1
|
Hou Y, Kim K, Cakar F, Golubeva YA, Slauch JM, Vanderpool CK. The Salmonella pathogenicity island 1-encoded small RNA InvR mediates post-transcriptional feedback control of the activator HilA in Salmonella. J Bacteriol 2025:e0049124. [PMID: 40013798 DOI: 10.1128/jb.00491-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
Salmonella Pathogenicity Island 1 (SPI1) encodes a Type-3 secretion system (T3SS) essential for Salmonella invasion of intestinal epithelial cells. Many environmental and regulatory signals control SPI1 gene expression, but in most cases, the molecular mechanisms remain unclear. Many regulatory signals control SPI1 at a post-transcriptional level, and we have identified a number of small RNAs (sRNAs) that control the SPI1 regulatory circuit. The transcriptional regulator HilA activates the expression of the genes encoding the SPI1 T3SS structural and primary effector proteins. Transcription of hilA is controlled by the AraC-like proteins HilD, HilC, and RtsA. The hilA mRNA 5' untranslated region (UTR) is ~350 nucleotides in length and binds the RNA chaperone Hfq, suggesting it is a likely target for sRNA-mediated regulation. We used rGRIL-seq (reverse global sRNA target identification by ligation and sequencing) to identify sRNAs that bind to the hilA 5' UTR. The rGRIL-seq data, along with genetic analyses, demonstrate the SPI1-encoded sRNA invasion gene-associated RNA (InvR) base pairs at a site overlapping the hilA ribosome binding site. HilD and HilC activate both invR and hilA. InvR, in turn, negatively regulates the translation of the hilA mRNA. Thus, the SPI1-encoded sRNA InvR acts as a negative feedback regulator of SPI1 expression. Our results suggest that InvR acts to fine-tune SPI1 expression and prevents overactivation of hilA expression, highlighting the complexity of sRNA regulatory inputs controlling SPI1 and Salmonella virulence. IMPORTANCE Salmonella Typhimurium infections pose a significant public health concern, leading to illnesses that range from mild gastroenteritis to severe systemic infection. Infection requires a complex apparatus that the bacterium uses to invade the intestinal epithelium. Understanding how Salmonella regulates this system is essential for addressing these infections effectively. Here, we show that the small RNA (sRNA) InvR imposes a negative feedback regulation on the expression of the invasion system. This work underscores the role of sRNAs in Salmonella's complex regulatory network, offering new insights into how these molecules contribute to bacterial adaptation and pathogenesis.
Collapse
Affiliation(s)
- Yutong Hou
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kyungsub Kim
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Fatih Cakar
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yekaterina A Golubeva
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - James M Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Hou Y, Kim K, Cakar F, Golubeva YA, Slauch JM, Vanderpool CK. The Salmonella pathogenicity island 1-encoded small RNA InvR mediates post-transcriptional feedback control of the activator HilA in Salmonella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624761. [PMID: 39605656 PMCID: PMC11601589 DOI: 10.1101/2024.11.21.624761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Salmonella Pathogenicity Island 1 (SPI1) encodes a type three secretion system (T3SS) essential for Salmonella invasion of intestinal epithelial cells. Many environmental and regulatory signals control SPI1 gene expression, but in most cases, the molecular mechanisms remain unclear. Many of these regulatory signals control SPI1 at a post-transcriptional level and we have identified a number of small RNAs (sRNAs) that control the SPI1 regulatory circuit. The transcriptional regulator HilA activates expression of the genes encoding the SPI1 T3SS structural and primary effector proteins. Transcription of hilA is controlled by the AraC-like proteins HilD, HilC, and RtsA. The hilA mRNA 5' untranslated region (UTR) is ~350-nuclotides in length and binds the RNA chaperone Hfq, suggesting it is a likely target for sRNA-mediated regulation. We used the rGRIL-seq (reverse global sRNA target identification by ligation and sequencing) method to identify sRNAs that bind to the hilA 5' UTR. The rGRIL-seq data, along with genetic analyses, demonstrate that the SPI1-encoded sRNA InvR base pairs at a site overlapping the hilA ribosome binding site. HilD and HilC activate both invR and hilA. InvR in turn negatively regulates the translation of the hilA mRNA. Thus, the SPI1-encoded sRNA InvR acts as a negative feedback regulator of SPI1 expression. Our results suggest that InvR acts to fine-tune SPI1 expression and prevent overactivation of hilA expression, highlighting the complexity of sRNA regulatory inputs controlling SPI1 and Salmonella virulence.
Collapse
Affiliation(s)
- Yutong Hou
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kyungsub Kim
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Present Address: Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Massachusetts, USA
| | - Fatih Cakar
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Present Address: Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Yekaterina A. Golubeva
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - James M. Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Carin K. Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Gül E, Huuskonen J, Abi Younes A, Maurer L, Enz U, Zimmermann J, Sellin ME, Bakkeren E, Hardt WD. Salmonella T3SS-2 virulence enhances gut-luminal colonization by enabling chemotaxis-dependent exploitation of intestinal inflammation. Cell Rep 2024; 43:113925. [PMID: 38460128 DOI: 10.1016/j.celrep.2024.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/12/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024] Open
Abstract
Salmonella Typhimurium (S.Tm) utilizes the chemotaxis receptor Tsr to exploit gut inflammation. However, the characteristics of this exploitation and the mechanism(s) employed by the pathogen to circumvent antimicrobial effects of inflammation are poorly defined. Here, using different naturally occurring S.Tm strains (SL1344 and 14028) and competitive infection experiments, we demonstrate that type-three secretion system (T3SS)-2 virulence is indispensable for the beneficial effects of Tsr-directed chemotaxis. The removal of the 14028-specific prophage Gifsy3, encoding virulence effectors, results in the loss of the Tsr-mediated fitness advantage in that strain. Surprisingly, without T3SS-2 effector secretion, chemotaxis toward the gut epithelium using Tsr becomes disadvantageous for either strain. Our findings reveal that luminal neutrophils recruited as a result of NLRC4 inflammasome activation locally counteract S.Tm cells exploiting the byproducts of the host immune response. This work highlights a mechanism by which S.Tm exploitation of gut inflammation for colonization relies on the coordinated effects of chemotaxis and T3SS activities.
Collapse
Affiliation(s)
- Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Jemina Huuskonen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ursina Enz
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jakob Zimmermann
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Mikael E Sellin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala, Sweden
| | - Erik Bakkeren
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Borkar SB, Negi M, Acharya TR, Lamichhane P, Kaushik N, Choi EH, Kaushik NK. Mitigation of T3SS-mediated virulence in waterborne pathogenic bacteria by multi-electrode cylindrical-DBD plasma-generated nitric oxide water. CHEMOSPHERE 2024; 350:140997. [PMID: 38128737 DOI: 10.1016/j.chemosphere.2023.140997] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
S. enterica, S. flexneri, and V. parahaemolyticus bacteria are globally recognized to cause severe diarrheal diseases, consisting of Type III Secretion System (T3SS) effectors that help in bacterial infection and virulence in host cells. This study investigates the properties of multi-electrode cylindrical DBD plasma-generated nitric oxide water (MCDBD-PG-NOW) treatment on the survival and virulence of S. enterica, S. flexneri, and V. parahaemolyticus bacteria. The Colony Forming Unit (CFU) assay, live/dead cell staining, lipid peroxidation assay, and bacteria morphological analysis showed substantial growth inhibition of bacteria. Moreover, to confirm the interaction of reactive nitrogen species (RNS) with bacterial membrane biotin switch assay, DAF-FM, and FTIR analysis were carried out, which established the formation of S-nitrosothiols in the cell membrane, intracellular accumulation of RNS, and changes in the cell composition post-PG-NOW treatment. Furthermore, the conventional culture-based method and a quantitative PCR using propidium monoazide showed minimal VBNC induction under similar condition. The efficiency of bacteria to adhere to mammalian colon cells was significantly reduced. In addition, the infection rate was also controlled by disrupting the virulent genes, leading to the collapse of the infection mechanism. This study provides insights into whether RNS generated from PG-NOW might be beneficial for preventing diarrheal infections.
Collapse
Affiliation(s)
- Shweta B Borkar
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Manorma Negi
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Tirtha Raj Acharya
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Prajwal Lamichhane
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea.
| | - Eun Ha Choi
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.
| |
Collapse
|
5
|
Kudo K, Ohara J, Sano C, Ohta R. Salmonella Bacteremia in an Older Patient With No Specific Entry: A Case Report. Cureus 2023; 15:e49194. [PMID: 38130520 PMCID: PMC10733605 DOI: 10.7759/cureus.49194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
In this case report, we describe a rare case of non-typhoidal Salmonella bacteremia in an 87-year-old woman with no apparent history of daily Salmonella exposure. The patient presented with fever, body discomfort, and diarrhea. Medical examinations ruled out usual sources of Salmonella, including raw food consumption and pet contact. Her medical history included postoperative sigmoid colon cancer, left breast cancer, and other ailments. Although Salmonella infection typically stems from oral intake, this case suggests that bacterial translocation from the gastrointestinal tract could be the primary cause, potentially exacerbated by the patient's age and medical history. Another hypothesis is an ascending infection from diarrhea to the urinary tract, which might have led to pyelonephritis and subsequent bacteremia. This case highlights the importance of recognizing the potential for severe infections such as sepsis in older individuals presenting with diverse symptoms. Therefore, this case further underscores the need for heightened clinical vigilance, especially in community hospitals, to ensure timely and appropriate management of such severe conditions in the older population.
Collapse
Affiliation(s)
- Koki Kudo
- Family Medicine, International University of Health and Welfare Graduate School of Health Sciences, Tokyo, JPN
| | - Junya Ohara
- Family Medicine, Matsue Seikyo Hospital, Matsue, JPN
| | - Chiaki Sano
- Community Medicine Management, Shimane University Faculty of Medicine, Izumo, JPN
| | | |
Collapse
|
6
|
Saleh DO, Horstmann JA, Giralt-Zúñiga M, Weber W, Kaganovitch E, Durairaj AC, Klotzsch E, Strowig T, Erhardt M. SPI-1 virulence gene expression modulates motility of Salmonella Typhimurium in a proton motive force- and adhesins-dependent manner. PLoS Pathog 2023; 19:e1011451. [PMID: 37315106 DOI: 10.1371/journal.ppat.1011451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Both the bacterial flagellum and the evolutionary related injectisome encoded on the Salmonella pathogenicity island 1 (SPI-1) play crucial roles during the infection cycle of Salmonella species. The interplay of both is highlighted by the complex cross-regulation that includes transcriptional control of the flagellar master regulatory operon flhDC by HilD, the master regulator of SPI-1 gene expression. Contrary to the HilD-dependent activation of flagellar gene expression, we report here that activation of HilD resulted in a dramatic loss of motility, which was dependent on the presence of SPI-1. Single cell analyses revealed that HilD-activation triggers a SPI-1-dependent induction of the stringent response and a substantial decrease in proton motive force (PMF), while flagellation remains unaffected. We further found that HilD activation enhances the adhesion of Salmonella to epithelial cells. A transcriptome analysis revealed a simultaneous upregulation of several adhesin systems, which, when overproduced, phenocopied the HilD-induced motility defect. We propose a model where the SPI-1-dependent depletion of the PMF and the upregulation of adhesins upon HilD-activation enable flagellated Salmonella to rapidly modulate their motility during infection, thereby enabling efficient adhesion to host cells and delivery of effector proteins.
Collapse
Affiliation(s)
- Doaa Osama Saleh
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Julia A Horstmann
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - María Giralt-Zúñiga
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Willi Weber
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eugen Kaganovitch
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Abilash Chakravarthy Durairaj
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Enrico Klotzsch
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Marc Erhardt
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| |
Collapse
|
7
|
Zhou G, Zhao Y, Ma Q, Li Q, Wang S, Shi H. Manipulation of host immune defenses by effector proteins delivered from multiple secretion systems of Salmonella and its application in vaccine research. Front Immunol 2023; 14:1152017. [PMID: 37081875 PMCID: PMC10112668 DOI: 10.3389/fimmu.2023.1152017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Salmonella is an important zoonotic bacterial species and hazardous for the health of human beings and livestock globally. Depending on the host, Salmonella can cause diseases ranging from gastroenteritis to life-threatening systemic infection. In this review, we discuss the effector proteins used by Salmonella to evade or manipulate four different levels of host immune defenses: commensal flora, intestinal epithelial-mucosal barrier, innate and adaptive immunity. At present, Salmonella has evolved a variety of strategies against host defense mechanisms, among which various effector proteins delivered by the secretory systems play a key role. During its passage through the digestive system, Salmonella has to face the intact intestinal epithelial barrier as well as competition with commensal flora. After invasion of host cells, Salmonella manipulates inflammatory pathways, ubiquitination and autophagy processes with the help of effector proteins. Finally, Salmonella evades the adaptive immune system by interfering the migration of dendritic cells and interacting with T and B lymphocytes. In conclusion, Salmonella can manipulate multiple aspects of host defense to promote its replication in the host.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuying Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China
| |
Collapse
|
8
|
Elpers L, Deiwick J, Hensel M. Effect of Environmental Temperatures on Proteome Composition of Salmonella enterica Serovar Typhimurium. Mol Cell Proteomics 2022; 21:100265. [PMID: 35788066 PMCID: PMC9396072 DOI: 10.1016/j.mcpro.2022.100265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (STM) is a major cause of gastroenteritis and transmitted by consumption of contaminated food. STM is associated to food originating from animals (pork, chicken, eggs) or plants (vegetables, fruits, nuts, and herbs). Infection of warm-blooded mammalian hosts by STM and the underlying complex regulatory network of virulence gene expression depend on various environmental conditions encountered in hosts. However, less is known about the proteome and possible regulatory networks for gene expression of STM outside the preferred host. Nutritional limitations and changes in temperature are the most obvious stresses outside the native host. Thus, we analyzed the proteome profile of STM grown in rich medium (LB medium) or minimal medium (PCN medium) at temperatures ranging from 8 °C to 37 °C. LB medium mimics the nutritional rich environment inside the host, whereas minimal PCN medium represents nutritional limitations outside the host, found during growth of fresh produce (field conditions). Further, the range of temperatures analyzed reflects conditions within natural hosts (37 °C), room temperature (20 °C), during growth under agricultural conditions (16 °C and 12 °C), and during food storage (8 °C). Implications of altered nutrient availability and growth temperature on STM proteomes were analyzed by HPLC/MS-MS and label-free quantification. Our study provides first insights into the complex adaptation of STM to various environmental temperatures, which allows STM not only to infect mammalian hosts but also to enter new infection routes that have been poorly studied so far. With the present dataset, global virulence factors, their impact on infection routes, and potential anti-infective strategies can now be investigated in detail. Especially, we were able to demonstrate functional flagella at 12 °C growth temperature for STM with an altered motility behavior.
Collapse
Affiliation(s)
- Laura Elpers
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Jörg Deiwick
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany; CellNanOs - Center of Cellular Nanoanalytics Osnabrück, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
9
|
Zafar S, Ajab H, Mughal ZUN, Ahmed zai J, Baig S, Baig A, Habib Z, Jamil F, Ibrahim M, Kanwal S, Asif Rasheed M. Prediction and evaluation of multi epitope based sub-unit vaccine against Salmonella typhimurium. Saudi J Biol Sci 2022; 29:1092-1099. [PMID: 35197778 PMCID: PMC8847936 DOI: 10.1016/j.sjbs.2021.09.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 01/23/2023] Open
Abstract
Salmonella enteric serovar Typhimurium is the most common enteric pathogen in humans and animals. Consumption of contaminated food or water triggers inflammation that allows Salmonella to spread into the gut and causes gastrointestinal diseases. The infection spreads by intestinal invasion, phagocyte internalization and subsequent dissemination in many other patients. This research used TolA, a Salmonella typhimurium membrane protein, to computationally design a multi-epitope vaccine against the pathogen. Complete consistency of the candidate vaccine was checked In silico, and molecular dynamics simulations confirmed the vaccine's stability. According to docking report, the vaccine has a good affinity with toll-like receptors. In silico cloning and codon optimization techniques improved the vaccine's efficacy in Salmonella typhimurium manifestation process. The candidate vaccine induced an efficient immune response, as determined by In silico immune simulation. Computational studies revealed that the engineered multi-epitope vaccine is structurally stable, capable of eliciting particular immunological reactions, and therefore a candidate for a latent Salmonella typhimurium vaccine. However, wet lab studies and further investigations are required to confirm the results.
Collapse
Affiliation(s)
- Samavia Zafar
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Huma Ajab
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | | | - Jawaid Ahmed zai
- Department of Physiology, University of Sindh Jamshoro, Pakistan
| | - Sofia Baig
- Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology, Islamabad, Pakistan
| | - Ayesha Baig
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus Abbottabad, Pakistan
| | - Zeshan Habib
- Livestock Production Research Institute (LPRI) Bahadurnagar, Okara, Livestock & Dairy Development Department, Punjab, Pakistan
| | - Farrukh Jamil
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Muhammad Ibrahim
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Sumaira Kanwal
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Muhammad Asif Rasheed
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
- Corresponding author.
| |
Collapse
|
10
|
Lee J, Shin E, Yeom JH, Park J, Kim S, Lee M, Lee K. Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium. Microb Pathog 2022; 165:105460. [DOI: 10.1016/j.micpath.2022.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
|
11
|
Vaughn B, Abu Kwaik Y. Idiosyncratic Biogenesis of Intracellular Pathogens-Containing Vacuoles. Front Cell Infect Microbiol 2021; 11:722433. [PMID: 34858868 PMCID: PMC8632064 DOI: 10.3389/fcimb.2021.722433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
While most bacterial species taken up by macrophages are degraded through processing of the bacteria-containing vacuole through the endosomal-lysosomal degradation pathway, intravacuolar pathogens have evolved to evade degradation through the endosomal-lysosomal pathway. All intra-vacuolar pathogens possess specialized secretion systems (T3SS-T7SS) that inject effector proteins into the host cell cytosol to modulate myriad of host cell processes and remodel their vacuoles into proliferative niches. Although intravacuolar pathogens utilize similar secretion systems to interfere with their vacuole biogenesis, each pathogen has evolved a unique toolbox of protein effectors injected into the host cell to interact with, and modulate, distinct host cell targets. Thus, intravacuolar pathogens have evolved clear idiosyncrasies in their interference with their vacuole biogenesis to generate a unique intravacuolar niche suitable for their own proliferation. While there has been a quantum leap in our knowledge of modulation of phagosome biogenesis by intravacuolar pathogens, the detailed biochemical and cellular processes affected remain to be deciphered. Here we discuss how the intravacuolar bacterial pathogens Salmonella, Chlamydia, Mycobacteria, Legionella, Brucella, Coxiella, and Anaplasma utilize their unique set of effectors injected into the host cell to interfere with endocytic, exocytic, and ER-to-Golgi vesicle traffic. However, Coxiella is the main exception for a bacterial pathogen that proliferates within the hydrolytic lysosomal compartment, but its T4SS is essential for adaptation and proliferation within the lysosomal-like vacuole.
Collapse
Affiliation(s)
- Bethany Vaughn
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
12
|
Ijaz A, Veldhuizen EJA, Broere F, Rutten VPMG, Jansen CA. The Interplay between Salmonella and Intestinal Innate Immune Cells in Chickens. Pathogens 2021; 10:1512. [PMID: 34832668 PMCID: PMC8618210 DOI: 10.3390/pathogens10111512] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonellosis is a common infection in poultry, which results in huge economic losses in the poultry industry. At the same time, Salmonella infections are a threat to public health, since contaminated poultry products can lead to zoonotic infections. Antibiotics as feed additives have proven to be an effective prophylactic option to control Salmonella infections, but due to resistance issues in humans and animals, the use of antimicrobials in food animals has been banned in Europe. Hence, there is an urgent need to look for alternative strategies that can protect poultry against Salmonella infections. One such alternative could be to strengthen the innate immune system in young chickens in order to prevent early life infections. This can be achieved by administration of immune modulating molecules that target innate immune cells, for example via feed, or by in-ovo applications. We aimed to review the innate immune system in the chicken intestine; the main site of Salmonella entrance, and its responsiveness to Salmonella infection. Identifying the most important players in the innate immune response in the intestine is a first step in designing targeted approaches for immune modulation.
Collapse
Affiliation(s)
- Adil Ijaz
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Edwin J. A. Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Victor P. M. G. Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
13
|
Raman V, Van Dessel N, Hall CL, Wetherby VE, Whitney SA, Kolewe EL, Bloom SMK, Sharma A, Hardy JA, Bollen M, Van Eynde A, Forbes NS. Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases. Nat Commun 2021; 12:6116. [PMID: 34675204 PMCID: PMC8531320 DOI: 10.1038/s41467-021-26367-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/01/2021] [Indexed: 12/25/2022] Open
Abstract
Critical cancer pathways often cannot be targeted because of limited efficiency crossing cell membranes. Here we report the development of a Salmonella-based intracellular delivery system to address this challenge. We engineer genetic circuits that (1) activate the regulator flhDC to drive invasion and (2) induce lysis to release proteins into tumor cells. Released protein drugs diffuse from Salmonella containing vacuoles into the cellular cytoplasm where they interact with their therapeutic targets. Control of invasion with flhDC increases delivery over 500 times. The autonomous triggering of lysis after invasion makes the platform self-limiting and prevents drug release in healthy organs. Bacterial delivery of constitutively active caspase-3 blocks the growth of hepatocellular carcinoma and lung metastases, and increases survival in mice. This success in targeted killing of cancer cells provides critical evidence that this approach will be applicable to a wide range of protein drugs for the treatment of solid tumors.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
- Ernest Pharmaceuticals, LLC, Hadley, MA, USA
| | - Nele Van Dessel
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
- Ernest Pharmaceuticals, LLC, Hadley, MA, USA
| | - Christopher L Hall
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
- Ernest Pharmaceuticals, LLC, Hadley, MA, USA
| | | | - Samantha A Whitney
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Emily L Kolewe
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Shoshana M K Bloom
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Abhinav Sharma
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Jeanne A Hardy
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA, USA
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA, USA
- Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA.
- Ernest Pharmaceuticals, LLC, Hadley, MA, USA.
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA, USA.
- Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA, USA.
| |
Collapse
|
14
|
Hussain S, Ouyang P, Zhu Y, Khalique A, He C, Liang X, Shu G, Yin L. Type 3 secretion system 1 of Salmonella typhimurium and its inhibitors: a novel strategy to combat salmonellosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34154-34166. [PMID: 33966165 DOI: 10.1007/s11356-021-13986-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Unsuccessful vaccination against Salmonella due to a large number of serovars, and antibiotic resistance, necessitates the development of novel therapeutics to treat salmonellosis. The development of anti-virulence agents against multi-drug-resistant bacteria is a novel strategy because of its non-bacterial feature. Hence, a thorough study of the type three secretion system (T3SS) of Salmonella would help us better understand its role in bacterial pathogenesis and development of anti-virulence agents. However, T3SS can be inhibited by different chemicals at different stages of infection and sequenced delivery of effectors can be blocked to restrict the progression of disease. This review highlights the role of T3SS-1 in the internalization, survival, and replication of Salmonella within the intestinal epithelium and T3SS inhibitors. We concluded that the better we understand the structures and functions of T3SS, the more we have chances to develop anti-virulence agents. Furthermore, greater insights into the T3SS inhibitors of Salmonella would help in the mitigation of the antibiotic resistance problem and would lead us to the era of new therapeutics against salmonellosis.
Collapse
Affiliation(s)
- Sajjad Hussain
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Yingkun Zhu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China.
| |
Collapse
|
15
|
Sarichai P, Buddhasiri S, Walters GE, Khantawa B, Kaewsakhorn T, Chantarasakha K, Tepaamorndech S, Thiennimitr P. Pathogenicity of clinical Salmonella enterica serovar Typhimurium isolates from Thailand in a mouse colitis model. Microbiol Immunol 2020; 64:679-693. [PMID: 32803887 DOI: 10.1111/1348-0421.12837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium [STM]) is a leading cause of nontyphoidal salmonellosis (NTS) worldwide. The pathogenesis of NTS has been studied extensively using a streptomycin-pretreated mouse colitis model with the limited numbers of laboratory STM strains. However, the pathogenicity of the clinically isolated STM (STMC) strains endemic in Thailand in mice has not been explored. The aim of this study was to compare the pathogenicity of STMC strains collected from Northern Thailand with the laboratory STM (IR715) in mice. Five STMC isolates were obtained from the stool cultures of patients with acute NTS admitted to Maharaj Nakorn Chiang Mai Hospital in 2016 and 2017. Detection of virulence genes and sequence type (ST) of the strains was performed. Female C57BL/6 mice were pretreated with streptomycin sulfate 1 day prior to oral infection with STM. On Day 4 postinfection, mice were euthanized, and tissues were collected to analyze the bacterial numbers, tissue inflammation, and cecal histopathological score. We found that all five STMC strains are ST34 and conferred the same or reduced pathogenicity compared with that of IR715 in mice. A strain-specific effect of ST34 on mouse gut colonization was also observed. Thailand STM ST34 exhibited a significant attenuated systemic infection in mice possibly due to the lack of spvABC-containing virulence plasmid.
Collapse
Affiliation(s)
- Phinitphong Sarichai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Songphon Buddhasiri
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Georgia E Walters
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Health and Medicine, University of Manchester, Manchester, UK
| | - Banyong Khantawa
- Diagnostic Laboratory, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thattawan Kaewsakhorn
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanittha Chantarasakha
- Division of Food Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Surapun Tepaamorndech
- Division of Food Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Arginine GlcNAcylation of Rab small GTPases by the pathogen Salmonella Typhimurium. Commun Biol 2020; 3:287. [PMID: 32504010 PMCID: PMC7275070 DOI: 10.1038/s42003-020-1005-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
Salmonella enterica serovar Typhimurium, an intracellular Gram-negative bacterial pathogen, employs two type III secretion systems to deliver virulence effector proteins to host cells. One such effector, SseK3, is a Golgi-targeting arginine GlcNAc transferase. Here, we show that SseK3 colocalizes with cis-Golgi via lipid binding. Arg-GlcNAc-omics profiling reveals that SseK3 modifies Rab1 and some phylogenetically related Rab GTPases. These modifications are dependent on C-termini of Rabs but independent of the GTP- or GDP-bound forms. Arginine GlcNAcylation occurs in the switch II region and the third α-helix and severely disturbs the function of Rab1. The arginine GlcNAc transferase activity of SseK3 is required for the replication of Salmonella in RAW264.7 macrophages and bacterial virulence in the mouse model of Salmonella infection. Therefore, this SseK3 mechanism of action represents a new understanding of the strategy adopted by Salmonella to target host trafficking systems. Meng, Zhuang, Peng et al. study the role of a Golgi-targeting arginine GlcNAc transferase, SseK3, in the pathogenesis of Salmonella enterica. Through R-GlcNAcylated proteome analysis, they identify Rab proteins as targets for SseK3 as well as their modification sites. They demonstrate that SseK3 GlcNAc transferase activity is required for bacterial virulence in vitro and in vivo.
Collapse
|
17
|
Walpole GFW, Grinstein S. Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides. F1000Res 2020; 9. [PMID: 32494357 PMCID: PMC7233180 DOI: 10.12688/f1000research.22393.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Despite their comparatively low abundance in biological membranes, phosphoinositides are key to the regulation of a diverse array of signaling pathways and direct membrane traffic. The role of phosphoinositides in the initiation and progression of endocytic pathways has been studied in considerable depth. Recent advances have revealed that distinct phosphoinositide species feature prominently in clathrin-dependent and -independent endocytosis as well as in phagocytosis and macropinocytosis. Moreover, a variety of intracellular and cell-associated pathogens have developed strategies to commandeer host cell phosphoinositide metabolism to gain entry and/or metabolic advantage, thereby promoting their survival and proliferation. Here, we briefly survey the current knowledge on the involvement of phosphoinositides in endocytosis, phagocytosis, and macropinocytosis and highlight several examples of molecular mimicry employed by pathogens to either “hitch a ride” on endocytic pathways endogenous to the host or create an entry path of their own.
Collapse
Affiliation(s)
- Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
18
|
Fattinger SA, Böck D, Di Martino ML, Deuring S, Samperio Ventayol P, Ek V, Furter M, Kreibich S, Bosia F, Müller-Hauser AA, Nguyen BD, Rohde M, Pilhofer M, Hardt WD, Sellin ME. Salmonella Typhimurium discreet-invasion of the murine gut absorptive epithelium. PLoS Pathog 2020; 16:e1008503. [PMID: 32365138 PMCID: PMC7224572 DOI: 10.1371/journal.ppat.1008503] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/14/2020] [Accepted: 03/26/2020] [Indexed: 01/15/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S.Tm) infections of cultured cell lines have given rise to the ruffle model for epithelial cell invasion. According to this model, the Type-Three-Secretion-System-1 (TTSS-1) effectors SopB, SopE and SopE2 drive an explosive actin nucleation cascade, resulting in large lamellipodia- and filopodia-containing ruffles and cooperative S.Tm uptake. However, cell line experiments poorly recapitulate many of the cell and tissue features encountered in the host’s gut mucosa. Here, we employed bacterial genetics and multiple imaging modalities to compare S.Tm invasion of cultured epithelial cell lines and the gut absorptive epithelium in vivo in mice. In contrast to the prevailing ruffle-model, we find that absorptive epithelial cell entry in the mouse gut occurs through “discreet-invasion”. This distinct entry mode requires the conserved TTSS-1 effector SipA, involves modest elongation of local microvilli in the absence of expansive ruffles, and does not favor cooperative invasion. Discreet-invasion preferentially targets apicolateral hot spots at cell–cell junctions and shows strong dependence on local cell neighborhood. This proof-of-principle evidence challenges the current model for how S.Tm can enter gut absorptive epithelial cells in their intact in vivo context. Bacterial pathogens can use secreted effector molecules to drive entry into host cells. Studies of the intestinal pathogen S.Tm have been central to uncover the mechanistic basis for the entry process. More than two decades of research have resulted in a detailed model for how S.Tm invades gut epithelial cells through effector triggering of large Rho-GTPase-dependent actin ruffles. However, the evidence for this model comes predominantly from studies in cultured cell lines. These experimental systems lack many of the architectural and signaling features of the intact gut epithelium. Our study surprisingly reveals that in the intact mouse gut, S.Tm invades absorptive epithelial cells through a process that does not require the Rho-GTPase-activating effectors and can proceed in the absence of the prototypical ruffling response. Instead, S.Tm exploits another effector, SipA, to sneak in through discreet entry structures close to cell–cell junctions. Our results challenge the current model for S.Tm epithelial cell entry and emphasizes the need of taking a physiological host cell context into account when studying bacterium–host cell interactions.
Collapse
Affiliation(s)
- Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Desirée Böck
- Institute of Molecular Biology & Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Maria Letizia Di Martino
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sabrina Deuring
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Pilar Samperio Ventayol
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Viktor Ek
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Saskia Kreibich
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Francesco Bosia
- Institute of Molecular Biology & Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Pilhofer
- Institute of Molecular Biology & Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
- * E-mail: (MP); (WDH); (MES)
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- * E-mail: (MP); (WDH); (MES)
| | - Mikael E. Sellin
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail: (MP); (WDH); (MES)
| |
Collapse
|
19
|
Gopinath Samykannu, Perumal P, Rahul R, Arulandu A, Narayanan S. Crystallization and X-Ray Diffraction Studies of Salmonella Invasion Protein D (SipD), Insight Tip Component of Salmonella typhi Type III Secretion System. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774519070174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Song X, Zhang H, Liu X, Yuan J, Wang P, Lv R, Yang B, Huang D, Jiang L. The putative transcriptional regulator STM14_3563 facilitates Salmonella Typhimurium pathogenicity by activating virulence-related genes. Int Microbiol 2019; 23:381-390. [PMID: 31832871 DOI: 10.1007/s10123-019-00110-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important gram-negative intracellular pathogen that infects humans and animals. More than 50 putative regulatory proteins have been identified in the S. Typhimurium genome, but few have been clearly defined. In this study, the physiological function and regulatory role of STM14_3563, which encodes a ParD family putative transcriptional regulator in S. Typhimurium, were investigated. Macrophage replication assays and mice experiments revealed that S. Typhimurium showed reduced growth in murine macrophages and attenuated virulence in mice owing to deletion of STM14_3563 gene. RNA sequencing (RNA-Seq) data showed that STM14_3563 exerts wide-ranging effects on gene expression in S. Typhimurium. STM14_3563 activates the expression of several genes encoded in Salmonella pathogenicity island (SPI)-6, SPI-12, and SPI-13, which are required for intracellular replication of S. Typhimurium. Additionally, the global transcriptional regulator Fis was found to directly activate STM14_3563 expression by binding to the STM14_3563 promoter. These results indicate that STM14_3563 is involved in the regulation of a variety of virulence-related genes in S. Typhimurium that contribute to its growth in macrophages and virulence in mice.
Collapse
Affiliation(s)
- Xiaorui Song
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China.,College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Huan Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China.,College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoqian Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Jian Yuan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Peisheng Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China.,College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Runxia Lv
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China. .,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China. .,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China.
| |
Collapse
|
21
|
SoxS is a positive regulator of key pathogenesis genes and promotes intracellular replication and virulence of Salmonella Typhimurium. Microb Pathog 2019; 139:103925. [PMID: 31838175 DOI: 10.1016/j.micpath.2019.103925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 11/22/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important intracellular pathogen, causing gastroenteritis or severe systemic infection in a variety of hosts. During infection, S. Typhimurium must survive and replicate in host macrophages, which produce abundant oxidative compounds. SoxRS regulon is a well-known regulator that is activated in response to oxidative stress and promotes bacterial tolerance to oxidants in E. coli. However, the global regulatory function of SoxS in S. Typhimurium remains poorly characterized. Here, we used an RNA sequencing-based approach to investigate the role of SoxS in the expression of S. Typhimurium virulence genes. Besides the downregulation of genes related to resistance to oxidative stress, we found that in a soxS deletion mutant the expression of Salmonella pathogenicity island (SPI)-2 genes, which are crucial for replication within macrophages, was significantly repressed. Moreover, immunofluorescence and mice infection experiments showed that soxS deletion inhibited replication in macrophages and decreased virulence upon intraperitoneal inoculation in mice, respectively. Collectively, our findings demonstrate that SoxS is a positive regulator of SPI-2 genes and, therefore, plays a crucial role in S. Typhimurium intracellular replication and virulence.
Collapse
|
22
|
Jiang L, Wang P, Li X, Lv R, Wang L, Yang B, Huang D, Feng L, Liu B. PagR mediates the precise regulation of
Salmonella
pathogenicity island 2 gene expression in response to magnesium and phosphate signals in
Salmonella
Typhimurium. Cell Microbiol 2019; 22:e13125. [DOI: 10.1111/cmi.13125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Lingyan Jiang
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| | - Peisheng Wang
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
| | - Xiaomin Li
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
| | - Runxia Lv
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
| | - Lin Wang
- Inspection and Quarantine Technical CenterBeijing Entry‐Exit Inspection and Quarantine Bureau Beijing China
| | - Bin Yang
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| | - Di Huang
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| | - Lu Feng
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| | - Bin Liu
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| |
Collapse
|
23
|
Zhang D, Zhuang L, Wang C, Zhang P, Zhang T, Shao H, Han X, Gong J. Virulence Gene Distribution of Salmonella Pullorum Isolates Recovered from Chickens in China (1953-2015). Avian Dis 2019; 62:431-436. [PMID: 31119928 DOI: 10.1637/11927-071318-resnote.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/05/2022]
Abstract
Salmonella enterica subspecies enterica serovar Gallinarum biovar Pullorum (Salmonella Pullorum) has strict host specificity for poultry, and pullorum disease seriously threatens the poultry industry. Virulence genes play a central role in Salmonella pathogenicity, but very few reports are available on the distribution of virulence genes in Salmonella Pullorum. In this study, we investigated 304 Salmonella Pullorum isolates recovered from chickens in China between 1953 and 2015 for the presence of 25 Salmonella virulence genes (invA, orgA, prgH, sitC, spaN, sifA, spiA, ttrC, mgtB, misL, siiE, spi4D, pipA, sipB, sopB, sefA, cdtB, pagC, shdA, msgA, lpfC, tolC, iroN, pefA, and spvB), including pathogenicity island genes, fimbriae genes, and virulence plasmid genes. PCR showed that 15 of the 25 virulence genes were present in all isolates tested, whereas cdtB was not present in any isolate. The presence rates of the remaining genes ranged from 97.7% to 99.7%. The variation rates of these virulence genes was low, and no significant differences were identified in the distribution of virulence genes over time. On the basis of the distribution of these virulence genes, the 304 Salmonella Pullorum isolates were divided into 10 virulence genotypes. The major genotype, which comprised 93.4% of all isolates, included isolates that carried 24 of the virulence genes assessed. The results of this study will help in the characterization of Salmonella Pullorum and in the study of the correlation between virulence genotypes and pathogenicity.
Collapse
Affiliation(s)
- Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Linlin Zhuang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chengming Wang
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn AL 36849
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China,
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China, .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225002, China,
| |
Collapse
|
24
|
Song X, Zhang H, Ma S, Song Y, Lv R, Liu X, Yang B, Huang D, Liu B, Jiang L. Transcriptome analysis of virulence gene regulation by the ATP-dependent Lon protease in Salmonella Typhimurium. Future Microbiol 2019; 14:1109-1122. [PMID: 31370702 DOI: 10.2217/fmb-2019-0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: Determination of the virulence regulatory network controlled by the ATP-dependent Lon protease in Salmonella enterica serovar Typhimurium. Materials & methods: The effect of Lon on S. Typhimurium virulence genes expression was investigated by RNA sequencing, and virulence-associated phenotypes between the wild-type and lon mutant were compared. Results: SPI-1, SPI-4, SPI-9 and flagellar genes were activated, while SPI-2 genes were repressed in the lon mutant. Accordingly, the lon mutant exhibited increased adhesion to and invasion of epithelial cells, increased motility and decreased replication in macrophages. The activation of SPI-2 genes by Lon partially accounts for the replication defect of the mutant. Conclusion: A wide range of virulence regulatory functions are governed by Lon in S. enterica ser. Typhimurium.
Collapse
Affiliation(s)
- Xiaorui Song
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.,College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Huan Zhang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.,College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Shuangshuang Ma
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Yajun Song
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Runxia Lv
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Xiaoqian Liu
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Bin Yang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Di Huang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Bin Liu
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| |
Collapse
|
25
|
Lou L, Zhang P, Piao R, Wang Y. Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network. Front Cell Infect Microbiol 2019; 9:270. [PMID: 31428589 PMCID: PMC6689963 DOI: 10.3389/fcimb.2019.00270] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022] Open
Abstract
Salmonella species can infect a diverse range of birds, reptiles, and mammals, including humans. The type III protein secretion system (T3SS) encoded by Salmonella pathogenicity island 1 (SPI-1) delivers effector proteins required for intestinal invasion and the production of enteritis. The T3SS is regarded as the most important virulence factor of Salmonella. SPI-1 encodes transcription factors that regulate the expression of some virulence factors of Salmonella, while other transcription factors encoded outside SPI-1 participate in the expression of SPI-1-encoded genes. SPI-1 genes are responsible for the invasion of host cells, regulation of the host immune response, e.g., the host inflammatory response, immune cell recruitment and apoptosis, and biofilm formation. The regulatory network of SPI-1 is very complex and crucial. Here, we review the function, effectors, and regulation of SPI-1 genes and their contribution to the pathogenicity of Salmonella.
Collapse
Affiliation(s)
- Lixin Lou
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rongli Piao
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
26
|
CYRI/FAM49B negatively regulates RAC1-driven cytoskeletal remodelling and protects against bacterial infection. Nat Microbiol 2019; 4:1516-1531. [PMID: 31285585 DOI: 10.1038/s41564-019-0484-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/08/2019] [Indexed: 12/20/2022]
Abstract
Salmonella presents a global public health concern. Central to Salmonella pathogenicity is an ability to subvert host defences through strategically targeting host proteins implicated in restricting infection. Therefore, to gain insight into the host-pathogen interactions governing Salmonella infection, we performed an in vivo genome-wide mutagenesis screen to uncover key host defence proteins. This revealed an uncharacterized role of CYRI (FAM49B) in conferring host resistance to Salmonella infection. We show that CYRI binds to the small GTPase RAC1 through a conserved domain present in CYFIP proteins, which are known RAC1 effectors that stimulate actin polymerization. However, unlike CYFIP proteins, CYRI negatively regulates RAC1 signalling, thereby attenuating processes such as macropinocytosis, phagocytosis and cell migration. This enables CYRI to counteract Salmonella at various stages of infection, including bacterial entry into non-phagocytic and phagocytic cells as well as phagocyte-mediated bacterial dissemination. Intriguingly, to dampen its effects, the bacterial effector SopE, a RAC1 activator, selectively targets CYRI following infection. Together, this outlines an intricate host-pathogen signalling interplay that is crucial for determining bacterial fate. Notably, our study also outlines a role for CYRI in restricting infection mediated by Mycobacterium tuberculosis and Listeria monocytogenes. This provides evidence implicating CYRI cellular functions in host defence beyond Salmonella infection.
Collapse
|
27
|
Khajanchi BK, Xu J, Grim CJ, Ottesen AR, Ramachandran P, Foley SL. Global transcriptomic analyses of Salmonella enterica in Iron-depleted and Iron-rich growth conditions. BMC Genomics 2019; 20:490. [PMID: 31195964 PMCID: PMC6567447 DOI: 10.1186/s12864-019-5768-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background Salmonella enterica possess several iron acquisition systems, encoded on the chromosome and plasmids. Recently, we demonstrated that incompatibility group (Inc) FIB plasmid-encoded iron acquisition systems (Sit and aerobactin) likely play an important role in persistence of Salmonella in human intestinal epithelial cells (Caco-2). In this study, we sought to determine global transcriptome analyses of S. enterica in iron-rich (IR) and iron-depleted (ID) growth conditions. Results The number of differentially-expressed genes were substantially higher for recipient (SE819) (n = 966) and transconjugant (TC) (n = 945) compared to the wild type (WT) (SE163A) (n = 110) strain in ID as compared to IR growth conditions. Several virulence-associated factors including T3SS, flagellin, cold-shock protein (cspE), and regulatory genes were upregulated in TC in ID compared to IR conditions. Whereas, IS1 and acrR/tetR transposases located on the IncFIB plasmid, ferritin and several regulatory genes were downregulated in TC in ID conditions. Enterobactin transporter (entS), iron ABC transporter (fepCD), colicin transporter, IncFIB-encoded enolase, cyclic di-GMP regulator (cdgR) and other regulatory genes of the WT strain were upregulated in ID compared to IR conditions. Conversely, ferritin, ferrous iron transport protein A (feoA), IncFIB-encoded IS1 and acrR/tetR transposases and ArtA toxin of WT were downregulated in ID conditions. SDS-PAGE coupled with LC-MS/MS analyses revealed that siderophore receptor proteins such as chromosomally-encoded IroN and, IncFIB-encoded IutA were upregulated in WT and TC in ID growth conditions. Both chromosome and IncFIB plasmid-encoded SitA was overexpressed in WT, but not in TC or recipient in ID conditions. Increased expression of flagellin was detected in recipient and TC, but not in WT in ID conditions. Conclusion Iron concentrations in growth media influenced differential gene expressions both at transcriptional and translational levels, including genes encoded on the IncFIB plasmid. Limited iron availability within the host may promote pathogenic Salmonella to differentially express subsets of genes encoded by chromosome and/or plasmids, facilitating establishment of successful infection. Electronic supplementary material The online version of this article (10.1186/s12864-019-5768-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bijay K Khajanchi
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, USA.
| | - Joshua Xu
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, USA
| | - Christopher J Grim
- Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, USA
| | - Andrea R Ottesen
- Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, MD, USA
| | - Padmini Ramachandran
- Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, MD, USA
| | - Steven L Foley
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, USA.
| |
Collapse
|
28
|
LoiA directly represses lon gene expression to activate the expression of Salmonella pathogenicity island-1 genes. Res Microbiol 2019; 170:131-137. [DOI: 10.1016/j.resmic.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/23/2022]
|
29
|
Raman V, Van Dessel N, O'Connor OM, Forbes NS. The motility regulator flhDC drives intracellular accumulation and tumor colonization of Salmonella. J Immunother Cancer 2019; 7:44. [PMID: 30755273 PMCID: PMC6373116 DOI: 10.1186/s40425-018-0490-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background Salmonella have potential as anticancer therapeutic because of their innate tumor specificity. In clinical studies, this specificity has been hampered by heterogeneous responses. Understanding the mechanisms that control tumor colonization would enable the design of more robust therapeutic strains. Two mechanisms that could affect tumor colonization are intracellular accumulation and intratumoral motility. Both of these mechanisms have elements that are controlled by the master motility regulator flhDC. We hypothesized that 1) overexpressing flhDC in Salmonella increases intracellular bacterial accumulation in tumor cell masses, and 2) intracellular accumulation of Salmonella drives tumor colonization in vitro. Methods To test these hypotheses, we transformed Salmonella with genetic circuits that induce flhDC and express green fluorescent protein after intracellular invasion. The genetically modified Salmonella was perfused into an in vitro tumor-on-a-chip device. Time-lapse fluorescence microscopy was used to quantify intracellular and colonization dynamics within tumor masses. A mathematical model was used to determine how these mechanisms are related to each other. Results Overexpression of flhDC increased intracellular accumulation and tumor colonization 2.5 and 5 times more than control Salmonella, respectively (P < 0.05). Non-motile Salmonella accumulated in cancer cells 26 times less than controls (P < 0.001). Minimally invasive, ΔsipB, Salmonella colonized tumor masses 2.5 times less than controls (P < 0.05). When flhDC was selectively induced after penetration into tumor masses, Salmonella both accumulated intracellularly and colonized tumor masses 2 times more than controls (P < 0.05). Mathematical modeling of tumor colonization dynamics demonstrated that intracellular accumulation increased retention of Salmonella in tumors by effectively causing the bacteria to bind to cancer cells and preventing leakage out of the tumors. These results demonstrated that increasing intracellular bacterial density increased overall tumor colonization and that flhDC could be used to control both. Conclusions This study demonstrates a mechanistic link between motility, intracellular accumulation and tumor colonization. Based on our results, we envision that therapeutic strains of Salmonella could use inducible flhDC to drive tumor colonization. More intratumoral bacteria would enable delivery of higher therapeutic payloads into tumors and would improve treatment efficacy. Electronic supplementary material The online version of this article (10.1186/s40425-018-0490-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, 159 Goessmann Laboratory, 686 North Pleasant St, Amherst, MA, 01003, USA
| | - Nele Van Dessel
- Department of Chemical Engineering, University of Massachusetts, 159 Goessmann Laboratory, 686 North Pleasant St, Amherst, MA, 01003, USA
| | - Owen M O'Connor
- Department of Chemical Engineering, University of Massachusetts, 159 Goessmann Laboratory, 686 North Pleasant St, Amherst, MA, 01003, USA
| | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, 159 Goessmann Laboratory, 686 North Pleasant St, Amherst, MA, 01003, USA.
| |
Collapse
|
30
|
Jiang X, Li X, Sun S, Jiang L. The transcriptional regulator VarN contributes to Salmonella Typhimurium growth in macrophages and virulence in mice. Res Microbiol 2018; 169:214-221. [DOI: 10.1016/j.resmic.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 11/30/2022]
|
31
|
Diard M, Hardt WD. Basic Processes in Salmonella-Host Interactions: Within-Host Evolution and the Transmission of the Virulent Genotype. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0012-2016. [PMID: 28884670 PMCID: PMC11687551 DOI: 10.1128/microbiolspec.mtbp-0012-2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 01/08/2023] Open
Abstract
Transmission and virulence are central aspects of pathogen evolution. However, in many cases their interconnection has proven difficult to assess by experimentation. Here we discuss recent advances from a mouse model for Salmonella diarrhea. Mouse models mimic the enhanced susceptibility of antibiotic-treated individuals to nontyphoidal salmonellosis. In streptomycin-pretreated mice, Salmonella enterica subspecies 1 serovar Typhimurium efficiently colonizes the gut lumen and elicits pronounced enteropathy. In the host's gut, S. Typhimurium forms two subpopulations that cooperate to elicit disease and optimize transmission. The disease-causing subpopulation expresses a set of dedicated virulence factors (the type 3 secretion system 1 [TTSS-1]) that drive gut tissue invasion. The virulence factor expression is "costly" by retarding the growth rate and exposing the pathogen to innate immune defenses within the gut tissue. These costs are compensated by the gut inflammation (a "public good") that is induced by the invading subpopulation. The inflamed gut lumen fuels S. Typhimurium growth, in particular that of the TTSS-1 "off" subpopulation. The latter grows up to very high densities and promotes transmission. Thus, both phenotypes cooperate to elicit disease and ensure transmission. This system has provided an experimental framework for studying within-host evolution of pathogen virulence, how cooperative virulence is stabilized, and how environmental changes (e.g., antibiotic therapy) affect the transmission of the virulent genotype.
Collapse
Affiliation(s)
- Médéric Diard
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Pucciarelli MG, García-Del Portillo F. Salmonella Intracellular Lifestyles and Their Impact on Host-to-Host Transmission. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0009-2016. [PMID: 28730976 PMCID: PMC11687531 DOI: 10.1128/microbiolspec.mtbp-0009-2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
More than a century ago, infections by Salmonella were already associated with foodborne enteric diseases with high morbidity in humans and cattle. Intestinal inflammation and diarrhea are hallmarks of infections caused by nontyphoidal Salmonella serovars, and these pathologies facilitate pathogen transmission to the environment. In those early times, physicians and microbiologists also realized that typhoid and paratyphoid fever caused by some Salmonella serovars could be transmitted by "carriers," individuals outwardly healthy or at most suffering from some minor chronic complaint. In his pioneering study of the nontyphoidal serovar Typhimurium in 1967, Takeuchi published the first images of intracellular bacteria enclosed by membrane-bound vacuoles in the initial stages of the intestinal epithelium penetration. These compartments, called Salmonella-containing vacuoles, are highly dynamic phagosomes with differing biogenesis depending on the host cell type. Single-cell studies involving real-time imaging and gene expression profiling, together with new approaches based on genetic reporters sensitive to growth rate, have uncovered unprecedented heterogeneous responses in intracellular bacteria. Subpopulations of intracellular bacteria displaying fast, reduced, or no growth, as well as cytosolic and intravacuolar bacteria, have been reported in both in vitro and in vivo infection models. Recent investigations, most of them focused on the serovar Typhimurium, point to the selection of persisting bacteria inside macrophages or following an autophagy attack in fibroblasts. Here, we discuss these heterogeneous intracellular lifestyles and speculate on how these disparate behaviors may impact host-to-host transmissibility of Salmonella serovars.
Collapse
Affiliation(s)
- M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
33
|
Signal transduction pathway mediated by the novel regulator LoiA for low oxygen tension induced Salmonella Typhimurium invasion. PLoS Pathog 2017; 13:e1006429. [PMID: 28575106 PMCID: PMC5476282 DOI: 10.1371/journal.ppat.1006429] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/19/2017] [Accepted: 05/23/2017] [Indexed: 02/03/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major intestinal pathogen of both humans and animals. Salmonella pathogenicity island 1 (SPI-1)-encoded virulence genes are required for S. Typhimurium invasion. While oxygen (O2) limitation is an important signal for SPI-1 induction under host conditions, how the signal is received and integrated to the central SPI-1 regulatory system in S. Typhimurium is not clear. Here, we report a signal transduction pathway that activates SPI-1 expression in response to low O2. A novel regulator encoded within SPI-14 (STM14_1008), named LoiA (low oxygen induced factor A), directly binds to the promoter and activates transcription of hilD, leading to the activation of hilA (the master activator of SPI-1). Deletion of loiA significantly decreased the transcription of hilA, hilD and other representative SPI-1 genes (sipB, spaO, invH, prgH and invF) under low O2 conditions. The response of LoiA to the low O2 signal is mediated by the ArcB/ArcA two-component system. Deletion of either arcA or arcB significantly decreased transcription of loiA under low O2 conditions. We also confirmed that SPI-14 contributes to S. Typhimurium virulence by affecting invasion, and that loiA is the virulence determinant of SPI-14. Mice infection assays showed that S. Typhimurium virulence was severely attenuated by deletion of either the entire SPI-14 region or the single loiA gene after oral infection, while the virulence was not affected by either deletion after intraperitoneal infection. The signal transduction pathway described represents an important mechanism for S. Typhimurium to sense and respond to low O2 conditions of the host intestinal tract for invasion. SPI-14-encoded loiA is an essential element of this pathway that integrates the low O2 signal into the SPI-1 regulatory system. Acquisition of SPI-14 is therefore crucial for the evolution of S. Typhimurium as an intestinal pathogen. Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major intestinal pathogen of both humans and animals. Salmonella pathogenicity island 1 (SPI-1) is required for host cell invasion by S. Typhimurium. Expression of SPI-1 genes is induced by low oxygen (O2) tension under host conditions, but the relevant regulatory mechanisms are not clear. Here, we report a low O2-induced signal transduction pathway for the activation of SPI-1 expression in S. Typhimurium. A novel regulator, STM14_1008 (named LoiA), encoded within SPI-14 directly activates hilD, which in turn activates hilA (the master activator of SPI-1), and thus other SPI-1 genes under O2-limited conditions. The response of LoiA to the low O2 signal is mediated by the ArcB/ArcA two-component system. We also confirmed that SPI-14 contributes to S. Typhimurium virulence by affecting invasion, with loiA as the virulence determinant. This novel SPI-1 activation pathway can be used by S. Typhimurium to sense and respond to low O2 conditions of the host intestinal tract for invasion. Acquisition of SPI-14 is therefore very important for the evolution of S. Typhimurium virulence by providing an essential component of this pathway, loiA.
Collapse
|
34
|
Klein JA, Dave BM, Raphenya AR, McArthur AG, Knodler LA. Functional relatedness in the Inv/Mxi-Spa type III secretion system family. Mol Microbiol 2017; 103:973-991. [PMID: 27997726 DOI: 10.1111/mmi.13602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 01/06/2023]
Abstract
Type III Secretion Systems (T3SSs) are structurally conserved nanomachines that span the inner and outer bacterial membranes, and via a protruding needle complex contact host cell membranes and deliver type III effector proteins. T3SS are phylogenetically divided into several families based on structural basal body components. Here we have studied the evolutionary and functional conservation of four T3SS proteins from the Inv/Mxi-Spa family: a cytosolic chaperone, two hydrophobic translocators that form a plasma membrane-integral pore, and the hydrophilic 'tip complex' translocator that connects the T3SS needle to the translocon pore. Salmonella enterica serovar Typhimurium (S. Typhimurium), a common cause of food-borne gastroenteritis, possesses two T3SSs, one belonging to the Inv/Mxi-Spa family. We used invasion-deficient S. Typhimurium mutants as surrogates for expression of translocator orthologs identified from an extensive phylogenetic analysis, and type III effector translocation and host cell invasion as a readout for complementation efficiency, and identified several Inv/Mxi-Spa orthologs that can functionally substitute for the S. Typhimurium chaperone and translocator proteins. Functional complementation correlates with amino acid sequence identity between orthologs, but varies considerably between the four proteins. This is the first in-depth survey of the functional interchangeability of Inv/Mxi-Spa T3SS proteins acting directly at the host-pathogen interface.
Collapse
Affiliation(s)
- Jessica A Klein
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Biren M Dave
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Amogelang R Raphenya
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Andrew G McArthur
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Leigh A Knodler
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
35
|
Diseases of the Alimentary Tract. Vet Med (Auckl) 2017. [PMCID: PMC7167529 DOI: 10.1016/b978-0-7020-5246-0.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Kreibich S, Emmenlauer M, Fredlund J, Rämö P, Münz C, Dehio C, Enninga J, Hardt WD. Autophagy Proteins Promote Repair of Endosomal Membranes Damaged by the Salmonella Type Three Secretion System 1. Cell Host Microbe 2016; 18:527-37. [PMID: 26567507 DOI: 10.1016/j.chom.2015.10.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/19/2015] [Accepted: 10/26/2015] [Indexed: 10/25/2022]
Abstract
Salmonella Typhimurium (S.Tm) is an enteropathogen requiring multiple virulence factors, including two type three secretion systems (T1 and T2). T1 triggers epithelium invasion in which the bacteria are taken up into endosomes that mature into Salmonella-containing vacuoles (SCV) and trigger T2 induction upon acidification. Mechanisms controlling endosome membrane integrity or pathogen egress into the cytosol are incompletely understood. We screened for host factors affecting invasion and SCV maturation and identified a role for autophagy in sealing endosomal membranes damaged by T1 during host cell invasion. S.Tm-infected autophagy-deficient (atg5(-/-)) cells exhibit reduced SCV dye retention and lower T2 expression but no effects on steps preceding SCV maturation. However, in the absence of T1, autophagy is dispensable for T2 induction. These findings establish a role of autophagy at early stages of S.Tm infection and suggest that autophagy-mediated membrane repair might be generally important for invasive pathogens and endosomal membrane function.
Collapse
Affiliation(s)
- Saskia Kreibich
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog Weg 4, 8093 Zurich, Switzerland
| | - Mario Emmenlauer
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Jennifer Fredlund
- Dynamics of host-pathogen interaction Unit, Institut Pasteur Paris, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Pauli Rämö
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Christian Münz
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christoph Dehio
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Jost Enninga
- Dynamics of host-pathogen interaction Unit, Institut Pasteur Paris, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog Weg 4, 8093 Zurich, Switzerland.
| |
Collapse
|
37
|
Andritschke D, Dilling S, Emmenlauer M, Welz T, Schmich F, Misselwitz B, Rämö P, Rottner K, Kerkhoff E, Wada T, Penninger JM, Beerenwinkel N, Horvath P, Dehio C, Hardt WD. A Genome-Wide siRNA Screen Implicates Spire1/2 in SipA-Driven Salmonella Typhimurium Host Cell Invasion. PLoS One 2016; 11:e0161965. [PMID: 27627128 PMCID: PMC5023170 DOI: 10.1371/journal.pone.0161965] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
Salmonella Typhimurium (S. Tm) is a leading cause of diarrhea. The disease is triggered by pathogen invasion into the gut epithelium. Invasion is attributed to the SPI-1 type 3 secretion system (T1). T1 injects effector proteins into epithelial cells and thereby elicits rearrangements of the host cellular actin cytoskeleton and pathogen invasion. The T1 effector proteins SopE, SopB, SopE2 and SipA are contributing to this. However, the host cell factors contributing to invasion are still not completely understood. To address this question comprehensively, we used Hela tissue culture cells, a genome-wide siRNA library, a modified gentamicin protection assay and S. TmSipA, a sopBsopE2sopE mutant which strongly relies on the T1 effector protein SipA to invade host cells. We found that S. TmSipA invasion does not elicit membrane ruffles, nor promote the entry of non-invasive bacteria "in trans". However, SipA-mediated infection involved the SPIRE family of actin nucleators, besides well-established host cell factors (WRC, ARP2/3, RhoGTPases, COPI). Stage-specific follow-up assays and knockout fibroblasts indicated that SPIRE1 and SPIRE2 are involved in different steps of the S. Tm infection process. Whereas SPIRE1 interferes with bacterial binding, SPIRE2 influences intracellular replication of S. Tm. Hence, these two proteins might fulfill non-redundant functions in the pathogen-host interaction. The lack of co-localization hints to a short, direct interaction between S. Tm and SPIRE proteins or to an indirect effect.
Collapse
Affiliation(s)
- Daniel Andritschke
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | - Sabrina Dilling
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | | | - Tobias Welz
- Department of Neurology, University of Regensburg, DE- 93040, Regensburg, Germany
| | - Fabian Schmich
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, CH-4058, Basel, Switzerland
- SIB Swiss Institute for Bioinformatics, 4058, Basel, Switzerland
| | - Benjamin Misselwitz
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, CH-8091, Zurich, Switzerland
| | - Pauli Rämö
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Eugen Kerkhoff
- Department of Neurology, University of Regensburg, DE- 93040, Regensburg, Germany
| | - Teiji Wada
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030, Vienna, Austria
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030, Vienna, Austria
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, CH-4058, Basel, Switzerland
- SIB Swiss Institute for Bioinformatics, 4058, Basel, Switzerland
| | - Peter Horvath
- Light Microscopy Center, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | - Christoph Dehio
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| |
Collapse
|
38
|
Abstract
Many intracellular pathogens, including Salmonella typhimurium, trigger autophagy in host cells, which is widely thought to restrict intracellular growth and survival. In this issue of Cell Host & Microbe, Kreibich et al. (2015) demonstrate a role for the autophagic machinery in the repair of damaged Salmonella-containing vacuoles (SCVs).
Collapse
Affiliation(s)
- Katherine A Owen
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - James E Casanova
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, USA; Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| |
Collapse
|
39
|
Barlag B, Beutel O, Janning D, Czarniak F, Richter CP, Kommnick C, Göser V, Kurre R, Fabiani F, Erhardt M, Piehler J, Hensel M. Single molecule super-resolution imaging of proteins in living Salmonella enterica using self-labelling enzymes. Sci Rep 2016; 6:31601. [PMID: 27534893 PMCID: PMC4989173 DOI: 10.1038/srep31601] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/20/2016] [Indexed: 12/23/2022] Open
Abstract
The investigation of the subcellular localization, dynamics and interaction of proteins and protein complexes in prokaryotes is complicated by the small size of the cells. Super-resolution microscopy (SRM) comprise various new techniques that allow light microscopy with a resolution that can be up to ten-fold higher than conventional light microscopy. Application of SRM techniques to living prokaryotes demands the introduction of suitable fluorescent probes, usually by fusion of proteins of interest to fluorescent proteins with properties compatible to SRM. Here we describe an approach that is based on the genetically encoded self-labelling enzymes HaloTag and SNAP-tag. Proteins of interest are fused to HaloTag or SNAP-tag and cell permeable substrates can be labelled with various SRM-compatible fluorochromes. Fusions of the enzyme tags to subunits of a type I secretion system (T1SS), a T3SS, the flagellar rotor and a transcription factor were generated and analysed in living Salmonella enterica. The new approach is versatile in tagging proteins of interest in bacterial cells and allows to determine the number, relative subcellular localization and dynamics of protein complexes in living cells.
Collapse
Affiliation(s)
- Britta Barlag
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Oliver Beutel
- Abt. Biophysik, Universität Osnabrück, Osnabrück, Germany
| | - Dennis Janning
- Abt. Neurobiologie, Universität Osnabrück, Osnabrück, Germany
| | | | | | - Carina Kommnick
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Vera Göser
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Rainer Kurre
- CALMOS, Universität Osnabrück, Osnabrück, Germany
| | - Florian Fabiani
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marc Erhardt
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jacob Piehler
- Abt. Biophysik, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
40
|
Ross SA, Lane JA, Kilcoyne M, Joshi L, Hickey RM. Defatted bovine milk fat globule membrane inhibits association of enterohaemorrhagic Escherichia coli O157:H7 with human HT-29 cells. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
McQuate SE, Young AM, Silva-Herzog E, Bunker E, Hernandez M, de Chaumont F, Liu X, Detweiler CS, Palmer AE. Long-term live-cell imaging reveals new roles for Salmonella effector proteins SseG and SteA. Cell Microbiol 2016; 19. [PMID: 27376507 DOI: 10.1111/cmi.12641] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 06/08/2016] [Accepted: 06/28/2016] [Indexed: 01/18/2023]
Abstract
Salmonella Typhimurium is an intracellular bacterial pathogen that infects both epithelial cells and macrophages. Salmonella effector proteins, which are translocated into the host cell and manipulate host cell components, control the ability to replicate and/or survive in host cells. Due to the complexity and heterogeneity of Salmonella infections, there is growing recognition of the need for single-cell and live-cell imaging approaches to identify and characterize the diversity of cellular phenotypes and how they evolve over time. Here, we establish a pipeline for long-term (17 h) live-cell imaging of infected cells and subsequent image analysis methods. We apply this pipeline to track bacterial replication within the Salmonella-containing vacuole in epithelial cells, quantify vacuolar replication versus survival in macrophages and investigate the role of individual effector proteins in mediating these parameters. This approach revealed that dispersed bacteria can coalesce at later stages of infection, that the effector protein SseG influences the propensity for cytosolic hyper-replication in epithelial cells, and that while SteA only has a subtle effect on vacuolar replication in epithelial cells, it has a profound impact on infection parameters in immunocompetent macrophages, suggesting differential roles for effector proteins in different infection models.
Collapse
Affiliation(s)
- Sarah E McQuate
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | - Alexandra M Young
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | - Eugenia Silva-Herzog
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | - Eric Bunker
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | - Mateo Hernandez
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | | | - Xuedong Liu
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | - Corrella S Detweiler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
42
|
Schulte M, Hensel M. Models of intestinal infection by Salmonella enterica: introduction of a new neonate mouse model. F1000Res 2016; 5. [PMID: 27408697 PMCID: PMC4926732 DOI: 10.12688/f1000research.8468.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a foodborne pathogen causing inflammatory disease in the intestine following diarrhea and is responsible for thousands of deaths worldwide. Many
in vitro investigations using cell culture models are available, but these do not represent the real natural environment present in the intestine of infected hosts. Several
in vivo animal models have been used to study the host-pathogen interaction and to unravel the immune responses and cellular processes occurring during infection. An animal model for
Salmonella-induced intestinal inflammation relies on the pretreatment of mice with streptomycin. This model is of great importance but still shows limitations to investigate the host-pathogen interaction in the small intestine
in vivo. Here, we review the use of mouse models for
Salmonella infections and focus on a new small animal model using 1-day-old neonate mice. The neonate model enables researchers to observe infection of both the small and large intestine, thereby offering perspectives for new experimental approaches, as well as to analyze the
Salmonella-enterocyte interaction in the small intestine
in vivo.
Collapse
Affiliation(s)
- Marc Schulte
- Department of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Department of Microbiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
43
|
Wallace N, Zani A, Abrams E, Sun Y. The Impact of Oxygen on Bacterial Enteric Pathogens. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:179-204. [PMID: 27261784 DOI: 10.1016/bs.aambs.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial enteric pathogens are responsible for a tremendous amount of foodborne illnesses every year through the consumption of contaminated food products. During their transit from contaminated food sources to the host gastrointestinal tract, these pathogens are exposed and must adapt to fluctuating oxygen levels to successfully colonize the host and cause diseases. However, the majority of enteric infection research has been conducted under aerobic conditions. To raise awareness of the importance in understanding the impact of oxygen, or lack of oxygen, on enteric pathogenesis, we describe in this review the metabolic and physiological responses of nine bacterial enteric pathogens exposed to environments with different oxygen levels. We further discuss the effects of oxygen levels on virulence regulation to establish potential connections between metabolic adaptations and bacterial pathogenesis. While not providing an exhaustive list of all bacterial pathogens, we highlight key differences and similarities among nine facultative anaerobic and microaerobic pathogens in this review to argue for a more in-depth understanding of the diverse impact oxygen levels have on enteric pathogenesis.
Collapse
Affiliation(s)
- N Wallace
- University of Dayton, Dayton, OH, United States
| | - A Zani
- University of Dayton, Dayton, OH, United States
| | - E Abrams
- University of Dayton, Dayton, OH, United States
| | - Y Sun
- University of Dayton, Dayton, OH, United States
| |
Collapse
|
44
|
Characterization of SEN3800-associated virulence of Salmonella enterica serovar Enteritidis phage type 8. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-0898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
45
|
Identification of mammalian proteins that collaborate with type III secretion system function: involvement of a chemokine receptor in supporting translocon activity. mBio 2015; 6:e02023-14. [PMID: 25691588 PMCID: PMC4337563 DOI: 10.1128/mbio.02023-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The type III secretion system (T3SS) is a highly conserved protein delivery system found in multiple Gram-negative pathogens, including Yersinia pseudotuberculosis. Most studies of Yersinia species type III intoxication of host cells have focused on the bacterial determinants that promote assembly and function of the secretion system. In this study, we performed a pooled RNA interference (RNAi) screen to identify mammalian host proteins required for the cytotoxic effects associated with the Yersinia translocated substrate YopE, a GTPase-activating protein (GAP) that inactivates the small Rho GTPases. Cell populations were positively selected for short hairpin RNAs (shRNAs) that interfere with YopE activity using a combination of fluorescence resonance energy transfer (FRET) and flow cytometry, and the degree of enrichment was determined by deep sequencing. Analysis of the candidates identified by the enrichment process revealed that many were important for the initial step of Y. pseudotuberculosis T3SS function, YopB/D pore formation. These candidates included shRNA that depleted downstream effectors of RhoA signaling, coated pit formation, and receptors involved in cell signaling, including the chemokine receptor CCR5 (chemokine [C-C motif] receptor 5). Depletion of CCR5 in 293T cells yielded a defect in YopB/D pore formation and effector translocation, while both phenotypes could be complemented by overexpression of CCR5 protein. Yop effector translocation was also decreased in isolated primary phagocytic cells from a Ccr5−/− knockout mouse. We postulate that CCR5 acts to promote translocation by modulating cytoskeletal activities necessary for proper assembly of the YopB/D translocation pore. Overall, this study presents a new approach to investigating the contribution of the host cell to T3SS in Y. pseudotuberculosis. Many Gram-negative bacteria require type III secretion systems (T3SS) for host survival, making these highly specialized secretion systems good targets for antimicrobial agents. After the bacterium binds to host cells, T3SS deposit proteins into the cytosol of host cells through a needle-like appendage and a protein translocon channel. Translocation of proteins via this system is highly regulated, and the contribution of the host cell in promoting assembly and insertion of the channel into the plasma membrane, folding of the bacterial proteins, and trafficking of these substrates are all poorly characterized events. In this study, we identified host cell proteins important for activity of YopE, a Yersinia pseudotuberculosis T3SS-delivered protein. The results demonstrate that insertion and assembly of the translocon are complex processes, requiring a variety of membrane trafficking and cytoskeletal processes, as well as a surprising role for cell surface signaling molecules in supporting proper function.
Collapse
|
46
|
Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect 2015; 17:173-83. [PMID: 25637951 DOI: 10.1016/j.micinf.2015.01.004] [Citation(s) in RCA: 460] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens have evolved a wide range of strategies to colonize and invade human organs, despite the presence of multiple host defense mechanisms. In this review, we will describe how pathogenic bacteria can adhere and multiply at the surface of host cells, how some bacteria can enter and proliferate inside these cells, and finally how pathogens may cross epithelial or endothelial host barriers and get access to internal tissues, leading to severe diseases in humans.
Collapse
Affiliation(s)
- David Ribet
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, F-75015 Paris, France; INSERM, U604, F-75015 Paris, France; INRA, USC2020, F-75015 Paris, France.
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, F-75015 Paris, France; INSERM, U604, F-75015 Paris, France; INRA, USC2020, F-75015 Paris, France.
| |
Collapse
|
47
|
Boumart Z, Velge P, Wiedemann A. Multiple invasion mechanisms and different intracellular Behaviors: a new vision ofSalmonella-host cell interaction. FEMS Microbiol Lett 2014; 361:1-7. [DOI: 10.1111/1574-6968.12614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/16/2014] [Accepted: 09/27/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- Zineb Boumart
- Institut National de la Recherche Agronomique; UMR1282 Infectiologie et Santé Publique; Nouzilly France
- Université François Rabelais; UMR1282 Infectiologie et Santé Publique; Tours France
- Agence Nationale de Sécurité Sanitaire de l'alimentation; de l'environnement et du travail; Laboratoire de Ploufragan-Plouzané; Unité Hygiène et Qualité des Produits Avicoles et Porcins; Plouragan France
| | - Philippe Velge
- Institut National de la Recherche Agronomique; UMR1282 Infectiologie et Santé Publique; Nouzilly France
- Université François Rabelais; UMR1282 Infectiologie et Santé Publique; Tours France
| | - Agnès Wiedemann
- Institut National de la Recherche Agronomique; UMR1282 Infectiologie et Santé Publique; Nouzilly France
- Université François Rabelais; UMR1282 Infectiologie et Santé Publique; Tours France
| |
Collapse
|
48
|
Porta A, Morello S, Granata I, Iannone R, Maresca B. Insertion of a 59 amino acid peptide in Salmonella Typhimurium membrane results in loss of virulence in mice. FEBS J 2014; 281:5043-53. [PMID: 25208333 DOI: 10.1111/febs.13042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 12/26/2022]
Abstract
We demonstrated previously that expression of a single trans-membrane region of the Δ(12) -desaturase gene of Synechocystis sp. PCC 6803 in Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) altered the membrane physical state of this pathogen, induced a significant change in the pattern of mRNA transcription of major heat shock genes, and inhibited pathogen growth inside murine macrophages. In this study, we demonstrate that injection of the modified Salmonella strain [Stm(pBAD200)] into C57Bl6j mice is safe. Survival of mice was associated with bacterial clearance, an increased number of splenic leukocytes, and high levels of interleukin-12, interferon γ and tumor necrosis factor α in spleens as well as in sera. Furthermore, Stm(pBAD200)-injected mice developed a Salmonella-specific antibody and Th1-like responses. Mice challenged with Stm(pBAD200) are protected from systemic infection with Salmonella wild-type. Similarly, mice infected with Stm(pBAD200) by the oral route survived when challenged with an oral lethal dose of Salmonella wild-type. The avirulent Stm(pBAD200) phenotype is associated with a remarkable change in the expression of the hilC, hilD, hilA, invF and phoP genes, among others, whose products are required for invasion and replication of Salmonella inside phagocytic cells. These data demonstrate the use of trans-membrane peptides to generate attenuated strains, providing a potential novel strategy to develop vaccines for both animal and human use.
Collapse
Affiliation(s)
- Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | | | | | | |
Collapse
|
49
|
Vonaesch P, Sellin ME, Cardini S, Singh V, Barthel M, Hardt WD. The Salmonella Typhimurium effector protein SopE transiently localizes to the early SCV and contributes to intracellular replication. Cell Microbiol 2014; 16:1723-35. [PMID: 25052734 DOI: 10.1111/cmi.12333] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/19/2014] [Accepted: 07/05/2014] [Indexed: 12/28/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Tm) is a facultative intracellular pathogen that induces entry into non-phagocytic cells by a Type III secretion system (TTSS) and cognate effector proteins. Upon host cell entry, S. Tm expresses a second TTSS and subverts intracellular trafficking to create a replicative niche - the Salmonella-containing vacuole (SCV). SopE, a guanidyl exchange factor (GEF) for Rac1 and Cdc42, is translocated by the TTSS-1 upon host cell contact and promotes entry through triggering of actin-dependent ruffles. After host cell entry, the bulk of SopE undergoes proteasomal degradation. Here we show that a subfraction is however detectable on the nascent SCV membrane up to ∼ 6 h post infection. Membrane localization of SopE and the closely related SopE2 differentially depend on the Rho-GTPase-binding GEF domain, and to some extent involves also the unstructured N-terminus. SopE localizes transiently to the early SCV, dependent on continuous synthesis and secretion by the TTSS-1 during the intracellular state. Mutant strains lacking SopE or SopE2 are attenuated in early intracellular replication, while complementation restores this defect. Hence, the present study reveals an unanticipated role for SopE and SopE2 in establishing the Salmonella replicative niche, and further emphasizes the importance of entry effectors in later stages of host-cell manipulation.
Collapse
Affiliation(s)
- Pascale Vonaesch
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Bachmann NL, Petty NK, Ben Zakour NL, Szubert JM, Savill J, Beatson SA. Genome analysis and CRISPR typing of Salmonella enterica serovar Virchow. BMC Genomics 2014; 15:389. [PMID: 24885207 PMCID: PMC4042001 DOI: 10.1186/1471-2164-15-389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/02/2014] [Indexed: 12/11/2022] Open
Abstract
Background Salmonella enterica subsp. enterica serovar Virchow has been recognized as a significant health burden in Asia, Australia and Europe. In addition to its global distribution, S. Virchow is clinically significant due to the frequency at which it causes invasive infections and its association with outbreaks arising from food-borne transmission. Here, we examine the genome of an invasive isolate of S. Virchow SVQ1 (phage type 8) from an outbreak in southeast Queensland, Australia. In addition to identifying new potential genotyping targets that could be used for discriminating between S. Virchow strains in outbreak scenarios, we also aimed to carry out a comprehensive comparative analysis of the S. Virchow genomes. Results Genome comparisons between S. Virchow SVQ1 and S. Virchow SL491, a previously published strain, identified a high degree of genomic similarity between the two strains with fewer than 200 single nucleotide differences. Clustered Regularly Interspaced Palindromic Repeats (CRISPR) regions were identified as a highly variable region that could be used to discriminate between S. Virchow isolates. We amplified and sequenced the CRISPR regions of fifteen S. Virchow isolates collected from seven different outbreaks across Australia. We observed three allelic types of the CRISPR region from these isolates based on the presence/absence of the spacers and were able to discriminate S. Virchow phage type 8 isolates originating from different outbreaks. A comparison with 27 published Salmonella genomes found that the S. Virchow SVQ1 genome encodes 11 previously described Salmonella Pathogenicity Islands (SPI), as well as additional genomic islands including a remnant integrative conjugative element that is distinct from SPI-7. In addition, the S. Virchow genome possesses a novel prophage that encodes the Type III secretion system effector protein SopE, a key Salmonella virulence factor. The prophage shares very little similarity to the SopE prophages found in other Salmonella serovars suggesting an independent acquisition of sopE. Conclusions The availability of this genome will serve as a genome template and facilitate further studies on understanding the virulence and global distribution of the S. Virchow serovar, as well as the development of genotyping methods for outbreak investigations. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-389) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - John Savill
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | | |
Collapse
|