1
|
Fu S, Zhang Y, Wang R, Qiu Z, Song W, Yang Q, Shen L. A novel culture-enriched metagenomic sequencing strategy effectively guarantee the microbial safety of drinking water by uncovering the low abundance pathogens. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118737. [PMID: 37657296 DOI: 10.1016/j.jenvman.2023.118737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 09/03/2023]
Abstract
Assessing the presence of waterborne pathogens and antibiotic resistance genes (ARGs) is crucial for managing the environmental quality of drinking water sources. However, detecting low abundance pathogens in such settings is challenging. In this study, a workflow was developed to enrich for broad spectrum pathogens from drinking water samples. A mock community was used to evaluate the effectiveness of various enrichment broths in detecting low-abundance pathogens. Monthly metagenomic surveillance was conducted in a drinking water source from May to September 2021, and water samples were subjected to five enrichment procedures for 6 h to recover the majority of waterborne bacterial pathogens. Oxford Nanopore Technology (ONT) was used for metagenomic sequencing of enriched samples to obtain high-quality pathogen genomes. The results showed that selective enrichment significantly increased the proportions of targeted bacterial pathogens. Compared to direct metagenomic sequencing of untreated water samples, targeted enrichment followed by ONT sequencing significantly improved the detection of waterborne pathogens and the quality of metagenome-assembled genomes (MAGs). Eighty-six high-quality MAGs, including 70 pathogen MAGs, were obtained from ONT sequencing, while only 12 MAGs representing 10 species were obtained from direct metagenomic sequencing of untreated water samples. In addition, ONT sequencing improved the recovery of mobile genetic elements and the accuracy of phylogenetic analysis. This study highlights the urgent need for efficient methodologies to detect and manage microbial risks in drinking water sources. The developed workflow provides a cost-effective approach for environmental management of drinking water sources with microbial risks. The study also uncovered pathogens that were not detected by traditional methods, thereby advancing microbial risk management of drinking water sources.
Collapse
Affiliation(s)
- Songzhe Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China.
| | - Yixiang Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences. Shanghai, China; University of Chinese Academy of Sciences, Shanghai, China
| | - Rui Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China
| | - Zhiguang Qiu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Weizhi Song
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong, China
| | - Qian Yang
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Lixin Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Shah MM, Bundi M, Kathiiko C, Guyo S, Galata A, Miringu G, Ichinose Y, Yoshida LM. Antibiotic-Resistant Vibrio cholerae O1 and Its SXT Elements Associated with Two Cholera Epidemics in Kenya in 2007 to 2010 and 2015 to 2016. Microbiol Spectr 2023; 11:e0414022. [PMID: 37125926 PMCID: PMC10269778 DOI: 10.1128/spectrum.04140-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/17/2023] [Indexed: 05/02/2023] Open
Abstract
Multidrug-resistant Vibrio cholerae O1 strains have long been observed in Africa, and strains exhibiting new resistance phenotypes have emerged during recent epidemics in Kenya. This study aimed to determine the epidemiological aspects, drug resistance patterns, and genetic elements of V. cholerae O1 strains isolated from two cholera epidemics in Kenya between 2007 and 2010 and between 2015 and 2016. A total of 228 V. cholerae O1 strains, including 226 clinical strains isolated from 13 counties in Kenya during the 2007-2010 and 2015-2016 cholera epidemics and two environmental isolates (from shallow well water and spring water isolates) isolated from Pokot and Kwale Counties, respectively, in 2010 were subjected to biotyping, serotyping, and antimicrobial susceptibility testing, including the detection of antibiotic resistance genes and mobile genetic elements. All V. cholerae isolates were identified as El Tor biotypes and susceptible to ceftriaxone, gentamicin, and ciprofloxacin. The majority of isolates were resistant to trimethoprim-sulfamethoxazole (94.6%), streptomycin (92.8%), and nalidixic acid (64.5%), while lower resistance was observed against ampicillin (3.6%), amoxicillin (4.2%), chloramphenicol (3.0%), and doxycycline (1.8%). Concurrently, the integrating conjugative (SXT) element was found in 95.5% of the V. cholerae isolates; conversely, class 1, 2, and 3 integrons were absent. Additionally, 64.5% of the isolates exhibited multidrug resistance patterns. Antibiotic-resistant gene clusters suggest that environmental bacteria may act as cassette reservoirs that favor resistant pathogens. On the other hand, the 2015-2016 epidemic strains were found susceptible to most antibiotics except nalidixic acid. This revealed the replacement of multidrug-resistant strains exhibiting new resistance phenotypes that emerged after Kenya's 2007-2010 epidemic. IMPORTANCE Kenya is a country where cholera is endemic; it has experienced three substantial epidemics over the past few decades, but there are limited data on the drug resistance patterns of V. cholerae at the national level. To the best of our knowledge, this is the first study to investigate the antimicrobial susceptibility profiles of V. cholerae O1 strains isolated from two consecutive epidemics and to examine their associated antimicrobial genetic determinants. Our study results revealed two distinct antibiotic resistance trends in two separate epidemics, particularly trends for multidrug-associated mobile genetic elements and chromosomal mutation-oriented resistant strains from the 2007-2010 epidemic. In contrast, only nalidixic acid-associated chromosomal mutated strains were isolated from the 2015-2016 epidemic. This study also found similar patterns of antibiotic resistance in environmental and clinical strains. Continuous monitoring is needed to control emerging multidrug-resistant isolates in the future.
Collapse
Affiliation(s)
- Mohammad Monir Shah
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Nagasaki University Institute of Tropical Medicine–Kenya Medical Research Institute Project, Nairobi, Kenya
| | - Martin Bundi
- Nagasaki University Institute of Tropical Medicine–Kenya Medical Research Institute Project, Nairobi, Kenya
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Cyrus Kathiiko
- Nagasaki University Institute of Tropical Medicine–Kenya Medical Research Institute Project, Nairobi, Kenya
| | - Sora Guyo
- Nagasaki University Institute of Tropical Medicine–Kenya Medical Research Institute Project, Nairobi, Kenya
| | - Amina Galata
- Nagasaki University Institute of Tropical Medicine–Kenya Medical Research Institute Project, Nairobi, Kenya
| | - Gabriel Miringu
- Nagasaki University Institute of Tropical Medicine–Kenya Medical Research Institute Project, Nairobi, Kenya
| | - Yoshio Ichinose
- Nagasaki University Institute of Tropical Medicine–Kenya Medical Research Institute Project, Nairobi, Kenya
| | - Lay-Myint Yoshida
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Monir MM, Islam MT, Mazumder R, Mondal D, Nahar KS, Sultana M, Morita M, Ohnishi M, Huq A, Watanabe H, Qadri F, Rahman M, Thomson N, Seed K, Colwell RR, Ahmed T, Alam M. Genomic attributes of Vibrio cholerae O1 responsible for 2022 massive cholera outbreak in Bangladesh. Nat Commun 2023; 14:1154. [PMID: 36859426 PMCID: PMC9977884 DOI: 10.1038/s41467-023-36687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
In 2022, one of its worst cholera outbreaks began in Bangladesh and the icddr,b Dhaka hospital treated more than 1300 patients and ca. 42,000 diarrheal cases from March-1 to April-10, 20221. Here, we present genomic attributes of V. cholerae O1 responsible for the 2022 Dhaka outbreak and 960 7th pandemic El Tor (7PET) strains from 88 countries. Results show strains isolated during the Dhaka outbreak cluster with 7PET wave-3 global clade strains, but comprise subclade BD-1.2, for which the most recent common ancestor appears to be that responsible for recent endemic cholera in India. BD-1.2 strains are present in Bangladesh since 2016, but not establishing dominance over BD-2 lineage strains2 until 2018 and predominantly associated with endemic cholera. In conclusion, the recent shift in lineage and genetic attributes, including serotype switching of BD-1.2 from Ogawa to Inaba, may explain the increasing number of cholera cases in Bangladesh.
Collapse
Affiliation(s)
- Md Mamun Monir
- Infectious diseases division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mohammad Tarequl Islam
- Infectious diseases division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Razib Mazumder
- Laboratory Sciences and Services Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Dinesh Mondal
- Laboratory Sciences and Services Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Kazi Sumaita Nahar
- Infectious diseases division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Marzia Sultana
- Infectious diseases division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Masatomo Morita
- Department of Bacteriology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Haruo Watanabe
- Department of Bacteriology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Firdausi Qadri
- Infectious diseases division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mustafizur Rahman
- Infectious diseases division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Nicholas Thomson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Kimberley Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Munirul Alam
- Infectious diseases division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh.
| |
Collapse
|
4
|
Qamar K, Malik UU, Yousuf J, Essar MY, Muzzamil M, Hashim HT, Shah J. Rise of cholera in Iraq: A rising concern. Ann Med Surg (Lond) 2022; 81:104355. [PMID: 36147152 PMCID: PMC9486572 DOI: 10.1016/j.amsu.2022.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022] Open
Abstract
With over seven pandemics and four million reported cases, Cholera remains of the most prevalent acute watery diarrheal diseases in the world to date. As in other developing countries, Iraq once again combats Cholera - and its past encounter in 2015, where the death toll reached 1500, highlights the importance of quickly addressing the current outbreak. The war-torn state of the nation, malnourished public, lack of sanitation and hygiene, mass displacement and global warming all contribute to the prevalence of Cholera in Iraq. Along with the current efforts, additional strategies are recommended for managing cholera cases, such as awareness campaigns, monitoring the safety of water bodies, and food inspection.
Collapse
Affiliation(s)
| | | | | | - Mohammad Yasir Essar
- Afghanistan National Charity Organization for Special Diseases, Kabul, Afghanistan
- Kabul University of Medical Sciences, Kabul, Afghanistan
| | | | | | - Jaffer Shah
- Drexel University College of Medicine, Philadelphia, United States
| |
Collapse
|
5
|
Protozoal food vacuoles enhance transformation in Vibrio cholerae through SOS-regulated DNA integration. THE ISME JOURNAL 2022; 16:1993-2001. [PMID: 35577916 PMCID: PMC9296650 DOI: 10.1038/s41396-022-01249-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Vibrio cholerae, the bacterial pathogen responsible for the diarrheal disease cholera, resides in the aquatic environment between outbreaks. For bacteria, genetic variation by lateral gene transfer (LGT) is important for survival and adaptation. In the aquatic environment, V. cholerae is predominantly found in biofilms associated with chitinous organisms or with chitin "rain". Chitin induces competency in V. cholerae, which can lead to LGT. In the environment, V. cholerae is also subjected to predation pressure by protist. Here we investigated whether protozoal predation affected LGT using the integron as a model. Integrons facilitate the integration of mobile DNA (gene cassettes) into the bacterial chromosome. We report that protozoal predation enhances transformation of a gene cassette by as much as 405-fold. We show that oxidative radicals produced in the protozoal phagosome induces the universal SOS response, which in turn upregulates the integron-integrase, the recombinase that facilitates cassette integration. Additionally, we show that during predation, V. cholerae requires the type VI secretion system to acquire the gene cassette from Escherichia coli. These results show that protozoal predation enhances LGT thus producing genetic variants that may have increased capacity to survive grazing. Additionally, the conditions in the food vacuole may make it a "hot spot" for LGT by accumulating diverse bacteria and inducing the SOS response helping drive genetic diversification and evolution.
Collapse
|
6
|
Kim H, Burkinshaw BJ, Lam LG, Manera K, Dong TG. Identification of Small Molecule Inhibitors of the Pathogen Box against Vibrio cholerae. Microbiol Spectr 2021; 9:e0073921. [PMID: 34937180 PMCID: PMC8694189 DOI: 10.1128/spectrum.00739-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a serious public and economic threat. The rate of bacteria acquiring AMR surpasses the rate of new antibiotics discovery, projecting more deadly AMR infections in the future. The Pathogen Box is an open-source library of drug-like compounds that can be screened for antibiotic activity. We have screened molecules of the Pathogen Box against Vibrio cholerae, the cholera-causing pathogen, and successfully identified two compounds, MMV687807 and MMV675968, that inhibit growth. RNA-seq analyses of V. cholerae after incubation with each compound revealed that both compounds affect cellular functions on multiple levels including carbon metabolism, iron homeostasis, and biofilm formation. In addition, whole-genome sequencing analysis of spontaneous resistance mutants identified an efflux system that confers resistance to MMV687807. We also identified that the dihydrofolate reductase is the likely target of MMV675968 suggesting it acts as an analog of trimethoprim but with a MIC 14-fold lower than trimethoprim in molar concentration. In summary, these two compounds that effectively inhibit V. cholerae and other bacteria may lead to the development of new antibiotics for better treatment of the cholera disease. IMPORTANCE Cholera is a serious infectious disease in tropical regions causing millions of infections annually. Vibrio cholerae, the causative agent of cholera, has gained multi-antibiotic resistance over the years, posing greater threat to public health and current treatment strategies. Here we report two compounds that effectively target the growth of V. cholerae and have the potential to control cholera infection.
Collapse
Affiliation(s)
- Haeun Kim
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Brianne J. Burkinshaw
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Linh G. Lam
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Manera
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Tao G. Dong
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Bhandari M, Jennison AV, Rathnayake IU, Huygens F. Evolution, distribution and genetics of atypical Vibrio cholerae - A review. INFECTION GENETICS AND EVOLUTION 2021; 89:104726. [PMID: 33482361 DOI: 10.1016/j.meegid.2021.104726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Vibrio cholerae is the etiological agent of cholera, a severe diarrheal disease, which can occur as either an epidemic or sporadic disease. Cholera pandemic-causing V. cholerae O1 and O139 serogroups originated from the Indian subcontinent and spread globally and millions of lives are lost each year, mainly in developing and underdeveloped countries due to this disease. V. cholerae O1 is further classified as classical and El Tor biotype which can produce biotype specific cholera toxin (CT). Since 1961, the current seventh pandemic El Tor strains replaced the sixth pandemic strains resulting in the classical biotype strain that produces classical CT. The ongoing evolution of Atypical El Tor V. cholerae srains encoding classical CT is of global concern. The severity in the pathophysiology of these Atypical El Tor strains is significantly higher than El Tor or classical strains. Pathogenesis of V. cholerae is a complex process that involves coordinated expression of different sets of virulence-associated genes to cause disease. We are yet to understand the complete virulence profile of V. cholerae, including direct and indirect expression of genes involved in its survival and stress adaptation in the host. In recent years, whole genome sequencing has paved the way for better understanding of the evolution and strain distribution, outbreak identification and pathogen surveillance for the implementation of direct infection control measures in the clinic against many infectious pathogens including V. cholerae. This review provides a synopsis of recent studies that have contributed to the understanding of the evolution, distribution and genetics of the seventh pandemic Atypical El Tor V. cholerae strains.
Collapse
Affiliation(s)
- Murari Bhandari
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia; Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Irani U Rathnayake
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Flavia Huygens
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Abstract
The emergence and spread of infectious diseases with pandemic potential occurred regularly throughout history. Major pandemics and epidemics such as plague, cholera, flu, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have already afflicted humanity. The world is now facing the new coronavirus disease 2019 (COVID-19) pandemic. Many infectious diseases leading to pandemics are caused by zoonotic pathogens that were transmitted to humans due to increased contacts with animals through breeding, hunting and global trade activities. The understanding of the mechanisms of transmission of pathogens to humans allowed the establishment of methods to prevent and control infections. During centuries, implementation of public health measures such as isolation, quarantine and border control helped to contain the spread of infectious diseases and maintain the structure of the society. In the absence of pharmaceutical interventions, these containment methods have still been used nowadays to control COVID-19 pandemic. Global surveillance programs of water-borne pathogens, vector-borne diseases and zoonotic spillovers at the animal-human interface are of prime importance to rapidly detect the emergence of infectious threats. Novel technologies for rapid diagnostic testing, contact tracing, drug repurposing, biomarkers of disease severity as well as new platforms for the development and production of vaccines are needed for an effective response in case of pandemics.
Collapse
Affiliation(s)
- Jocelyne Piret
- CHU de Québec - Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- CHU de Québec - Laval University, Quebec City, QC, Canada
| |
Collapse
|
9
|
Shankar U, Jain N, Majee P, Kodgire P, Sharma TK, Kumar A. Exploring Computational and Biophysical Tools to Study the Presence of G-Quadruplex Structures: A Promising Therapeutic Solution for Drug-Resistant Vibrio cholerae. Front Genet 2020; 11:935. [PMID: 33101360 PMCID: PMC7545536 DOI: 10.3389/fgene.2020.00935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio cholerae, a gram-negative bacterium that causes cholera, has already caused seven major pandemics across the world and infects roughly 1.3–4 million people every year. Cholera treatment primarily involves oral rehydration therapy supplemented with antibiotics. But recently, multidrug-resistant strains of V. cholerae have emerged. High genomic plasticity further enhances the pathogenesis of this human pathogen. Guanines in DNA or RNA assemble to form G-quadruplex (GQ) structures which have begun to be seen as potential drug targeting sites for different pathogenic bacteria and viruses. In this perspective, we carried out a genome-wide hunt in V. cholerae using a bio-informatics approach and observed ∼85 G-quadruplex forming motifs (VC-PGQs) in chromosome I and ∼45 putative G-quadruplexs (PGQs) in chromosome II. Ten putative G-quadruplex forming motifs (VC-PGQs) were selected on the basis of conservation throughout the genus and functional analysis displayed their location in the essential genes encoding bacterial proteins, for example, methyl-accepting chemotaxis protein, orotate phosphoribosyl transferase protein, amidase proteins, etc. The predicted VC-PGQs were validated using different bio-physical techniques, including Nuclear Magnetic Resonance spectroscopy, Circular Dichroism spectroscopy, and electrophoretic mobility shift assay, which demonstrated the formation of highly stable GQ structures in the bacteria. The interaction of these VC-PGQs with the known specific GQ ligand, TMPyP4, was analyzed using ITC and molecular dynamics studies that displayed the stabilization of the VC-PGQs by the GQ ligands and thus represents a potential therapeutic strategy against this enteric pathogen by inhibiting the PGQ harboring gene expression, thereby inhibiting the bacterial growth and virulence. In summary, this study reveals the presence of conserved GQ forming motifs in the V. cholerae genome that has the potential to be used to treat the multi-drug resistance problem of the notorious enteric pathogen.
Collapse
Affiliation(s)
- Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Prativa Majee
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Prashant Kodgire
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | | | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
10
|
VCGIDB: A Database and Web Resource for the Genomic Islands from Vibrio Cholerae. Pathogens 2019; 8:pathogens8040261. [PMID: 31771223 PMCID: PMC6963734 DOI: 10.3390/pathogens8040261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Vibrio cholerae is the causative agent of cholera, which is a severe, life-threatening diarrheal disease. The current seventh pandemic has not been eradicated and the outbreak is still ongoing around the world. The evolution of the pandemic-causing strain has been greatly influenced by lateral gene transfer, and the mechanisms of acquisition of pathogenicity in V. cholerae are mainly involved with genomic islands (GIs). Thus, detecting GIs and their comprehensive information is necessary to understand the continuing resurgence and newly emerging pathogenic V. cholerae strains. In this study, 798 V. cholerae strains were tested using the GI-Scanner algorithm, which was developed to detect candidate GIs and identify them in a comparative genomics approach. The algorithm predicted 435 highly possible genomic islands, and we built a database, called Vibrio cholerae Genomic Island Database (VCGIDB). This database shows advanced results that were acquired from a large genome set using phylogeny-based predictions. Moreover, VCGIDB is a highly expendable database that does not require intensive computation, which enables us to update it with a greater number of genomes using a novel genomic island prediction method. The VCGIDB website allows the user to browse the data and presents the results in a visual manner.
Collapse
|
11
|
Gladkikh AS, Feranchuk SI, Ponomareva AS, Bochalgin NO, Mironova LV. Antibiotic resistance in Vibrio cholerae El Tor strains isolated during cholera complications in Siberia and the Far East of Russia. INFECTION GENETICS AND EVOLUTION 2019; 78:104096. [PMID: 31689544 DOI: 10.1016/j.meegid.2019.104096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/10/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022]
Abstract
Currently, the spread of antimicrobial resistance (AMR) is a global trend and poses a severe threat to public health. The causative agent of cholera, a severe infectious disease with pandemic expansion, becomes more and more resistant to a wider range of drugs with every coming year. The Vibrio cholerae genome is highly flexible and adaptive; the acquisition of the SXT mobile element with a cluster of antibiotic resistance genes on it has marked a new stage in the adaptive evolution of the pathogen. The territory of Siberia and the Russian Far East is free of cholera; however, in the 1970s and 1990s a number of infection importation cases and acute outbreaks associated with the cholera importation were reported. The aim of this study was to describe the phenotypic characteristics and genetic determinants of AMR in V. cholerae strains isolated during epidemic complications in Siberia and the Far East of Russia, as well as to clarify the origin of the strains. The present research comprises analysis of nine V. cholerae El Tor strains isolated from patients and water sources during epidemic complications in Siberia and the Russian Far East in the 1990s. Here, we compared the phenotypic manifestations of antibiotic resistance among strains, harbored the resistance patterns in genomes; we also determined the structure, the type of SXT elements, and the mobilome profile based on the accepted classification. We identified that strains that caused outbreaks in Vladivostok and Yuzhno-Sakhalinsk in 1999 had ICEVchCHN4210 type SXT element with deletion of some loci. The research shows that the integration of the genome, SNP and the mobilome, associated with antibiotic resistance, analyses is necessary to understand the cholera epidemiology, it also helps to establish the origin of strains. The study of resistance determinants features allowed to make a conclusion about the heterogeneity of V. cholerae strains that were isolated during outbreaks in Vladivostok and Yuzhno-Sakhalinsk in 1999.
Collapse
Affiliation(s)
- A S Gladkikh
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia.
| | - S I Feranchuk
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - A S Ponomareva
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - N O Bochalgin
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - L V Mironova
- Irkutsk antiplague research institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| |
Collapse
|
12
|
|
13
|
Analysis of 19 Highly Conserved Vibrio cholerae Bacteriophages Isolated from Environmental and Patient Sources Over a Twelve-Year Period. Viruses 2018; 10:v10060299. [PMID: 29857590 PMCID: PMC6024749 DOI: 10.3390/v10060299] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
The Vibrio cholerae biotype “El Tor” is responsible for all of the current epidemic and endemic cholera outbreaks worldwide. These outbreaks are clonal, and it is hypothesized that they originate from the coastal areas near the Bay of Bengal, where the lytic bacteriophage ICP1 (International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) specifically preys upon these pathogenic outbreak strains. ICP1 has also been the dominant bacteriophage found in cholera patient stools since 2001. However, little is known about the genomic differences between the ICP1 strains that have been collected over time. Here, we elucidate the pan-genome and the phylogeny of the ICP1 strains by aligning, annotating, and analyzing the genomes of 19 distinct isolates that were collected between 2001 and 2012. Our results reveal that the ICP1 isolates are highly conserved and possess a large core-genome as well as a smaller, somewhat flexible accessory-genome. Despite its overall conservation, ICP1 strains have managed to acquire a number of unknown genes, as well as a CRISPR-Cas system which is known to be critical for its ongoing struggle for co-evolutionary dominance over its host. This study describes a foundation on which to construct future molecular and bioinformatic studies of these V. cholerae-associated bacteriophages.
Collapse
|
14
|
Siriphap A, Leekitcharoenphon P, Kaas RS, Theethakaew C, Aarestrup FM, Sutheinkul O, Hendriksen RS. Characterization and Genetic Variation of Vibrio cholerae Isolated from Clinical and Environmental Sources in Thailand. PLoS One 2017; 12:e0169324. [PMID: 28103259 PMCID: PMC5245877 DOI: 10.1371/journal.pone.0169324] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/15/2016] [Indexed: 11/29/2022] Open
Abstract
Cholera is still an important public health problem in several countries, including Thailand. In this study, a collection of clinical and environmental V. cholerae serogroup O1, O139, and non-O1/non-O139 strains originating from Thailand (1983 to 2013) was characterized to determine phenotypic and genotypic traits and to investigate the genetic relatedness. Using a combination of conventional methods and whole genome sequencing (WGS), 78 V. cholerae strains were identified. WGS was used to determine the serogroup, biotype, virulence, mobile genetic elements, and antimicrobial resistance genes using online bioinformatics tools. In addition, phenotypic antimicrobial resistance was determined by the minimal inhibitory concentration (MIC) test. The 78 V. cholerae strains belonged to the following serogroups O1: (n = 44), O139 (n = 16) and non-O1/non-O139 (n = 18). Interestingly, we found that the typical El Tor O1 strains were the major cause of clinical cholera during 1983–2000 with two Classical O1 strains detected in 2000. In 2004–2010, the El Tor variant strains revealed genotypes of the Classical biotype possessing either only ctxB or both ctxB and rstR while they harbored tcpA of the El Tor biotype. Thirty O1 and eleven O139 clinical strains carried CTXϕ (Cholera toxin) and tcpA as well four different pathogenic islands (PAIs). Beside non-O1/non-O139, the O1 environmental strains also presented chxA and Type Three Secretion System (TTSS). The in silico MultiLocus Sequence Typing (MLST) discriminated the O1 and O139 clinical strains from other serogroups and environmental strains. ST69 was dominant in the clinical strains belonging to the 7th pandemic clone. Non-O1/non-O139 and environmental strains showed various novel STs indicating genetic variation. Multidrug-resistant (MDR) strains were observed and conferred resistance to ampicillin, azithromycin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim and harboured variants of the SXT elements. For the first time since 1986, the presence of V. cholerae O1 Classical was reported causing cholera outbreaks in Thailand. In addition, we found that V. cholerae O1 El Tor variant and O139 were pre-dominating the pathogenic strains in Thailand. Using WGS and bioinformatic tools to analyze both historical and contemporary V. cholerae circulating in Thailand provided a more detailed understanding of the V. cholerae epidemiology, which ultimately could be applied for control measures and management of cholera in Thailand.
Collapse
Affiliation(s)
- Achiraya Siriphap
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Pimlapas Leekitcharoenphon
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Rolf S Kaas
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Chonchanok Theethakaew
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Orasa Sutheinkul
- Faculty of Public Health, Thammasat University, Rangsit Center, Pathumthani, Thailand
| | - Rene S Hendriksen
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Abstract
We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7-83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9-5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed.
Collapse
Affiliation(s)
- Mario López-Pérez
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
16
|
Kaas RS, Ngandjio A, Nzouankeu A, Siriphap A, Fonkoua MC, Aarestrup FM, Hendriksen RS. The Lake Chad Basin, an Isolated and Persistent Reservoir of Vibrio cholerae O1: A Genomic Insight into the Outbreak in Cameroon, 2010. PLoS One 2016; 11:e0155691. [PMID: 27191718 PMCID: PMC4871476 DOI: 10.1371/journal.pone.0155691] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/03/2016] [Indexed: 11/19/2022] Open
Abstract
The prevalence of reported cholera was relatively low around the Lake Chad basin until 1991. Since then, cholera outbreaks have been reported every couple of years. The objective of this study was to investigate the 2010/2011 Vibrio cholerae outbreak in Cameroon to gain insight into the genomic make-up of the V. cholerae strains responsible for the outbreak. Twenty-four strains were isolated and whole genome sequenced. Known virulence genes, resistance genes and integrating conjugative element (ICE) elements were identified and annotated. A global phylogeny (378 genomes) was inferred using a single nucleotide polymorphism (SNP) analysis. The Cameroon outbreak was found to be clonal and clustered distant from the other African strains. In addition, a subset of the strains contained a deletion that was found in the ICE element causing less resistance. These results suggest that V. cholerae is endemic in the Lake Chad basin and different from other African strains.
Collapse
Affiliation(s)
- Rolf S. Kaas
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Antoinette Ngandjio
- Centre Pasteur du Cameroon, Service Hygiène et Environnement section Microbiologie, P.O. Box 1274, Yaoundé, Cameroon
| | - Ariane Nzouankeu
- Centre Pasteur du Cameroon, Laboratory of Bacteriology, P.O. Box 1274, Yaoundé, Cameroon
| | - Achiraya Siriphap
- Department of Microbiology and Parasitology, Faculty of Medical Science, University of Phayao, Phayao, 56000, Thailand
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, 10400, Thailand
| | | | - Frank M. Aarestrup
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Rene S. Hendriksen
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
Cecchini F, Fajs L, Cosnier S, Marks RS. Vibrio cholerae detection: Traditional assays, novel diagnostic techniques and biosensors. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering. J Bacteriol 2015; 198:578-90. [PMID: 26598368 DOI: 10.1128/jb.00747-15] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/16/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED The classical and El Tor biotypes of Vibrio cholerae serogroup O1, the etiological agent of cholera, are responsible for the sixth and seventh (current) pandemics, respectively. A genomic island (GI), GI-24, previously identified in a classical biotype strain of V. cholerae, is predicted to encode clustered regularly interspaced short palindromic repeat (CRISPR)-associated proteins (Cas proteins); however, experimental evidence in support of CRISPR activity in V. cholerae has not been documented. Here, we show that CRISPR-Cas is ubiquitous in strains of the classical biotype but excluded from strains of the El Tor biotype. We also provide in silico evidence to suggest that CRISPR-Cas actively contributes to phage resistance in classical strains. We demonstrate that transfer of GI-24 to V. cholerae El Tor via natural transformation enables CRISPR-Cas-mediated resistance to bacteriophage CP-T1 under laboratory conditions. To elucidate the sequence requirements of this type I-E CRISPR-Cas system, we engineered a plasmid-based system allowing the directed targeting of a region of interest. Through screening for phage mutants that escape CRISPR-Cas-mediated resistance, we show that CRISPR targets must be accompanied by a 3' TT protospacer-adjacent motif (PAM) for efficient interference. Finally, we demonstrate that efficient editing of V. cholerae lytic phage genomes can be performed by simultaneously introducing an editing template that allows homologous recombination and escape from CRISPR-Cas targeting. IMPORTANCE Cholera, caused by the facultative pathogen Vibrio cholerae, remains a serious public health threat. Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) provide prokaryotes with sequence-specific protection from invading nucleic acids, including bacteriophages. In this work, we show that one genomic feature differentiating sixth pandemic (classical biotype) strains from seventh pandemic (El Tor biotype) strains is the presence of a CRISPR-Cas system in the classical biotype. We demonstrate that the CRISPR-Cas system from a classical biotype strain can be transferred to a V. cholerae El Tor biotype strain and that it is functional in providing resistance to phage infection. Finally, we show that this CRISPR-Cas system can be used as an efficient tool for the editing of V. cholerae lytic phage genomes.
Collapse
|
19
|
Kim EJ, Lee CH, Nair GB, Kim DW. Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1. Trends Microbiol 2015; 23:479-89. [DOI: 10.1016/j.tim.2015.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 12/20/2022]
|
20
|
Identification and characterization of phosphodiesterases that specifically degrade 3'3'-cyclic GMP-AMP. Cell Res 2015; 25:539-50. [PMID: 25837739 PMCID: PMC4423081 DOI: 10.1038/cr.2015.40] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/12/2015] [Accepted: 02/11/2015] [Indexed: 12/25/2022] Open
Abstract
Cyclic dinucleotides act as intracellular second messengers, modulating a variety of cellular activities including innate immune activation. Although phosphodiesterases (PDEs) hydrolyzing c-di-GMP and c-di-AMP have been identified, no PDEs for cGAMPs have been reported. Here we identified the first three cGAMP-specific PDEs in V. cholerae (herein designated as V-cGAP1/2/3). V-cGAPs are HD-GYP domain-containing proteins and specifically break 3′3′-cGAMP, but not other forms of cGAMP. 3′3′-cGAMP is first linearized by all three V-cGAPs to produce 5′-pApG, which is further hydrolyzed into 5′-ApG by V-cGAP1. In this two-step reaction, V-cGAP1 functions as both a PDE and a 5′-nucleotidase. In vivo experiments demonstrated that V-cGAPs play non-redundant roles in cGAMP degradation. The high specificity of V-cGAPs on 3′3′-cGAMP suggests the existence of specific PDEs for other cGAMPs, including 2′3′-cGAMP in mammalian cells. The absolute requirement of the GYP motif for 3′3′-cGAMP degradation suggests that HD domain-containing PDEs in eukaryotes are probably unable to hydrolyze cGAMPs. The fact that all V-cGAPs attack 3′3′-cGAMP on one specific phosphodiester bond suggests that PDEs for other cGAMPs would utilize a similar strategy. These results will provide valuable information for identification and characterization of mammalian 2′3′-cGAMP-specific PDEs in future studies.
Collapse
|
21
|
Loyola DE, Navarro C, Uribe P, García K, Mella C, Díaz D, Valdes N, Martínez-Urtaza J, Espejo RT. Genome diversification within a clonal population of pandemic Vibrio parahaemolyticus seems to depend on the life circumstances of each individual bacteria. BMC Genomics 2015; 16:176. [PMID: 25880192 PMCID: PMC4359782 DOI: 10.1186/s12864-015-1385-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/24/2015] [Indexed: 11/15/2022] Open
Abstract
Background New strains of Vibrio parahaemolyticus that cause diarrhea in humans by seafood ingestion periodically emerge through continuous evolution in the ocean. Influx and expansion in the Southern Chilean ocean of a highly clonal V. parahaemolyticus (serotype O3:K6) population from South East Asia caused one of the largest seafood-related diarrhea outbreaks in the world. Here, genomics analyses of isolates from this rapidly expanding clonal population offered an opportunity to observe the molecular evolutionary changes often obscured in more diverse populations. Results Whole genome sequence comparison of eight independent isolates of this population from mussels or clinical cases (from different years) was performed. Differences of 1366 to 217,729 bp genome length and 13 to 164 bp single nucleotide variants (SNVs) were found. Most genomic differences corresponded to the presence of regions unique to only one or two isolates, and were probably acquired by horizontal gene transfer (HGT). Some DNA gain was chromosomal but most was in plasmids. One isolate had a large region (8,644 bp) missing, which was probably caused by excision of a prophage. Genome innovation by the presence of unique DNA, attributable to HGT from related bacteria, varied greatly among the isolates, with values of 1,366 (ten times the number of highest number of SNVs) to 217,729 (a thousand times more than the number of highest number of SNVs). Conclusions The evolutionary forces (SNVs, HGT) acting on each isolate of the same population were found to differ to an extent that probably depended on the ecological scenario and life circumstances of each bacterium. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1385-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David E Loyola
- Centro Nacional de Genómica y Bioinformática, Av B. O'Higgins 340, Santiago, Chile.
| | - Cristell Navarro
- Centro Nacional de Genómica y Bioinformática, Av B. O'Higgins 340, Santiago, Chile.
| | - Paulina Uribe
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, El Líbano 5524, Santiago, Chile.
| | - Katherine García
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, El Líbano 5524, Santiago, Chile.
| | - Claudia Mella
- Centro Nacional de Genómica y Bioinformática, Av B. O'Higgins 340, Santiago, Chile.
| | - Diego Díaz
- Centro Nacional de Genómica y Bioinformática, Av B. O'Higgins 340, Santiago, Chile.
| | - Natalia Valdes
- Centro Nacional de Genómica y Bioinformática, Av B. O'Higgins 340, Santiago, Chile.
| | - Jaime Martínez-Urtaza
- Depatment of Biology and Biochemistry, University of Bath, Claverton Down, Bath, North East Somerset, BA2 7AY, UK.
| | - Romilio T Espejo
- Centro Nacional de Genómica y Bioinformática, Av B. O'Higgins 340, Santiago, Chile. .,Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, El Líbano 5524, Santiago, Chile.
| |
Collapse
|
22
|
Kim EJ, Lee D, Moon SH, Lee CH, Kim SJ, Lee JH, Kim JO, Song M, Das B, Clemens JD, Pape JW, Nair GB, Kim DW. Molecular insights into the evolutionary pathway of Vibrio cholerae O1 atypical El Tor variants. PLoS Pathog 2014; 10:e1004384. [PMID: 25233006 PMCID: PMC4169478 DOI: 10.1371/journal.ppat.1004384] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/05/2014] [Indexed: 01/22/2023] Open
Abstract
Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.
Collapse
Affiliation(s)
- Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
| | - Dokyung Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
| | - Se Hoon Moon
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
| | - Chan Hee Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
| | - Sang Jun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
| | - Jae Hyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
| | - Jae Ouk Kim
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Manki Song
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - John D. Clemens
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
- UCLA Fielding School of Public Health, Los Angeles, California, United States of America
| | - Jean William Pape
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Les Centres GHESKIO, Port-au-Prince, Haïti
| | - G. Balakrish Nair
- Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
- * E-mail:
| |
Collapse
|
23
|
Acquisition and evolution of SXT-R391 integrative conjugative elements in the seventh-pandemic Vibrio cholerae lineage. mBio 2014; 5:mBio.01356-14. [PMID: 25139901 PMCID: PMC4147863 DOI: 10.1128/mbio.01356-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SXT-R391 Integrative conjugative elements (ICEs) are self-transmissible mobile genetic elements able to confer multidrug resistance and other adaptive features to bacterial hosts, including Vibrio cholerae, the causative agent of cholera. ICEs are arranged in a mosaic genetic structure composed of a conserved backbone interspersed with variable DNA clusters located in conserved hot spots. In this study, we investigated ICE acquisition and subsequent microevolution in pandemic V. cholerae. Ninety-six ICEs were retrieved from publicly available sequence databases from V. cholerae clinical strains and were compared to a set of reference ICEs. Comparative genomics highlighted the existence of five main ICE groups with a distinct genetic makeup, exemplified by ICEVchInd5, ICEVchMoz10, SXT, ICEVchInd6, and ICEVchBan11. ICEVchInd5 (the most frequent element, represented by 70 of 96 elements analyzed) displayed no sequence rearrangements and was characterized by 46 single nucleotide polymorphisms (SNPs). SNP analysis revealed that recent inter-ICE homologous recombination between ICEVchInd5 and other ICEs circulating in gammaproteobacteria generated ICEVchMoz10, ICEVchInd6, and ICEVchBan11. Bayesian phylogenetic analyses indicated that ICEVchInd5 and SXT were independently acquired by the current pandemic V. cholerae O1 and O139 lineages, respectively, within a period of only a few years. SXT-R391 ICEs have been recognized as key vectors of antibiotic resistance in the seventh-pandemic lineage of V. cholerae, which remains a major cause of mortality and morbidity on a global scale. ICEs were acquired only recently in this clade and are acknowledged to be major contributors to horizontal gene transfer and the acquisition of new traits in bacterial species. We have reconstructed the temporal dynamics of SXT-R391 ICE acquisition and spread and have identified subsequent recombination events generating significant diversity in ICEs currently circulating among V. cholerae clinical strains. Our results showed that acquisition of SXT-R391 ICEs provided the V. cholerae seventh-pandemic lineage not only with a multidrug resistance phenotype but also with a powerful molecular tool for rapidly accessing the pan-genome of a large number of gammaproteobacteria.
Collapse
|
24
|
López-Pérez M, Martin-Cuadrado AB, Rodriguez-Valera F. Homologous recombination is involved in the diversity of replacement flexible genomic islands in aquatic prokaryotes. Front Genet 2014; 5:147. [PMID: 24904647 PMCID: PMC4033161 DOI: 10.3389/fgene.2014.00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/06/2014] [Indexed: 01/22/2023] Open
Abstract
Different strains of the same prokaryotic species, even very similar ones, vary in large regions of their genomes. This flexible genome represents a huge reservoir of diversity that allows prokaryotes to exploit their environment efficiently. Most of the flexible genome is concentrated in genomic islands, some of which are present in all the strains and coding for similar functions but containing different genes. These replacement genomic islands are typically involved in exposed cellular structures, and their diversity has been connected to their recognition as targets by prokaryotic viruses (phages). We have compared genomes of closely related aquatic microbes from different origins and found examples of recent replacement of some of these flexible genomic islands. In all cases, that include Gram positive and negative bacteria and one archaeon, the replaced regions boundaries contain tell-tale peaks of increased, mostly synonymous, nucleotide substitutions. They tended to be sharper at the boundary closest to the origin of replication of the island. We will present the hypothesis that replacement flexible genomic islands are often exchanged by homologous recombination between different clonal frames. These recombination events are possibly selected due to the immediate reward provided by a change in the phage sensitivity spectrum.
Collapse
Affiliation(s)
- Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández Alicante, Spain
| | | |
Collapse
|
25
|
|
26
|
Valia R, Taviani E, Spagnoletti M, Ceccarelli D, Cappuccinelli P, Colombo MM. Vibrio cholerae O1 epidemic variants in Angola: a retrospective study between 1992 and 2006. Front Microbiol 2013; 4:354. [PMID: 24348465 PMCID: PMC3842873 DOI: 10.3389/fmicb.2013.00354] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/07/2013] [Indexed: 11/24/2022] Open
Abstract
Cholera is still a major public health concern in many African countries. In Angola, after a decade of absence, cholera reemerged in 1987, spreading throughout the country until 1996, with outbreaks recurring in a seasonal pattern. In 2006 Angola was hit by one of the most severe outbreaks of the last decade, with ca. 240,000 cases reported. We analyzed 21 clinical strains isolated between 1992 and 2006 from several provinces throughout the country: Benguela, Bengo, Luanda, Cuando Cubango, and Cabinda. We used two multiplex PCR assays to investigate discriminatory mobile genetic elements (MGE) [Integrative Conjugative Elements (ICEs), VSP-II, GI12, GI14, GI15, K, and TLC phages] and we compared the profiles obtained with those of different reference V. cholerae O1 variants (prototypical, altered, and hybrid), responsible for the ongoing 7th pandemic. We also tested the strains for the presence of specific VSP-II variants and for the presence of a genomic island (GI) (WASA-1), correlated with the transmission of seventh pandemic cholera from Africa to South America. Based on the presence/absence of the analyzed genetic elements, five novel profiles were detected in the epidemic strains circulating in the 1990s. The most frequent profiles, F and G, were characterized by the absence of ICEs and the three GIs tested, and the presence of GI WASA-1 and the WASA variant of the VSP-II island. Our results identified unexpected variability within the 1990s epidemic, showing different rearrangements in a dynamic part of the genome not present in the prototypical V. cholerae O1 N16961. Moreover the 2006 strains differed from the current pandemic V. cholerae O1 strain. Taken together, our results highlight the role of horizontal gene transfer (HGT) in diversifying the genetic background of V. cholerae within a single epidemic.
Collapse
Affiliation(s)
- Romy Valia
- Dipartimento di Biologia e Biotecnologie C. Darwin, Università di Roma Sapienza Rome, Italy
| | - Elisa Taviani
- Dipartimento di Biologia e Biotecnologie C. Darwin, Università di Roma Sapienza Rome, Italy ; Centro de Biotecnologia, Universidade E. Mondlane Maputo Mozambique
| | - Matteo Spagnoletti
- Department of Genetics, University College London Genetics Institute, Evolution and Environment, University College London London, UK
| | - Daniela Ceccarelli
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | | | - Mauro M Colombo
- Dipartimento di Biologia e Biotecnologie C. Darwin, Università di Roma Sapienza Rome, Italy ; Centro de Biotecnologia, Universidade E. Mondlane Maputo Mozambique
| |
Collapse
|
27
|
Morais LLCDS, Garza DR, Loureiro ECB, Vale ER, Santos DSADS, Corrêa VC, Sousa NR, Gurjão TCM, Santos ECDO, Vieira VV, da Fonseca EL, Vicente ACP. Population and genetic study of Vibrio cholerae from the amazon environment confirms that the WASA-1 prophage is the main marker of the epidemic strain that circulated in the region. PLoS One 2013; 8:e81372. [PMID: 24303045 PMCID: PMC3841125 DOI: 10.1371/journal.pone.0081372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/12/2013] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae is a natural inhabitant of many aquatic environments in the world. Biotypes harboring similar virulence-related gene clusters are the causative agents of epidemic cholera, but the majority of strains are harmless to humans. Since 1971, environmental surveillance for potentially pathogenic V. cholerae has resulted in the isolation of many strains from the Brazilian Amazon aquatic ecosystem. Most of these strains are from the non-O1/non-O139 serogroups (NAGs), but toxigenic O1 strains were isolated during the Latin America cholera epidemic in the region (1991-1996). A collection of environmental V. cholerae strains from the Brazilian Amazon belonging to pre-epidemic (1977-1990), epidemic (1991-1996), and post-epidemic (1996-2007) periods in the region, was analyzed. The presence of genes related to virulence within the species and the genetic relationship among the strains were studied. These variables and the information available concerning the strains were used to build a Bayesian multivariate dependency model to distinguish the importance of each variable in determining the others. Some genes related to the epidemic strains were found in environmental NAGs during and after the epidemic. Significant diversity among the virulence-related gene content was observed among O1 strains isolated from the environment during the epidemic period, but not from clinical isolates, which were analyzed as controls. Despite this diversity, these strains exhibited similar PFGE profiles. PFGE profiles were significant while separating potentially epidemic clones from indigenous strains. No significant correlation with isolation source, place or period was observed. The presence of the WASA-1 prophage significantly correlated with serogroups, PFGE profiles, and the presence of virulence-related genes. This study provides a broad characterization of the environmental V. cholerae population from the Amazon, and also highlights the importance of identifying precisely defined genetic markers such as the WASA-1 prophage for the surveillance of cholera.
Collapse
Affiliation(s)
| | - Daniel Rios Garza
- Environmental Section of the Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | | | | | | | | | - Nayara Rufino Sousa
- Environmental Section of the Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | | | | | - Verônica Viana Vieira
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erica Lourenço da Fonseca
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Paulo Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Kirkup BC, Mahlen S, Kallstrom G. Future-Generation Sequencing and Clinical Microbiology. Clin Lab Med 2013; 33:685-704. [DOI: 10.1016/j.cll.2013.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Galardini M, Pini F, Bazzicalupo M, Biondi EG, Mengoni A. Replicon-dependent bacterial genome evolution: the case of Sinorhizobium meliloti. Genome Biol Evol 2013; 5:542-58. [PMID: 23431003 PMCID: PMC3622305 DOI: 10.1093/gbe/evt027] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many bacterial species, such as the alphaproteobacterium Sinorhizobium meliloti, are characterized by open pangenomes and contain multipartite genomes consisting of a chromosome and other large-sized replicons, such as chromids, megaplasmids, and plasmids. The evolutionary forces in both functional and structural aspects that shape the pangenome of species with multipartite genomes are still poorly understood. Therefore, we sequenced the genomes of 10 new S. meliloti strains, analyzed with four publicly available additional genomic sequences. Results indicated that the three main replicons present in these strains (a chromosome, a chromid, and a megaplasmid) partly show replicon-specific behaviors related to strain differentiation. In particular, the pSymB chromid was shown to be a hot spot for positively selected genes, and, unexpectedly, genes resident in the pSymB chromid were also found to be more widespread in distant taxa than those located in the other replicons. Moreover, through the exploitation of a DNA proximity network, a series of conserved “DNA backbones” were found to shape the evolution of the genome structure, with the rest of the genome experiencing rearrangements. The presented data allow depicting a scenario where the pSymB chromid has a distinctive role in intraspecies differentiation and in evolution through positive selection, whereas the pSymA megaplasmid mostly contributes to structural fluidity and to the emergence of new functions, indicating a specific evolutionary role for each replicon in the pangenome evolution.
Collapse
Affiliation(s)
- Marco Galardini
- Department of Biology, University of Firenze, Firenze, Italy
| | | | | | | | | |
Collapse
|
30
|
le Roux WJ, Chan WY, De Maayer P, Venter SN. Genome Sequence of Vibrio cholerae G4222, a South African Clinical Isolate. GENOME ANNOUNCEMENTS 2013; 1:e0004013. [PMID: 23516184 PMCID: PMC3622969 DOI: 10.1128/genomea.00040-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/08/2013] [Indexed: 11/20/2022]
Abstract
Vibrio cholerae, a Gram-negative pathogen autochthonous to the aquatic environment, is the causative agent of cholera. Here, we report the complete genome sequence of V. cholerae G4222, a clinical isolate from South Africa.
Collapse
Affiliation(s)
| | - Wai Yin Chan
- Forestry and Agriculture Biotechnology Institute and Department of Microbiology and Plant Pathology, University of Pretoria, South Africa
| | - Pieter De Maayer
- Forestry and Agriculture Biotechnology Institute and Department of Microbiology and Plant Pathology, University of Pretoria, South Africa
- Center for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, South Africa
| | - Stephanus N. Venter
- Forestry and Agriculture Biotechnology Institute and Department of Microbiology and Plant Pathology, University of Pretoria, South Africa
| |
Collapse
|
31
|
Islam A, Labbate M, Djordjevic SP, Alam M, Darling A, Melvold J, Holmes AJ, Johura FT, Cravioto A, Charles IG, Stokes HW. Indigenous Vibrio cholerae strains from a non-endemic region are pathogenic. Open Biol 2013; 3:120181. [PMID: 23407641 PMCID: PMC3603452 DOI: 10.1098/rsob.120181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Of the 200+ serogroups of Vibrio cholerae, only O1 or O139 strains are reported to cause cholera, and mostly in endemic regions. Cholera outbreaks elsewhere are considered to be via importation of pathogenic strains. Using established animal models, we show that diverse V. cholerae strains indigenous to a non-endemic environment (Sydney, Australia), including non-O1/O139 serogroup strains, are able to both colonize the intestine and result in fluid accumulation despite lacking virulence factors believed to be important. Most strains lacked the type three secretion system considered a mediator of diarrhoea in non-O1/O13 V. cholerae. Multi-locus sequence typing (MLST) showed that the Sydney isolates did not form a single clade and were distinct from O1/O139 toxigenic strains. There was no correlation between genetic relatedness and the profile of virulence-associated factors. Current analyses of diseases mediated by V. cholerae focus on endemic regions, with only those strains that possess particular virulence factors considered pathogenic. Our data suggest that factors other than those previously well described are of potential importance in influencing disease outbreaks.
Collapse
Affiliation(s)
- Atiqul Islam
- The Ithree Institute, University of Technology, Broadway, Sydney, New South Wales 2007, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The flow of genes between different species represents a form of genetic variation whose implications have not been fully appreciated. Here I examine some key findings on the extent of horizontal gene transfer (HGT) revealed by comparative genome analysis and their theoretical implications. In theoretical terms, HGT affects ideas pertaining to the tree of life, the notion of a last universal common ancestor, and the biological unities, as well as the rules of taxonomic nomenclature. This review discusses the emergence of the eukaryotic cell and the occurrence of HGT among metazoan phyla involving both transposable elements and structural genes for normal housekeeping functions. I also discuss the bacterial pangenome, which provides an important case study on the permeability of species boundaries. An interesting observation about bdelloid rotifers and their reversion to asexual reproduction as it pertains to HGT is included.
Collapse
Affiliation(s)
- Michael Syvanen
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616, USA.
| |
Collapse
|
33
|
Garza DR, Thompson CC, Loureiro ECB, Dutilh BE, Inada DT, Junior ECS, Cardoso JF, Nunes MRT, de Lima CPS, Silvestre RVD, Nunes KNB, Santos ECO, Edwards RA, Vicente ACP, de Sá Morais LLC. Genome-wide study of the defective sucrose fermenter strain of Vibrio cholerae from the Latin American cholera epidemic. PLoS One 2012; 7:e37283. [PMID: 22662140 PMCID: PMC3360680 DOI: 10.1371/journal.pone.0037283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/17/2012] [Indexed: 12/31/2022] Open
Abstract
The 7th cholera pandemic reached Latin America in 1991, spreading from Peru to virtually all Latin American countries. During the late epidemic period, a strain that failed to ferment sucrose dominated cholera outbreaks in the Northern Brazilian Amazon region. In order to understand the genomic characteristics and the determinants of this altered sucrose fermenting phenotype, the genome of the strain IEC224 was sequenced. This paper reports a broad genomic study of this strain, showing its correlation with the major epidemic lineage. The potentially mobile genomic regions are shown to possess GC content deviation, and harbor the main V. cholera virulence genes. A novel bioinformatic approach was applied in order to identify the putative functions of hypothetical proteins, and was compared with the automatic annotation by RAST. The genome of a large bacteriophage was found to be integrated to the IEC224's alanine aminopeptidase gene. The presence of this phage is shown to be a common characteristic of the El Tor strains from the Latin American epidemic, as well as its putative ancestor from Angola. The defective sucrose fermenting phenotype is shown to be due to a single nucleotide insertion in the V. cholerae sucrose-specific transportation gene. This frame-shift mutation truncated a membrane protein, altering its structural pore-like conformation. Further, the identification of a common bacteriophage reinforces both the monophyletic and African-Origin hypotheses for the main causative agent of the 1991 Latin America cholera epidemics.
Collapse
Affiliation(s)
- Daniel Rios Garza
- Laboratory of Environmental Microbiology, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Cristiane C. Thompson
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | | | - Bas E. Dutilh
- Centre for Molecular and Biomolecular Informatics, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
- Centre for Molecular Life Sciences, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Computer Science, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Davi Toshio Inada
- Center for Technological Innovation, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | | | | | | | | | | | | | | | - Robert A. Edwards
- Department of Computer Science, San Diego State University, San Diego, California, United States of America
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Ana Carolina P. Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | | |
Collapse
|
34
|
Reimer AR, Van Domselaar G, Stroika S, Walker M, Kent H, Tarr C, Talkington D, Rowe L, Olsen-Rasmussen M, Frace M, Sammons S, Dahourou GA, Boncy J, Smith AM, Mabon P, Petkau A, Graham M, Gilmour MW, Gerner-Smidt P. Comparative genomics of Vibrio cholerae from Haiti, Asia, and Africa. Emerg Infect Dis 2012; 17:2113-21. [PMID: 22099115 PMCID: PMC3310578 DOI: 10.3201/eid1711.110794] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A strain from Haiti shares genetic ancestry with those from Asia and Africa. Cholera was absent from the island of Hispaniola at least a century before an outbreak that began in Haiti in the fall of 2010. Pulsed-field gel electrophoresis (PFGE) analysis of clinical isolates from the Haiti outbreak and recent global travelers returning to the United States showed indistinguishable PFGE fingerprints. To better explore the genetic ancestry of the Haiti outbreak strain, we acquired 23 whole-genome Vibriocholerae sequences: 9 isolates obtained in Haiti or the Dominican Republic, 12 PFGE pattern-matched isolates linked to Asia or Africa, and 2 nonmatched outliers from the Western Hemisphere. Phylogenies for whole-genome sequences and core genome single-nucleotide polymorphisms showed that the Haiti outbreak strain is genetically related to strains originating in India and Cameroon. However, because no identical genetic match was found among sequenced contemporary isolates, a definitive genetic origin for the outbreak in Haiti remains speculative.
Collapse
|
35
|
Taviani E, Spagnoletti M, Ceccarelli D, Haley BJ, Hasan NA, Chen A, Colombo MM, Huq A, Colwell RR. Genomic analysis of ICEVchBan8: An atypical genetic element in Vibrio cholerae. FEBS Lett 2012; 586:1617-21. [PMID: 22673571 DOI: 10.1016/j.febslet.2012.03.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/28/2012] [Accepted: 03/30/2012] [Indexed: 11/20/2022]
Abstract
Genomic islands (GIs) and integrative conjugative elements (ICEs) are major players in bacterial evolution since they encode genes involved in adaptive functions of medical or environmental importance. Here we performed the genomic analysis of ICEVchBan8, an unusual ICE found in the genome of a clinical non-toxigenic Vibrio cholerae O37 isolate. ICEVchBan8 shares most of its genetic structure with SXT/R391 ICEs. However, this ICE codes for a different integration/excision module is located at a different insertion site, and part of its genetic cargo shows homology to other pathogenicity islands of V. cholerae.
Collapse
Affiliation(s)
- Elisa Taviani
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Waturangi DE, Pradita N, Linarta J, Banerjee S. Prevalence and molecular characterization of Vibrio cholerae from ice and beverages sold in Jakarta, Indonesia, using most probable number and multiplex PCR. J Food Prot 2012; 75:651-9. [PMID: 22488052 DOI: 10.4315/0362-028x.jfp-11-504] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vibrio cholerae is well recognized as the causative agent of cholera, an acute intestinal infection characterized by watery diarrhea that may lead to dehydration and death in some cases. V. cholerae is a natural inhabitant of the aquatic environment in the tropical regions. Jakarta has the highest percentage of individuals affected by sporadic diarrheal illness compared with other areas in Indonesia. Inadequate safety measures for drinking water supplies, improper sanitation, and poor hygiene can increase the risk of cholera outbreaks. Few studies have been conducted on the prevalence of these bacteria in ice and beverages that are popularly sold and consumed in Jakarta. In this study, we detected and quantified V. cholerae from ice and beverages collected from several areas in five regions of Jakarta. Levels of V. cholerae in both ice and beverages were determined with the three-tube most-probable-number (MPN) method and ranged from < 0.3 to > 110 MPN/ml. The presence of regulatory and virulence gene sequences was determined by using uniplex and multiplex PCR assays. Of 110 samples tested, 33 (30%) were positive for V. cholerae; 21 (64%) were ice samples and the remaining 12 (36%) were beverages. A total of 88 V. cholerae strains were isolated, based on the presence of the toxR gene sequence identified by PCR. Other genetic markers, such as hlyA (59%), ompU (16%), and ctxA (19%), also were found during the search for potential pathogenic strains. The detection and isolation of potentially harmful V. cholerae from ice and beverages in Jakarta indicate that these products pose a health risk from choleragenic vibrios, particularly because of the emergence of classical biotypes of V. cholerae O1 and potentially harmful non-O1 serovars of this species.
Collapse
Affiliation(s)
- Diana E Waturangi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta 12930, Indonesia.
| | | | | | | |
Collapse
|
37
|
Rahmani F, Fooladi A, Marashi S, Nourani M. Drug resistance in Vibrio cholerae strains isolated from clinical specimens. Acta Microbiol Immunol Hung 2012; 59:77-84. [PMID: 22510289 DOI: 10.1556/amicr.59.2012.1.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cholera is a serious epidemic and endemic disease caused by the Gram-negative bacterium Vibrio cholerae. SXT is an integrative conjugation element (ICE) that was isolated from a V. cholerae; it encodes resistance to the antibiotics chloramphenicol, streptomycin and sulfamethoxazole/trimethoprim. One hundred seven V. cholerae O1 strains were collected from cholera patients in Iran from 2005 to 2007 in order to study the presence of SXT constin and antibiotic resistance.The study examined 107 Vibrio cholerae strains isolated from cholera prevalent in some Iranian provinces. Bacterial isolation and identification were carried out according to standard bacteriological methods. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) to four antibiotics (chloramphenicol, streptomycin, sulfamethoxazole, and trimethoprim) were determined by broth microdilution method. PCR was employed to evaluate the presence of established antibiotic resistance genes and SXT constin using specific primer sets.The resistance of the clinical isolates to sulfamethoxazole, trimethoprime, chloramphenicol, and streptomycin was 97%, 99%, 99%, and 90%, respectively. The data obtained by PCR assay showed that the genes sulII, dfrA1, floR, strB, and sxt element were present in 95.3%, 95.3%, 81.3%, 95.3%, and 95.3% of the V. cholerae isolates.The Vibrio strains showed the typical multidrug-resistance phenotype of an SXT constin. They were resistant to sulfamethoxazole, trimethoprime, chloramphenicol, and streptomycin. The detected antibiotic resistance genes included dfrA for trimethoprim and floR, strB, sulII and int, respectively, for chloramphenicol, streptomycin, sulfamethoxazole, as well as the SXT element.
Collapse
Affiliation(s)
- Farideh Rahmani
- 1 Islamic Azad University Department of Microbiology, Zanjan Branch Zanjan Iran
| | - Abbas Fooladi
- 2 Baqiyatallah University of Medical Sciences Applied Microbiology Research Center Tehran Iran
| | - Seyed Marashi
- 3 Babol University of Medical Sciences Department of Microbiology and Immunology Babol Iran
| | - Mohammad Nourani
- 4 Baqiyatallah University of Medical Sciences Chemical Injury Research Center Tehran Iran
| |
Collapse
|
38
|
Spagnoletti M, Ceccarelli D, Colombo MM. Rapid detection by multiplex PCR of Genomic Islands, prophages and Integrative Conjugative Elements in V. cholerae 7th pandemic variants. J Microbiol Methods 2012; 88:98-102. [DOI: 10.1016/j.mimet.2011.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 11/16/2022]
|
39
|
Gurbanov S, Akhmadov R, Shamkhalova G, Akhmadova S, Haley BJ, Colwell RR, Huq A. Occurrence of Vibrio cholerae in municipal and natural waters and incidence of cholera in Azerbaijan. ECOHEALTH 2011; 8:468-477. [PMID: 22451165 DOI: 10.1007/s10393-012-0756-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 05/31/2023]
Abstract
Cholera, a waterborne disease caused by Vibrio cholerae, is an autochthonous member of the aquatic environment and predominantly reported from developing countries. Technical reports and proceedings were reviewed to determine the relationship between occurrence of V. cholerae in natural waters, including sources of municipal water, and cases of cholera in Azerbaijan. Water samples collected from different environmental sources from 1970 to 1998 were tested for V. cholerae and 0.73% (864/117,893) were positive. The results showed that in April of each year, when the air temperature rose by approximately 5°C, V. cholerae could be isolated. With each increase in air temperature, 6-8 weeks after, impact on cases of cholera was recorded. The incidence of cholera peaked when the air temperature reached >25°C during the month of September. It is concluded that a distinct seasonality in cholera incidence exists in Azerbaijan, with increased occurrence during warmer months.
Collapse
|
40
|
Abstract
Next-generation sequencing has ushered in a new era of microbial genomics, enabling the detailed historical and geographical tracing of bacteria. This is helping to shape our understanding of bacterial evolution.
Collapse
Affiliation(s)
- Julian Parkhill
- The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | |
Collapse
|
41
|
Zaneveld JRR, Parfrey LW, Van Treuren W, Lozupone C, Clemente JC, Knights D, Stombaugh J, Kuczynski J, Knight R. Combined phylogenetic and genomic approaches for the high-throughput study of microbial habitat adaptation. Trends Microbiol 2011; 19:472-82. [PMID: 21872475 PMCID: PMC3184378 DOI: 10.1016/j.tim.2011.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 01/21/2023]
Abstract
High-throughput sequencing technologies provide new opportunities to address longstanding questions about habitat adaptation in microbial organisms. How have microbes managed to adapt to such a wide range of environments, and what genomic features allow for such adaptation? We review recent large-scale studies of habitat adaptation, with emphasis on those that utilize phylogenetic techniques. On the basis of current trends, we summarize methodological challenges faced by investigators, and the tools, techniques and analytical approaches available to overcome them. Phylogenetic approaches and detailed information about each environmental sample will be crucial as the ability to collect genome sequences continues to expand.
Collapse
Affiliation(s)
- Jesse R R Zaneveld
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ceccarelli D, Spagnoletti M, Bacciu D, Cappuccinelli P, Colombo MM. New V. cholerae atypical El Tor variant emerged during the 2006 epidemic outbreak in Angola. BMC Microbiol 2011; 11:130. [PMID: 21668969 PMCID: PMC3131240 DOI: 10.1186/1471-2180-11-130] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND V. cholerae is the etiological agent of cholera, a major public health concern in most developing countries. Virulence of V. cholerae relies on the powerful cholera toxin, encoded by the CTX prophage. The emergence of new pathogenic variants in the recent years has been mostly associated with new CTX prophage rearrangements. RESULTS In this retrospective study, we show that the epidemic V. cholerae O1 El Tor strain responsible for the 2006 outbreak in Angola is clonally and genetically different from El Tor strains circulating in the 1990s in the same area. Strains from 2006 carry ICEVchAng3 of the SXT/R391 family. This ICE is associated with a narrower multidrug resistance profile compared to the one conferred by plasmid p3iANG to strains of the 1990s. The CTX prophage carried by 2006 El Tor strains is characterized by rstR(ET) and ctxB(Cla) alleles organized in a RS1-RS2-Core array on chromosome I. Interestingly, the newly emerging atypical strain belongs to a clade previously known to comprise only clinical isolates from the Indian subcontinent that also contain the same ICE of the SXT/R391 family. CONCLUSIONS Our findings remark the appearance of a novel V. cholerae epidemic variant in Africa with a new CTXΦ arrangement previously described only in the Indian Subcontinent.
Collapse
Affiliation(s)
- Daniela Ceccarelli
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Rome 00185, Italy.
| | | | | | | | | |
Collapse
|