expression pathways were performed. RESULTS MSA-IL-22 was detectable for ≥8 days following administration. Improvements in body weight, lipid metabolism, glucose metabolism, and lipogenic and fibrotic marker gene expression in the liver were observed in the MSA-IL-22-treated mice, and these effects were shown to be durable. CONCLUSIONS These results support the application of mRNA-encoded IL-22 as a promising treatment strategy for metabolic syndrome and associated comorbidities in human populations.
Collapse
Affiliation(s)
- Susanna Canali
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | - Mychael Nguyen
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | - Karl Anderson
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | - Lorna Wu
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | | | | | - Nancy Dussault
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | | | - Todd Sparrow
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | - Sze-Wah Tse
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | - Vivienne Woo
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | | | - Eric Huang
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| |
Collapse
|
7
|
Hu H, Huang Y, Li A, Mi Q, Wang K, Chen L, Zhao Z, Zhang Q, Bai X, Pan H. Effects of different energy levels in low-protein diet on liver lipid metabolism in the late-phase laying hens through the gut-liver axis. J Anim Sci Biotechnol 2024; 15:98. [PMID: 38987834 PMCID: PMC11238517 DOI: 10.1186/s40104-024-01055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/26/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The energy/protein imbalance in a low-protein diet induces lipid metabolism disorders in late-phase laying hens. Reducing energy levels in the low-protein diet to adjust the energy-to-protein ratio may improve fat deposition, but this also decreases the laying performance of hens. This study investigated the mechanism by which different energy levels in the low-protein diet influences liver lipid metabolism in late-phase laying hens through the enterohepatic axis to guide feed optimization and nutrition strategies. A total of 288 laying hens were randomly allocated to the normal-energy and normal-protein diet group (positive control: CK) or 1 of 3 groups: low-energy and low-protein diet (LL), normal-energy and low-protein diet (NL), and high-energy and low-protein diet (HL) groups. The energy-to-protein ratios of the CK, LL, NL, and HL diets were 0.67, 0.74, 0.77, and 0.80, respectively. RESULTS Compared with the CK group, egg quality deteriorated with increasing energy intake in late-phase laying hens fed low-protein diet. Hens fed LL, NL, and HL diets had significantly higher triglyceride, total cholesterol, acetyl-CoA carboxylase, and fatty acid synthase levels, but significantly lower hepatic lipase levels compared with the CK group. Liver transcriptome sequencing revealed that genes involved in fatty acid beta-oxidation (ACOX1, HADHA, EHHADH, and ACAA1) were downregulated, whereas genes related to fatty acid synthesis (SCD, FASN, and ACACA) were upregulated in LL group compared with the CK group. Comparison of the cecal microbiome showed that in hens fed an LL diet, Lactobacillus and Desulfovibrio were enriched, whereas riboflavin metabolism was suppressed. Cecal metabolites that were most significantly affected by the LL diet included several vitamins, such as riboflavin (vitamin B2), pantethine (vitamin B5 derivative), pyridoxine (vitamin B6), and 4-pyridoxic acid. CONCLUSION A lipid metabolism disorder due to deficiencies of vitamin B2 and pantethine originating from the metabolism of the cecal microbiome may be the underlying reason for fat accumulation in the liver of late-phase laying hens fed an LL diet. Based on the present study, we propose that targeting vitamin B2 and pantethine (vitamin B5 derivative) might be an effective strategy for improving lipid metabolism in late-phase laying hens fed a low-protein diet.
Collapse
Affiliation(s)
- Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Anjian Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qianhui Mi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Kunping Wang
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233000, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100193, China
| | - Zelong Zhao
- Shanghai BIOZERON Biotechnology Co., Ltd, Shanghai, 201800, China
| | - Qiang Zhang
- WOD Poultry Research Institute, Beijing, 100193, China
| | - Xi Bai
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233000, China.
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
8
|
Hu H, Li A, Shi C, Chen L, Zhao Z, Yin X, Zhang Q, Huang Y, Pan H. Mulberry branch fiber improved lipid metabolism and egg yolk fatty acid composition of laying hens via the enterohepatic axis. MICROBIOME 2024; 12:73. [PMID: 38605412 PMCID: PMC11010431 DOI: 10.1186/s40168-024-01788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The utilization of mulberry branch fiber (MF), the largest by-product of the sericulture industry, is an important issue. Supplementation with MF as a dietary fiber for poultry may serve as a useful application. However, little is known about the effects of MF on liver lipid metabolism and egg yolk fatty acid composition of laying hens and their underlying mechanisms. In this study, we performed a multi-omics investigation to explore the variations in liver lipid metabolism, egg yolk fatty acid composition, gut microbiota, and the associations among them induced by dietary MF in laying hens. RESULTS Dietary MF had no harmful effects on the laying performance or egg quality in laying hens. The enzyme activities associated with lipid metabolism in the liver were altered by the addition of 5% MF, resulting in reduced liver fat accumulation. Furthermore, dietary 5% MF induced the variation in the fatty acid profiles of egg yolk, and increased the polyunsaturated fatty acid (PUFA) content. We observed a significant reduction in the diversity of both gut bacteria and changes in their compositions after the addition of MF. Dietary MF significantly increased the abundance of genes involved in fatty acid biodegradation, and short-chain fatty acids biosynthesis in the gut microbiota of laying hens. The significant correlations were observed between the liver lipid metabolism enzyme activities of hepatic lipase, lipoprotein lipase, and total esterase with gut microbiota, including negative correlations with gut microbiota diversity, and multiple correlations with gut bacteria and viruses. Moreover, various correlations between the contents of PUFAs and monounsaturated fatty acids in egg yolk with the gut microbiota were obtained. Based on partial-least-squares path modeling integrated with the multi-omics datasets, we deduced the direct effects of liver enzyme activities and gut bacterial compositions on liver fat content and the roles of liver enzyme activities and gut bacterial diversity on egg yolk fatty acid composition. CONCLUSIONS The results indicate that dietary MF is beneficial to laying hens as it reduces the liver fat and improves egg yolk fatty acid composition through the enterohepatic axis. Video Abstract.
Collapse
Affiliation(s)
- Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Anjian Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Changyou Shi
- University of Maryl and School of Medicine, Baltimore, MD, 21228, USA
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100193, China
| | - Zelong Zhao
- Shanghai BIOZERON Biotechnology Co., Ltd, Shanghai, 201800, China
| | - Xiaojian Yin
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qiang Zhang
- WOD Poultry Research Institute, Beijing, 100193, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
9
|
Nath M, Bhattacharjee K, Choudhury Y. The antidiabetic drug pioglitazone ameliorates betel-nut-induced carcinogenesis in mice by restoring normal lipid metabolism, reducing oxidative stress, and inducing apoptosis. J Cancer Res Ther 2023; 19:1967-1974. [PMID: 38376305 DOI: 10.4103/jcrt.jcrt_844_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 02/21/2024]
Abstract
CONTEXT Oral administration (2 mg mL-1) of aqueous extract of betel nut (AEBN) for 24 weeks induced oncogenic alterations in the liver of female Swiss Albino mice concomitant with aberrant lipid metabolism, overactivation of Akt/mTOR signaling, and loss of apoptosis. AIM This study was designed to investigate the potential of repurposing the antidiabetic drug pioglitazone for alleviating AEBN-induced carcinogenesis. METHODS Sera of animals were evaluated for lipid profile and free fatty acid levels. Liver tissues were investigated for oxidative stress, histopathology, and expression of proteins involved in lipid metabolism and oncogenesis by western blotting. Apoptosis was determined using TUNEL assay. RESULTS Coadministration of pioglitazone (10 mg kg-1 b.w) with AEBN for 8 weeks restored normal lipid profile and AMPK/ACC signaling, reduced FASN and HMGCR expressions and oxidative stress, and actively induced Akt/mTOR-mediated apoptosis in the liver. CONCLUSIONS Pioglitazone can effectively alleviate AEBN-induced carcinogenesis in mice.
Collapse
Affiliation(s)
- Moumita Nath
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | | | | |
Collapse
|
10
|
Zhang J, Wang T, Yang C, Wu R, Xi L, Ding W. Integrated proteomics and metabolomics analysis revealed the mechanisms underlying the effect of irradiation on the fat quality of Chinese bacon. Food Chem 2023; 413:135385. [PMID: 36774839 DOI: 10.1016/j.foodchem.2023.135385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 02/12/2023]
Abstract
Irradiation increases the security and storage period of preserved Chinese bacon; nevertheless, the biological mechanisms underlying the changes in fat quality caused by irradiation are unknown. We investigated the influence of irradiation on Chinese bacon by proteomic and metabolomic. We identified 24 proteins that participated in metabolism and 40 common differential metabolites enriched in 16 signalling pathways. Correlation analysis revealed that irradiation altered 11 pathways shared between the proteome and metabolome, including two lipid metabolism pathways. Acetyl-CoA carboxylase, ACSL, octanoic acid, decanoic acid, palmitic acid, and oleic acid participated in fatty acid biosynthesis. Acyl-CoA thioesterase 1/2/4, enoyl-CoA reductase, acetyl-CoA acyltransferase 1, enoyl-CoA hydratase 2, palmitic acid, and oleic acid participated in unsaturated fatty acid biosynthesis. These findings lay the groundwork for multi-omics research on the effects of irradiation on Chinese bacon quality, assisting in assessing irradiated Chinese bacon quality, and developing effective strategies to standardise quality parameters.
Collapse
Affiliation(s)
- Ju Zhang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi 712100, China.
| | - Tian Wang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Chunjie Yang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi 712100, China.
| | - Ruixiao Wu
- College of Food Science and Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Linjie Xi
- College of Food Science and Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
11
|
Shafieipour N, Jafari Khamirani H, Kamal N, Tabei SMB, Dianatpour M, Dastgheib SA. The third patient of ACACA-related acetyl-CoA carboxylase deficiency with seizure and literature review. Eur J Med Genet 2023; 66:104707. [PMID: 36709796 DOI: 10.1016/j.ejmg.2023.104707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/30/2022] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
Pathogenic variants in ACACA are the cause of acetyl-CoA carboxylase deficiency with an autosomal recessive inheritance that is identified by hypotonia, motor, and intellectual developmental delay. In this article, we describe a seven-year-old boy who is the child of consanguineous parents with a homozygous variant in ACACA (NM_198834.3:c.6641C > A, p.P2214H) that was detected by Whole-Exome Sequencing and confirmed by Sanger sequencing. This is the first reported patient of acetyl-CoA carboxylase deficiency that results from a homozygous pathogenic variant in the ACACA gene in the Iranian family. The proband presents with motor and intellectual developmental delay, muscle weakness, language disorder, facial dysmorphism, and poor growth. The patient discussed here is similar to other patients that were previously published; however, we were able to identify seizure that has hitherto not been reported. This paper describes the third person with a novel variant in the ACACA gene in the world that accounts for acetyl-CoA carboxylase deficiency and implicates the clinical spectrum of the disease. Finally, we describe an individual-based review of the symptoms associated with acetyl-CoA carboxylase deficiency. So far, only two acetyl-CoA carboxylase deficiency patients have been reviewed in the literature.
Collapse
Affiliation(s)
- Negin Shafieipour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Iran
| | | | - Neda Kamal
- Department of Medical Genetics, Shiraz University of Medical Sciences, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Iran; Maternal-fetal Medicine Research Center, Shiraz University of Medical Sciences, Iran
| | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
12
|
Aragoneses-Cazorla G, Vallet-Regí M, Gómez-Gómez MM, González B, Luque-Garcia JL. Integrated transcriptomics and metabolomics analysis reveals the biomolecular mechanisms associated to the antitumoral potential of a novel silver-based core@shell nanosystem. Mikrochim Acta 2023; 190:132. [PMID: 36914921 PMCID: PMC10011303 DOI: 10.1007/s00604-023-05712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
A combination of omics techniques (transcriptomics and metabolomics) has been used to elucidate the mechanisms responsible for the antitumor action of a nanosystem based on a Ag core coated with mesoporous silica on which transferrin has been anchored as a targeting ligand against tumor cells (Ag@MSNs-Tf). Transcriptomics analysis has been carried out by gene microarrays and RT-qPCR, while high-resolution mass spectrometry has been used for metabolomics. This multi-omics strategy has enabled the discovery of the effect of this nanosystem on different key molecular pathways including the glycolysis, the pentose phosphate pathway, the oxidative phosphorylation and the synthesis of fatty acids, among others.
Collapse
Affiliation(s)
- Guillermo Aragoneses-Cazorla
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (I+12), 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Saragossa, Spain
| | - Ma Milagros Gómez-Gómez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Blanca González
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (I+12), 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Saragossa, Spain
| | - Jose L Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
13
|
Moreira-Barbosa C, Matos A, Fernandes R, Mendes-Ferreira M, Rodrigues R, Cruz T, Costa ÂM, Cardoso AP, Ghilardi C, Oliveira MJ, Ribeiro R. The role of fatty acids metabolism on cancer progression and therapeutics development. BIOACTIVE LIPIDS 2023:101-132. [DOI: 10.1016/b978-0-12-824043-4.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Zeng W, Yin X, Jiang Y, Jin L, Liang W. PPARα at the crossroad of metabolic-immune regulation in cancer. FEBS J 2022; 289:7726-7739. [PMID: 34480827 DOI: 10.1111/febs.16181] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/04/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023]
Abstract
Rewiring metabolism to sustain cell growth, division, and survival is the most prominent feature of cancer cells. In particular, dysregulated lipid metabolism in cancer has received accumulating interest, since lipid molecules serve as cell membrane structure components, secondary signaling messengers, and energy sources. Given the critical role of immune cells in host defense against cancer, recent studies have revealed that immune cells compete for nutrients with cancer cells in the tumor microenvironment and accordingly develop adaptive metabolic strategies for survival at the expense of compromised immune functions. Among these strategies, lipid metabolism reprogramming toward fatty acid oxidation is closely related to the immunosuppressive phenotype of tumor-infiltrated immune cells, including macrophages and dendritic cells. Therefore, it is important to understand the lipid-mediated crosstalk between cancer cells and immune cells in the tumor microenvironment. Peroxisome proliferator-activated receptors (PPARs) consist of a nuclear receptor family for lipid sensing, and one of the family members PPARα is responsible for fatty acid oxidation, energy homeostasis, and regulation of immune cell functions. In this review, we discuss the emerging role of PPARα-associated metabolic-immune regulation in tumor-infiltrated immune cells, and key metabolic events and pathways involved, as well as their influences on antitumor immunity.
Collapse
Affiliation(s)
- Wenfeng Zeng
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhe Yin
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Yunhan Jiang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lingtao Jin
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Multi-Omic Approaches to Breast Cancer Metabolic Phenotyping: Applications in Diagnosis, Prognosis, and the Development of Novel Treatments. Cancers (Basel) 2021; 13:cancers13184544. [PMID: 34572770 PMCID: PMC8470181 DOI: 10.3390/cancers13184544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is characterized by high disease heterogeneity and represents the most frequently diagnosed cancer among women worldwide. Complex and subtype-specific gene expression alterations participate in disease development and progression, with BC cells known to rewire their cellular metabolism to survive, proliferate, and invade. Hence, as an emerging cancer hallmark, metabolic reprogramming holds great promise for cancer diagnosis, prognosis, and treatment. Multi-omics approaches (the combined analysis of various types of omics data) offer opportunities to advance our understanding of the molecular changes underlying metabolic rewiring in complex diseases such as BC. Recent studies focusing on the combined analysis of genomics, epigenomics, transcriptomics, proteomics, and/or metabolomics in different BC subtypes have provided novel insights into the specificities of metabolic rewiring and the vulnerabilities that may guide therapeutic development and improve patient outcomes. This review summarizes the findings of multi-omics studies focused on the characterization of the specific metabolic phenotypes of BC and discusses how they may improve clinical BC diagnosis, subtyping, and treatment.
Collapse
|