1
|
Dzyhovskyi V, Stokowa-Sołtys K. Divalent metal ion binding to Staphylococcus aureus FeoB transporter regions. J Inorg Biochem 2023; 244:112203. [PMID: 37018851 DOI: 10.1016/j.jinorgbio.2023.112203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Transition metal ions such as iron, copper, zinc, manganese or, nickel are essential in many biological processes. Bacteria have developed a number of mechanisms for their acquisition and transport, in which numerous of proteins and smaller molecules are involved. One of the representatives of these proteins is FeoB, which belongs to the Feo (ferrous ion transporter) family. Although ferrous iron transport system is widespread among microorganisms, it is still poorly described in Gram-positive pathogens, such as Staphylococcus aureus. In this work, combined potentiometric and spectroscopic studies (UV-Vis, CD and EPR) were carried out to determine Cu(II), Fe(II) and Zn(II) binding modes to FeoB fragments (Ac-IDYHKLMK-NH2, Ac-ETSHDKY-NH2, and Ac-SFLHMVGS-NH2). For the first time iron(II) complexes with peptides were characterized by potentiometry. All studied ligands are able to form a variety of thermodynamically stable complexes with transition metal ions. It was concluded that among the studied systems, the most effective metal ion binding is observed for the Ac-ETSHDKY-NH2 peptide. Moreover, comparing preferences of all ligands towards different metal ions, copper(II) complexes are the most stable ones at physiological pH.
Collapse
|
2
|
Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol 2022; 20:657-670. [PMID: 35641670 PMCID: PMC9153222 DOI: 10.1038/s41579-022-00745-6] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Trace metals are essential micronutrients required for survival across all kingdoms of life. From bacteria to animals, metals have critical roles as both structural and catalytic cofactors for an estimated third of the proteome, representing a major contributor to the maintenance of cellular homeostasis. The reactivity of metal ions engenders them with the ability to promote enzyme catalysis and stabilize reaction intermediates. However, these properties render metals toxic at high concentrations and, therefore, metal levels must be tightly regulated. Having evolved in close association with bacteria, vertebrate hosts have developed numerous strategies of metal limitation and intoxication that prevent bacterial proliferation, a process termed nutritional immunity. In turn, bacterial pathogens have evolved adaptive mechanisms to survive in conditions of metal depletion or excess. In this Review, we discuss mechanisms by which nutrient metals shape the interactions between bacterial pathogens and animal hosts. We explore the cell-specific and tissue-specific roles of distinct trace metals in shaping bacterial infections, as well as implications for future research and new therapeutic development.
Collapse
Affiliation(s)
- Caitlin C Murdoch
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
A Novel Zinc Exporter CtpG Enhances Resistance to Zinc Toxicity and Survival in Mycobacterium bovis. Microbiol Spectr 2022; 10:e0145621. [PMID: 35377187 PMCID: PMC9045314 DOI: 10.1128/spectrum.01456-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc is a microelement essential for the growth of almost all organisms, but it is toxic at high concentrations and represents an antimicrobial strategy for macrophages. Mycobacterium tuberculosis and Mycobacterium bovis are two well-known intracellular pathogens with strong environmental adaptability, including zinc toxicity. However, the signaling pathway and molecular mechanisms on sensing and resistance to zinc toxicity remains unclear in mycobacteria. Here, we first report that P1B-type ATPase CtpG acts as a zinc efflux transporter and characterize a novel CmtR-CtpG-Zn2+ regulatory pathway that enhances mycobacterial resistance to zinc toxicity. We found that zinc upregulates ctpG expression via transcription factor CmtR and stimulates the ATPase activity of CtpG. The APC residues in TM6 is essential for CtpG to export zinc and enhance M. bovis BCG resistance to zinc toxicity. During infection, CtpG inhibits zinc accumulation in the mycobacteria, and aids bacterial survival in THP-1 macrophage and mice with elevated inflammatory responses. Our findings revealed the existence of a novel regulatory pathway on mycobacteria responding to and adapting to host-mediated zinc toxicity. IMPORTANCE Tuberculosis is caused by the bacillus Mycobacterium tuberculosis and is one of the major sources of mortality. M. tuberculosis has developed unique mechanisms to adapt to host environments, including zinc deficiency and toxicity, during infection. However, the molecular mechanism by which mycobacteria promote detoxification of zinc, and the associated signaling pathways remains largely unclear. In this study, we first report that P1B-type ATPase CtpG acts as a zinc efflux transporter and characterize a novel CmtR-CtpG-Zn2+ regulatory pathway that enhances mycobacterial resistance to zinc toxicity in M. bovis. Our findings reveal the existence of a novel excess zinc-triggered signaling circuit, provide new insights into mycobacterial adaptation to the host environment during infection, and might be useful targets for the treatment of tuberculosis.
Collapse
|
4
|
Yang X, Liu H, Zhang Y, Shen X. Roles of Type VI Secretion System in Transport of Metal Ions. Front Microbiol 2021; 12:756136. [PMID: 34803980 PMCID: PMC8602904 DOI: 10.3389/fmicb.2021.756136] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
The type VI secretion system (T6SS) is a transmembrane protein nanomachine employed by many gram-negative bacteria to directly translocate effectors into adjacent cells or the extracellular milieu, showing multiple functions in both interbacterial competition and bacteria-host interactions. Metal ion transport is a newly discovered T6SS function. This review summarizes the identified T6SS functions and highlights the features of metal ion transport mediated by T6SS and discusses its regulation.
Collapse
Affiliation(s)
- Xiaobing Yang
- College of Applied Engineering, Henan University of Science and Technology (HAUST), Sanmenxia, China.,Medical College, Sanmenxia Vocational Technical School, Sanmenxia, China
| | - Hai Liu
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, China
| | - Yanxiong Zhang
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, China
| |
Collapse
|
5
|
Stokowa-Sołtys K, Wojtkowiak K, Jagiełło K. Fusobacterium nucleatum - Friend or foe? J Inorg Biochem 2021; 224:111586. [PMID: 34425476 DOI: 10.1016/j.jinorgbio.2021.111586] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Fusobacterium nucleatum (F. nucleatum) is one of the most abundant Gram-negative anaerobic bacteria, part of the gut, and oral commensal flora, generally found in human dental plaque. Its presence could be associated with various human diseases, including, e.g., periodontal, angina, lung and gynecological abscesses. This bacteria can enter the blood circulation as a result of periodontal infection. It was proven that F. nucleatum migrates from its primary site of colonization in the oral cavity to other parts of the body. It could cause numerous diseases, including cancers. On the other hand, it was shown that Fusobacterium produces significant amounts of butyric acid, which is a great source of energy for colonocytes (anti-inflammatory cells). Therefore, it is very interesting to get to know the two faces of F. nucleatum.
Collapse
Affiliation(s)
- Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Karolina Jagiełło
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
6
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
7
|
Thomas MD, Ewunkem AJ, Boyd S, Williams DK, Moore A, Rhinehardt KL, Van Beveren E, Yang B, Tapia A, Han J, Harrison SH, Graves JL. Too much of a good thing: Adaption to iron (II) intoxication in Escherichia coli. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:53-67. [PMID: 33717488 PMCID: PMC7937436 DOI: 10.1093/emph/eoaa051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022]
Abstract
Background There has been an increased usage of metallic antimicrobial materials to control pathogenic and multi-drug resistant bacteria. Yet, there is a corresponding need to know if this usage leads to genetic adaptations that could produce more harmful strains. Methodology Experimental evolution was used to adapt Escherichia coli K-12 MG1655 to excess iron (II) with subsequent genomic analysis. Phenotypic assays and gene expression studies were conducted to demonstrate pleiotropic effects associated with this adaptation and to elucidate potential cellular responses. Results After 200 days of adaptation, populations cultured in excess iron (II), showed a significant increase in 24-h optical densities compared to controls. Furthermore, these populations showed increased resistance toward other metals [iron (III) and gallium (III)] and to traditional antibiotics (bacitracin, rifampin, chloramphenicol and sulfanilamide). Genomic analysis identified selective sweeps in three genes; fecA, ptsP and ilvG unique to the iron (II) resistant populations, and gene expression studies demonstrated that their cellular response may be to downregulate genes involved in iron transport (cirA and fecA) while increasing the oxidative stress response (oxyR, soxS and soxR) prior to FeSO4 exposure. Conclusions and implications Together, this indicates that the selected populations can quickly adapt to stressful levels of iron (II). This study is unique in that it demonstrates that E. coli can adapt to environments that contain excess levels of an essential micronutrient while also demonstrating the genomic foundations of the response and the pleiotropic consequences. The fact that adaptation to excess iron also causes increases in general antibiotic resistance is a serious concern. Lay summary: The evolution of iron resistance in E. coli leads to multi-drug and general metal resistance through the acquisition of mutations in three genes (fecA, ptsP and ilvG) while also initiating cellular defenses as part of their normal growth process.
Collapse
Affiliation(s)
- Misty D Thomas
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Akamu J Ewunkem
- BEACON, Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Sada Boyd
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Danielle K Williams
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Adiya Moore
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Kristen L Rhinehardt
- Computational Data Science and Engineering, North Carolina Agricultural and Technical State University, 1601 E. Market Street, Greensboro, NC 27411, USA
| | - Emma Van Beveren
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Bobi Yang
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Anna Tapia
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Scott H Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Joseph L Graves
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| |
Collapse
|
8
|
A High Manganese-Tolerant Pseudomonas sp. Strain Isolated from Metallurgical Waste Heap Can Be a Tool for Enhancing Manganese Removal from Contaminated Soil. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Manganese (Mn) is widely used in industry. However, its extensive applications have generated a great amount of manganese waste, which has become an ecological problem and has led to a decrease in natural resources. The use of microorganisms capable of accumulating Mn ions from contaminated ecosystems offers a potential alternative for the removal and recovery of this metal. The main aim of this work was an investigation of removal potential of Mn from soil by isolated bacterial. For this purpose, eleven bacterial strains were isolated from the soil from metallurgical waste heap in Upper Silesia, Poland. Strain named 2De with the highest Mn removal potential was selected and characterized taking into account its ability for Mn sorption and bioaccumulation from soil and medium containing manganese dioxide. Moreover, the protein profile of 2De strain before and after exposition to Mn was analyzed using SDS/PAGE technique. The 2De strain was identified as a Pseudomonas sp. The results revealed that this strain has an ability to grow at high Mn concentration and possesses an enhanced ability to remove it from the solution enriched with the soil or manganese dioxide via a biosorption mechanism. Moreover, changes in cellular protein expression of the isolated strain were observed. This study demonstrated that autochthonous 2De strain can be an effective tool to remove and recover Mn from contaminated soil.
Collapse
|
9
|
David SC, Laan Z, Minhas V, Chen AY, Davies J, Hirst TR, McColl SR, Alsharifi M, Paton JC. Enhanced safety and immunogenicity of a pneumococcal surface antigen A mutant whole-cell inactivated pneumococcal vaccine. Immunol Cell Biol 2019; 97:726-739. [PMID: 31050022 DOI: 10.1111/imcb.12257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/21/2019] [Accepted: 04/29/2019] [Indexed: 01/14/2023]
Abstract
Existing capsular polysaccharide-based vaccines against pneumococcal disease are highly effective against vaccine-included serotypes, but they are unable to combat serotype replacement. We have developed a novel pneumococcal vaccine that confers serotype-independent protection, and could therefore constitute a "universal" vaccine formulation. This preparation is comprised of whole un-encapsulated pneumococci inactivated with gamma irradiation (γ-PN), and we have previously reported induction of cross-reactive immunity after nonadjuvanted intranasal vaccination. To further enhance vaccine immunogenicity and safety, we modified the pneumococcal vaccine strain to induce a stressed state during growth. Specifically, the substrate binding component of the psaBCA operon for manganese import was mutated to create a pneumococcal surface antigen A (psaA) defective vaccine strain. psaA mutation severely attenuated the growth of the vaccine strain in vitro without negatively affecting pneumococcal morphology, thereby enhancing vaccine safety. In addition, antibodies raised against vaccine preparations based on the modified strain [γ-PN(ΔPsaA)] showed more diversified reactivity to wild-type pneumococcal challenge strains compared to those induced by the original formulation. The modified vaccine also induced comparable protective TH 17 responses in the lung, and conferred greater protection against lethal heterologous pneumococcal challenge. Overall, the current study demonstrates successful refinement of a serotype-independent pneumococcal vaccine candidate to enhance safety and immunogenicity.
Collapse
Affiliation(s)
- Shannon C David
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Zoe Laan
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Vikrant Minhas
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Austen Y Chen
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Timothy R Hirst
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.,GPN Vaccines Pty Ltd, Yarralumla, ACT, Australia.,Gamma Vaccines Pty Ltd, Yarralumla, ACT, Australia
| | - Shaun R McColl
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.,GPN Vaccines Pty Ltd, Yarralumla, ACT, Australia.,Gamma Vaccines Pty Ltd, Yarralumla, ACT, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.,GPN Vaccines Pty Ltd, Yarralumla, ACT, Australia
| |
Collapse
|
10
|
Abstract
The abundance of oxidants and reductants must be balanced for an organism to thrive. Bacteria have evolved methods to prevent redox imbalances and to mitigate their deleterious consequences through the expression of detoxification enzymes, antioxidants, and systems to repair or degrade damaged proteins and DNA. Regulating these processes in response to redox changes requires sophisticated surveillance strategies ranging from metal chelation to direct sensing of toxic reactive oxygen species. In the case of bacterial pathogens, stress that threatens to disrupt redox homeostasis can derive from endogenous sources (produced by the bacteria) or exogenous sources (produced by the host). This minireview summarizes the sources of redox stress encountered during infection, the mechanisms by which bacterial pathogens diminish the damaging effects of redox stress, and the clever ways some organisms have evolved to thrive in the face of redox challenges during infection.
Collapse
|
11
|
Dos Santos PT, Menendez-Gil P, Sabharwal D, Christensen JH, Brunhede MZ, Lillebæk EMS, Kallipolitis BH. The Small Regulatory RNAs LhrC1-5 Contribute to the Response of Listeria monocytogenes to Heme Toxicity. Front Microbiol 2018; 9:599. [PMID: 29636750 PMCID: PMC5880928 DOI: 10.3389/fmicb.2018.00599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/15/2018] [Indexed: 11/29/2022] Open
Abstract
The LhrC family of small regulatory RNAs (sRNAs) is known to be induced when the foodborne pathogen Listeria monocytogenes is exposed to infection-relevant conditions, such as human blood. Here we demonstrate that excess heme, the core component of hemoglobin in blood, leads to a strong induction of the LhrC family members LhrC1–5. The heme-dependent activation of lhrC1–5 relies on the response regulator LisR, which is known to play a role in virulence and stress tolerance. Importantly, our studies revealed that LhrC1–5 and LisR contribute to the adaptation of L. monocytogenes to excess heme. Regarding the regulatory function of the sRNAs, we demonstrate that LhrC1–5 act to down-regulate the expression of known LhrC target genes under heme-rich conditions: oppA, tcsA, and lapB, encoding surface exposed proteins with virulence functions. These genes were originally identified as targets for LhrC-mediated control under cell envelope stress conditions, suggesting a link between the response to heme toxicity and cell envelope stress in L. monocytogenes. We also investigated the role of LhrC1–5 in controlling the expression of genes involved in heme uptake and utilization: lmo2186 and lmo2185, encoding the heme-binding proteins Hbp1 and Hbp2, respectively, and lmo0484, encoding a heme oxygenase-like protein. Using in vitro binding assays, we demonstrated that the LhrC family member LhrC4 interacts with mRNAs encoded from lmo2186, lmo2185, and lmo0484. For lmo0484, we furthermore show that LhrC4 uses a CU-rich loop for basepairing to the AG-rich Shine–Dalgarno region of the mRNA. The presence of a link between the response to heme toxicity and cell envelope stress was further underlined by the observation that LhrC1–5 down-regulate the expression of lmo0484 in response to the cell wall-acting antibiotic cefuroxime. Collectively, this study suggests a role for the LisR-regulated sRNAs LhrC1–5 in a coordinated response to excess heme and cell envelope stress in L. monocytogenes.
Collapse
Affiliation(s)
- Patrícia T Dos Santos
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pilar Menendez-Gil
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Dharmesh Sabharwal
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jens-Henrik Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Maja Z Brunhede
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Eva M S Lillebæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Fojcik C, Arnoux P, Ouerdane L, Aigle M, Alfonsi L, Borezée-Durant E. Independent and cooperative regulation of staphylopine biosynthesis and trafficking by Fur and Zur. Mol Microbiol 2018; 108:159-177. [DOI: 10.1111/mmi.13927] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Clémentine Fojcik
- Micalis Institute, INRA, AgroParisTech; University Paris-Saclay; 78350 Jouy-en-Josas France
| | - Pascal Arnoux
- CEA, DRF, BIAM, Laboratoire de Bioénergétique Cellulaire; Saint-Paul-lez-Durance France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales; Saint-Paul-lez-Durance France
- Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales; Saint Paul-Lez-Durance 13108 France
| | - Laurent Ouerdane
- CNRS-UPPA, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, Hélioparc, 2; Av. Angot 64053 Pau France
| | - Marina Aigle
- Micalis Institute, INRA, AgroParisTech; University Paris-Saclay; 78350 Jouy-en-Josas France
| | - Laura Alfonsi
- Micalis Institute, INRA, AgroParisTech; University Paris-Saclay; 78350 Jouy-en-Josas France
| | - Elise Borezée-Durant
- Micalis Institute, INRA, AgroParisTech; University Paris-Saclay; 78350 Jouy-en-Josas France
| |
Collapse
|
13
|
Estrela C, Costa E Silva R, Urban RC, Gonçalves PJ, Silva JA, Estrela CRA, Pecora JD, Peters OA. Demetallization of Enterococcus faecalis biofilm: a preliminary study. J Appl Oral Sci 2018; 26:e20170374. [PMID: 29451651 PMCID: PMC5815357 DOI: 10.1590/1678-7757-2017-0374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/13/2017] [Indexed: 11/22/2022] Open
Abstract
Objectives To determine the concentration of calcium, iron, manganese and zinc ions after the application of chelator to Enterococcus faecalis biofilms. Material and Methods Fifty bovine maxillary central incisors were prepared and inoculated with E. faecalis for 60 days. The following were used as irrigation solutions: 17% EDTA (pH 3, 7 and 10), 2.5% sodium hypochlorite (NaOCl) combined with 17% EDTA (pH 3, 7 and 10), distilled water (pH 3, 7 and 10), and 2.5% NaOCl. Each solution was kept in the root canal for five minutes. Fifteen uncontaminated root canals were irrigated with 17% EDTA (pH 3, 7 and 10). Six teeth were used as bacterial control. The number of calcium, iron, manganese and zinc ions was determined using flame atomic absorption spectrometry. Mean ± standard deviation (SD) values were used for descriptive statistics. Results Calcium chelation using 17% EDTA at pH 7 was higher than at pH 3 and 10, regardless of whether bacterial biofilm was present. The highest concentration of iron occurred at pH 3 in the presence of bacterial biofilm. The highest concentration of manganese found was 2.5% NaOCl and 17% EDTA at pH 7 in the presence of bacterial biofilm. Zinc levels were not detectable. Conclusions The pH of chelating agents affected the removal of calcium, iron, and manganese ions. The concentration of iron ions in root canals with bacterial biofilm was higher after the use of 17% EDTA at pH 3 than after the use of the other solutions at all pH levels.
Collapse
Affiliation(s)
- Carlos Estrela
- Departamento de Ciências Estomatológicas, Faculdade de Odontologia, Universidade Federal de Goiás, Goiânia, Goiás, Brasil
| | | | - Roberta Cerasi Urban
- Instituto de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, Brasil
| | | | - Júlio A Silva
- Departamento de Ciências Estomatológicas, Faculdade de Odontologia, Universidade Federal de Goiás, Goiânia, Goiás, Brasil
| | - Cyntia R A Estrela
- Departamento de Ciências Estomatológicas, Faculdade de Odontologia, Universidade Federal de Goiás, Goiânia, Goiás, Brasil
| | - Jesus Djalma Pecora
- Departamento de Endodontia, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Ove A Peters
- Department of Endodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
| |
Collapse
|
14
|
Glauninger H, Zhang Y, Higgins KA, Jacobs AD, Martin JE, Fu Y, Coyne Rd HJ, Bruce KE, Maroney MJ, Clemmer DE, Capdevila DA, Giedroc DP. Metal-dependent allosteric activation and inhibition on the same molecular scaffold: the copper sensor CopY from Streptococcus pneumoniae. Chem Sci 2018; 9:105-118. [PMID: 29399317 PMCID: PMC5772342 DOI: 10.1039/c7sc04396a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/08/2017] [Indexed: 11/21/2022] Open
Abstract
Resistance to copper (Cu) toxicity in the respiratory pathogen Streptococcus pneumoniae is regulated by the Cu-specific metallosensor CopY. CopY is structurally related to the antibiotic-resistance regulatory proteins MecI and BlaI from Staphylococcus aureus, but is otherwise poorly characterized. Here we employ a multi-pronged experimental strategy to define the Spn CopY coordination chemistry and the unique mechanism of allosteric activation by Zn(ii) and allosteric inhibition by Cu(i) of cop promoter DNA binding. We show that Zn(ii) is coordinated by a subunit-bridging 3S 1H2O complex formed by the same residues that coordinate Cu(i), as determined by X-ray absorption spectroscopy and ratiometric pulsed alkylation-mass spectrometry (rPA-MS). Apo- and Zn-bound CopY are homodimers by small angle X-ray scattering (SAXS); however, Zn stabilizes the dimer, narrows the conformational ensemble of the apo-state as revealed by ion mobility-mass spectroscopy (IM-MS), and activates DNA binding in vitro and in cells. In contrast, Cu(i) employs the same Cys pair to form a subunit-bridging, kinetically stable, multi-metallic Cu·S cluster (KCu ≈ 1016 M-1) that induces oligomerization beyond the dimer as revealed by SAXS, rPA-MS and NMR spectroscopy, leading to inhibition of DNA binding. These studies suggest that CopY employs conformational selection to drive Zn-activation of DNA binding, and a novel Cu(i)-mediated assembly mechanism that dissociates CopY from the DNA via ligand exchange-catalyzed metal substitution, leading to expression of Cu resistance genes. Mechanistic parallels to antibiotic resistance repressors MecI and BlaI are discussed.
Collapse
Affiliation(s)
- Hendrik Glauninger
- Department of Chemistry , Indiana University , Bloomington , IN 47405-7102 , USA . ; ; Tel: +1-812-856-3178 ; Tel: +1-812-856-6398
| | - Yifan Zhang
- Department of Chemistry , Indiana University , Bloomington , IN 47405-7102 , USA . ; ; Tel: +1-812-856-3178 ; Tel: +1-812-856-6398
- Department of Molecular and Cellular Biochemistry , Indiana University , Bloomington , IN 47405 , USA
| | - Khadine A Higgins
- Department of Chemistry , Indiana University , Bloomington , IN 47405-7102 , USA . ; ; Tel: +1-812-856-3178 ; Tel: +1-812-856-6398
- Department of Chemistry , Salve Regina University , Newport , RI 02840 , USA
| | - Alexander D Jacobs
- Department of Chemistry , Indiana University , Bloomington , IN 47405-7102 , USA . ; ; Tel: +1-812-856-3178 ; Tel: +1-812-856-6398
| | - Julia E Martin
- Department of Chemistry , Indiana University , Bloomington , IN 47405-7102 , USA . ; ; Tel: +1-812-856-3178 ; Tel: +1-812-856-6398
| | - Yue Fu
- Department of Chemistry , Indiana University , Bloomington , IN 47405-7102 , USA . ; ; Tel: +1-812-856-3178 ; Tel: +1-812-856-6398
- Department of Molecular and Cellular Biochemistry , Indiana University , Bloomington , IN 47405 , USA
| | - H Jerome Coyne Rd
- Department of Chemistry , Indiana University , Bloomington , IN 47405-7102 , USA . ; ; Tel: +1-812-856-3178 ; Tel: +1-812-856-6398
| | - Kevin E Bruce
- Department of Biology , Indiana University , Bloomington , IN 47405 , USA
| | - Michael J Maroney
- Department of Chemistry , University of Massachusetts , Amherst , MA 01003 , USA
| | - David E Clemmer
- Department of Chemistry , Indiana University , Bloomington , IN 47405-7102 , USA . ; ; Tel: +1-812-856-3178 ; Tel: +1-812-856-6398
| | - Daiana A Capdevila
- Department of Chemistry , Indiana University , Bloomington , IN 47405-7102 , USA . ; ; Tel: +1-812-856-3178 ; Tel: +1-812-856-6398
| | - David P Giedroc
- Department of Chemistry , Indiana University , Bloomington , IN 47405-7102 , USA . ; ; Tel: +1-812-856-3178 ; Tel: +1-812-856-6398
- Department of Molecular and Cellular Biochemistry , Indiana University , Bloomington , IN 47405 , USA
| |
Collapse
|
15
|
Manzoor I, Shafeeq S, Kuipers OP. Ni2+-Dependent and PsaR-Mediated Regulation of the Virulence Genes pcpA, psaBCA, and prtA in Streptococcus pneumoniae. PLoS One 2015; 10:e0142839. [PMID: 26562538 PMCID: PMC4643063 DOI: 10.1371/journal.pone.0142839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022] Open
Abstract
Previous studies have shown that the transcriptional regulator PsaR regulates the expression of the PsaR regulon consisting of genes encoding choline binding protein (PcpA), the extracellular serine protease (PrtA), and the Mn2+-uptake system (PsaBCA), in the presence of manganese (Mn2+), zinc (Zn2+), and cobalt (Co2+). In this study, we explore the Ni2+-dependent regulation of the PsaR regulon. We have demonstrated by qRT-PCR analysis, metal accumulation assays, β-galactosidase assays, and electrophoretic mobility shift assays that an elevated concentration of Ni2+ leads to strong induction of the PsaR regulon. Our ICP-MS data show that the Ni2+-dependent expression of the PsaR regulon is directly linked to high, cell-associated, concentration of Ni2+, which reduces the cell-associated concentration of Mn2+. In vitro studies with the purified PsaR protein showed that Ni2+ diminishes the Mn2+-dependent interaction of PsaR to the promoter regions of its target genes, confirming an opposite effect of Mn2+ and Ni2+ in the regulation of the PsaR regulon. Additionally, the Ni2+-dependent role of PsaR in the regulation of the PsaR regulon was studied by transcriptome analysis.
Collapse
Affiliation(s)
- Irfan Manzoor
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177, Stockholm, Sweden
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Singh K, Senadheera DB, Cvitkovitch DG. An intimate link: two-component signal transduction systems and metal transport systems in bacteria. Future Microbiol 2015; 9:1283-93. [PMID: 25437189 DOI: 10.2217/fmb.14.87] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteria have evolved various strategies to contend with high concentrations of environmental heavy metal ions for rapid, adaptive responses to maintain cell viability. Evidence gathered in the past two decades suggests that bacterial two-component signal transduction systems (TCSTSs) are intimately involved in monitoring cation accumulation, and can regulate the expression of related metabolic and virulence genes to elicit adaptive responses to changes in the concentration of these ions. Using examples garnered from recent studies, we summarize the cross-regulatory relationships between metal ions and TCSTSs. We present evidence of how bacterial TCSTSs modulate metal ion homeostasis and also how metal ions, in turn, function to control the activities of these signaling systems linked with bacterial survival and virulence.
Collapse
Affiliation(s)
- Kamna Singh
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
17
|
Das S, Pettersson BMF, Behra PRK, Ramesh M, Dasgupta S, Bhattacharya A, Kirsebom LA. Characterization of Three Mycobacterium spp. with Potential Use in Bioremediation by Genome Sequencing and Comparative Genomics. Genome Biol Evol 2015; 7:1871-86. [PMID: 26079817 PMCID: PMC4524478 DOI: 10.1093/gbe/evv111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We provide the genome sequences of the type strains of the polychlorophenol-degrading Mycobacterium chlorophenolicum (DSM43826), the degrader of chlorinated aliphatics Mycobacterium chubuense (DSM44219) and Mycobacterium obuense (DSM44075) that has been tested for use in cancer immunotherapy. The genome sizes of M. chlorophenolicum, M. chubuense, and M. obuense are 6.93, 5.95, and 5.58 Mb with GC-contents of 68.4%, 69.2%, and 67.9%, respectively. Comparative genomic analysis revealed that 3,254 genes are common and we predicted approximately 250 genes acquired through horizontal gene transfer from different sources including proteobacteria. The data also showed that the biodegrading Mycobacterium spp. NBB4, also referred to as M. chubuense NBB4, is distantly related to the M. chubuense type strain and should be considered as a separate species, we suggest it to be named Mycobacterium ethylenense NBB4. Among different categories we identified genes with potential roles in: biodegradation of aromatic compounds and copper homeostasis. These are the first nonpathogenic Mycobacterium spp. found harboring genes involved in copper homeostasis. These findings would therefore provide insight into the role of this group of Mycobacterium spp. in bioremediation as well as the evolution of copper homeostasis within the Mycobacterium genus.
Collapse
Affiliation(s)
- Sarbashis Das
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | | | | | - Malavika Ramesh
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| |
Collapse
|
18
|
Sachla AJ, Le Breton Y, Akhter F, McIver KS, Eichenbaum Z. The crimson conundrum: heme toxicity and tolerance in GAS. Front Cell Infect Microbiol 2014; 4:159. [PMID: 25414836 PMCID: PMC4220732 DOI: 10.3389/fcimb.2014.00159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/17/2014] [Indexed: 01/16/2023] Open
Abstract
The massive erythrocyte lysis caused by the Group A Streptococcus (GAS) suggests that the β-hemolytic pathogen is likely to encounter free heme during the course of infection. In this study, we investigated GAS mechanisms for heme sensing and tolerance. We compared the minimal inhibitory concentration of heme among several isolates and established that excess heme is bacteriostatic and exposure to sub-lethal concentrations of heme resulted in noticeable damage to membrane lipids and proteins. Pre-exposure of the bacteria to 0.1 μM heme shortened the extended lag period that is otherwise observed when naive cells are inoculated into heme-containing medium, implying that GAS is able to adapt. The global response to heme exposure was determined using microarray analysis revealing a significant transcriptome shift that included 79 up regulated and 84 down regulated genes. Among other changes, the induction of stress-related chaperones and proteases, including groEL/ES (8x), the stress regulators spxA2 (5x) and ctsR (3x), as well as redox active enzymes were prominent. The heme stimulon also encompassed a number of regulatory proteins and two-component systems that are important for virulence. A three-gene cluster that is homologous to the pefRCD system of the Group B Streptococcus was also induced by heme. PefR, a MarR-like regulator, specifically binds heme with stoichiometry of 1:2 and protoporphyrin IX (PPIX) with stoichiometry of 1:1, implicating it is one of the GAS mediators to heme response. In summary, here we provide evidence that heme induces a broad stress response in GAS, and that its success as a pathogen relies on mechanisms for heme sensing, detoxification, and repair.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Fahmina Akhter
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Zehava Eichenbaum
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| |
Collapse
|
19
|
Becker KW, Skaar EP. Metal limitation and toxicity at the interface between host and pathogen. FEMS Microbiol Rev 2014; 38:1235-49. [PMID: 25211180 DOI: 10.1111/1574-6976.12087] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 08/09/2014] [Accepted: 08/31/2014] [Indexed: 12/14/2022] Open
Abstract
Metals are required cofactors for numerous fundamental processes that are essential to both pathogen and host. They are coordinated in enzymes responsible for DNA replication and transcription, relief from oxidative stress, and cellular respiration. However, excess transition metals can be toxic due to their ability to cause spontaneous, redox cycling and disrupt normal metabolic processes. Vertebrates have evolved intricate mechanisms to limit the availability of some crucial metals while concurrently flooding sites of infection with antimicrobial concentrations of other metals. To compete for limited metal within the host while simultaneously preventing metal toxicity, pathogens have developed a series of metal regulatory, acquisition, and efflux systems. This review will cover the mechanisms by which pathogenic bacteria recognize and respond to host-induced metal scarcity and toxicity.
Collapse
Affiliation(s)
- Kyle W Becker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
20
|
Kashyap DR, Rompca A, Gaballa A, Helmann JD, Chan J, Chang CJ, Hozo I, Gupta D, Dziarski R. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress. PLoS Pathog 2014; 10:e1004280. [PMID: 25032698 PMCID: PMC4102600 DOI: 10.1371/journal.ppat.1004280] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
Mammalian Peptidoglycan Recognition Proteins (PGRPs) are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS), a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiotics. Here, using whole genome expression arrays, qRT-PCR, and biochemical tests we show that in both Escherichia coli and Bacillus subtilis PGRPs induce a transcriptomic signature characteristic of oxidative stress, as well as correlated biochemical changes. However, induction of ROS was required, but not sufficient for PGRP killing. PGRPs also induced depletion of intracellular thiols and increased cytosolic concentrations of zinc and copper, as evidenced by transcriptome changes and supported by direct measurements. Depletion of thiols and elevated concentrations of metals were also required, but by themselves not sufficient, for bacterial killing. Chemical treatment studies demonstrated that efficient bacterial killing can be recapitulated only by the simultaneous addition of agents leading to production of ROS, depletion of thiols, and elevation of intracellular metal concentrations. These results identify a novel mechanism of bacterial killing by innate immunity proteins, which depends on synergistic effect of oxidative, thiol, and metal stress and differs from bacterial killing by antibiotics. These results offer potential targets for developing new antibacterial agents that would kill antibiotic-resistant bacteria. Bacterial infections are still a major cause of morbidity and mortality because of increasing antibiotic resistance. New targets for developing new approaches to antibacterial therapy are needed, because discovering new or improving current antibiotics have become increasingly difficult. One such approach is developing new antibacterial agents based on the antibacterial mechanisms of bactericidal innate immunity proteins, such as human peptidoglycan recognition proteins (PGRPs). Thus, our aim was to determine how PGRPs kill bacteria. We previously proposed that PGRPs kill bacteria by inducing toxic oxygen by-products (“reactive oxygen species”, ROS) in bacteria. It was also previously proposed, but recently refuted, that bactericidal antibiotics kill bacteria by inducing ROS production in bacteria. These findings prompted us to evaluate in greater detail the mechanism of PGRP-induced bacterial killing, including the role of ROS in PGRP killing. We show here that PGRPs kill bacteria through synergistic induction of ROS, depletion of thiols, and increasing intracellular concentration of metals, which are all required, but individually not sufficient for bacterial killing. Our results reveal a novel bactericidal mechanism of innate immunity proteins, which differs from killing by antibiotics and offers alternative targets for developing new antibacterial therapies for antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Des Raj Kashyap
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Annemarie Rompca
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Jefferson Chan
- Departments of Chemistry and Molecular and Cell Biology and the Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Christopher J. Chang
- Departments of Chemistry and Molecular and Cell Biology and the Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Iztok Hozo
- Department of Mathematics, Indiana University Northwest, Gary, Indiana, United States of America
| | - Dipika Gupta
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Roman Dziarski
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
- * E-mail:
| |
Collapse
|
21
|
Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 2013; 3:90. [PMID: 24367764 PMCID: PMC3852070 DOI: 10.3389/fcimb.2013.00090] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/18/2013] [Indexed: 02/05/2023] Open
Abstract
For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect.
Collapse
Affiliation(s)
- Gaëlle Porcheron
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Amélie Garénaux
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Julie Proulx
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Mourad Sabri
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Charles M Dozois
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada ; Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| |
Collapse
|
22
|
Haemophilus responses to nutritional immunity: epigenetic and morphological contribution to biofilm architecture, invasion, persistence and disease severity. PLoS Pathog 2013; 9:e1003709. [PMID: 24130500 PMCID: PMC3795038 DOI: 10.1371/journal.ppat.1003709] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/30/2013] [Indexed: 12/18/2022] Open
Abstract
In an effort to suppress microbial outgrowth, the host sequesters essential nutrients in a process termed nutritional immunity. However, inflammatory responses to bacterial insult can restore nutritional resources. Given that nutrient availability modulates virulence factor production and biofilm formation by other bacterial species, we hypothesized that fluctuations in heme-iron availability, particularly at privileged sites, would similarly influence Haemophilus biofilm formation and pathogenesis. Thus, we cultured Haemophilus through sequential heme-iron deplete and heme-iron replete media to determine the effect of transient depletion of internal stores of heme-iron on multiple pathogenic phenotypes. We observed that prior heme-iron restriction potentiates biofilm changes for at least 72 hours that include increased peak height and architectural complexity as compared to biofilms initiated from heme-iron replete bacteria, suggesting a mechanism for epigenetic responses that participate in the changes observed. Additionally, in a co-infection model for human otitis media, heme-iron restricted Haemophilus, although accounting for only 10% of the inoculum (90% heme-iron replete), represented up to 99% of the organisms recovered at 4 days. These data indicate that fluctuations in heme-iron availability promote a survival advantage during disease. Filamentation mediated by a SulA-related ortholog was required for optimal biofilm peak height and persistence during experimental otitis media. Moreover, severity of disease in response to heme-iron restricted Haemophilus was reduced as evidenced by lack of mucosal destruction, decreased erythema, hemorrhagic foci and vasodilatation. Transient restriction of heme-iron also promoted productive invasion events leading to the development of intracellular bacterial communities. Taken together, these data suggest that nutritional immunity, may, in fact, foster long-term phenotypic changes that better equip bacteria for survival at infectious sites. Clinical management of upper and lower respiratory tract diseases caused by nontypeable Haemophilus influenzae (NTHI) is a significant socioeconomic burden. Therapies targeting the pathogenic lifestyle of NTHI remain non-existent due to a lack of understanding of host microenvironmental cues and bacterial responses that dictate NTHI persistence. Iron availability influences bacterial virulence traits and biofilm formation; yet, host sequestration of iron serves to restrict bacterial growth. We predicted that fluctuations in availability of iron-containing compounds, typically associated with infection, would impact NTHI pathogenesis. We demonstrated that transient restriction of heme-iron triggered an epigenetic developmental program that enhanced NTHI biofilm architecture, directly influenced by induced morphological changes in bacterial length. Heme-iron restricted bacteria were primed for survival in the mammalian middle ear, due in part to an observed reduction in host inflammation coinciding with a striking reduction in host mucosal epithelial damage, compared to that observed in response to heme-iron replete NTHI. Moreover, transiently restricted NTHI were more invasive of epithelial cells resulting in formation of intracellular bacterial communities. Our findings significantly advance our understanding of how host immune pressure and nutrient availability influence pathogenic behaviors that impact disease severity.
Collapse
|
23
|
Merchant AT, Spatafora GA. A role for the DtxR family of metalloregulators in gram-positive pathogenesis. Mol Oral Microbiol 2013; 29:1-10. [PMID: 24034418 DOI: 10.1111/omi.12039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2013] [Indexed: 11/28/2022]
Abstract
Given the central role of transition metal ions in a variety of biochemical processes, the colonization, survival, and proliferation of a bacterium within a host hinges upon its ability to overcome the metal ion deprivation that characterizes nutritional immunity. Metalloregulatory, or 'metal-sensing' proteins have evolved in bacteria to mediate metal ion homeostasis by activating or repressing the expression of genes encoding metal ion transport systems upon binding their cognate metal ion. Yet increasing evidence in the literature supports an additional role for these metalloregulatory proteins in pathogenesis. Herein, we survey studies on the DtxR family of metalloregulators, namely DtxR (Cornyebacterium diphtheriae), SloR (Streptococcus mutans), MtsR (Streptococcus pyogenes), and MntR (Staphylococcus aureus) to describe how metalloregulation enables adaptive virulence gene expression within the mammalian host. This research has important implications for drug design, as the generation of hyper-repressive metalloregulatory proteins may represent a mechanism by which to attenuate bacterial pathogenicity. The fact that metalloregulators are unique to prokaryotes makes these proteins especially attractive therapeutic targets.
Collapse
Affiliation(s)
- A T Merchant
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | | |
Collapse
|
24
|
Shafeeq S, Kuipers OP, Kloosterman TG. The role of zinc in the interplay between pathogenic streptococci and their hosts. Mol Microbiol 2013; 88:1047-57. [DOI: 10.1111/mmi.12256] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Sulman Shafeeq
- Department of Molecular Genetics; Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 7; 9747 AG; Groningen; the Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics; Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 7; 9747 AG; Groningen; the Netherlands
| | - Tomas G. Kloosterman
- Department of Molecular Genetics; Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 7; 9747 AG; Groningen; the Netherlands
| |
Collapse
|
25
|
Hayden JA, Brophy MB, Cunden LS, Nolan EM. High-affinity manganese coordination by human calprotectin is calcium-dependent and requires the histidine-rich site formed at the dimer interface. J Am Chem Soc 2013; 135:775-87. [PMID: 23276281 PMCID: PMC3575579 DOI: 10.1021/ja3096416] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Calprotectin (CP) is a transition metal-chelating antimicrobial protein of the calcium-binding S100 family that is produced and released by neutrophils. It inhibits the growth of various pathogenic microorganisms by sequestering the transition metal ions manganese and zinc. In this work, we investigate the manganese-binding properties of CP. We demonstrate that the unusual His(4) motif (site 2) formed at the S100A8/S100A9 dimer interface is the site of high-affinity Mn(II) coordination. We identify a low-temperature Mn(II) spectroscopic signal for this site consistent with an octahedral Mn(II) coordination sphere with simulated zero-field splitting parameters D = 270 MHz and E/D = 0.30 (E = 81 MHz). This analysis, combined with studies of mutant proteins, suggests that four histidine residues (H17 and H27 of S100A8; H91 and H95 of S100A9) coordinate Mn(II) in addition to two as-yet unidentified ligands. The His(3)Asp motif (site 1), which is also formed at the S100A8/S100A9 dimer interface, does not provide a high-affinity Mn(II) binding site. Calcium binding to the EF-hand domains of CP increases the Mn(II) affinity of the His(4) site from the low-micromolar to the mid-nanomolar range. Metal-ion selectivity studies demonstrate that CP prefers to coordinate Zn(II) over Mn(II). Nevertheless, the specificity of Mn(II) for the His(4) site provides CP with the propensity to form mixed Zn:Mn:CP complexes where one Zn(II) ion occupies site 1 and one Mn(II) ion occupies site 2. These studies support the notion that CP responds to physiological calcium ion gradients to become a high-affinity transition metal ion chelator in the extracellular space where it inhibits microbial growth.
Collapse
Affiliation(s)
- Joshua A. Hayden
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Megan Brunjes Brophy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Lisa S. Cunden
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
26
|
Wakeman CA, Hammer ND, Stauff DL, Attia AS, Anzaldi LL, Dikalov SI, Calcutt MW, Skaar EP. Menaquinone biosynthesis potentiates haem toxicity in Staphylococcus aureus. Mol Microbiol 2012; 86:1376-92. [PMID: 23043465 DOI: 10.1111/mmi.12063] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2012] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus is a pathogen that infects multiple anatomical sites leading to a diverse array of diseases. Although vertebrates can restrict the growth of invading pathogens by sequestering iron within haem, S. aureus surmounts this challenge by employing high-affinity haem uptake systems. However, the presence of excess haem is highly toxic, necessitating tight regulation of haem levels. To overcome haem stress, S. aureus expresses the detoxification system HrtAB. In this work, a transposon screen was performed in the background of a haem-susceptible, HrtAB-deficient S. aureus strain to identify the substrate transported by this putative pump and the source of haem toxicity. While a recent report indicates that HrtAB exports haem itself, the haem-resistant mutants uncovered by the transposon selection enabled us to elucidate the cellular factors contributing to haem toxicity. All mutants identified in this screen inactivated the menaquinone (MK) biosynthesis pathway. Deletion of the final steps of this pathway revealed that quinone molecules localizing to the cell membrane potentiate haem-associated superoxide production and subsequent oxidative damage. These data suggest a model in which membrane-associated haem and quinone molecules form a redox cycle that continuously generates semiquinones and reduced haem, both of which react with atmospheric oxygen to produce superoxide.
Collapse
Affiliation(s)
- Catherine A Wakeman
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol 2012; 60:91-210. [PMID: 22633059 PMCID: PMC4100946 DOI: 10.1016/b978-0-12-398264-3.00002-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes.
Collapse
Affiliation(s)
- Sabeeha S. Merchant
- Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101
| |
Collapse
|