1
|
Zheng S, Zheng B, Fu C. The Roles of Septins in Regulating Fission Yeast Cytokinesis. J Fungi (Basel) 2024; 10:115. [PMID: 38392788 PMCID: PMC10890454 DOI: 10.3390/jof10020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Cytokinesis is required to separate two daughter cells at the end of mitosis, and septins play crucial roles in many aspects of cytokinesis. While septins have been intensively studied in many model organisms, including the budding yeast Saccharomyces cerevisiae, septins have been relatively less characterized in the fission yeast Schizosaccharomyces pombe, which has proven to be an excellent model organism for studying fundamental cell biology. In this review, we summarize the findings of septins made in fission yeasts mainly from four aspects: the domain structure of septins, the localization of septins during the cell cycle, the roles of septins in regulating cytokinesis, and the regulatory proteins of septins.
Collapse
Affiliation(s)
- Shengnan Zheng
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Biyu Zheng
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
2
|
Igarashi MG, Bhattacharjee R, Willet AH, Gould KL. Polarity kinases that phosphorylate F-BAR protein Cdc15 have unique localization patterns during cytokinesis and contributions to preventing tip septation in Schizosaccharomyces pombe. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000965. [PMID: 37746062 PMCID: PMC10517346 DOI: 10.17912/micropub.biology.000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
The Schizosaccharomyces pombe F-BAR protein, Cdc15, facilitates the linkage between the cytokinetic ring and the plasma membrane. Cdc15 is phosphorylated on many sites by four polarity kinases and this antagonizes membrane interaction. Dephosphorylation of Cdc15 during mitosis induces its phase separation, allowing oligomerization, membrane association, and protein partner binding. Here, using live cell imaging we examined whether spatial separation of Cdc15 from its four identified kinases potentially explains their diverse effects on tip septation and the mitotic Cdc15 phosphorylation state. We identified a correlation between kinase localization and their ability to antagonize Cdc15 cytokinetic ring and membrane localization.
Collapse
Affiliation(s)
- Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
- Current address: Biophysical Sciences, University of Chicago, Chicago, IL, US
| | - Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
- Current address: Twist Bioscience, Quincy, MA, US
| | - Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| |
Collapse
|
3
|
Bhattacharjee R, Hall AR, Mangione MC, Igarashi MG, Roberts-Galbraith RH, Chen JS, Vavylonis D, Gould KL. Multiple polarity kinases inhibit phase separation of F-BAR protein Cdc15 and antagonize cytokinetic ring assembly in fission yeast. eLife 2023; 12:83062. [PMID: 36749320 PMCID: PMC9904764 DOI: 10.7554/elife.83062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2023] Open
Abstract
The F-BAR protein Cdc15 is essential for cytokinesis in Schizosaccharomyces pombe and plays a key role in attaching the cytokinetic ring (CR) to the plasma membrane (PM). Cdc15's abilities to bind to the membrane and oligomerize via its F-BAR domain are inhibited by phosphorylation of its intrinsically disordered region (IDR). Multiple cell polarity kinases regulate Cdc15 IDR phosphostate, and of these the DYRK kinase Pom1 phosphorylation sites on Cdc15 have been shown in vivo to prevent CR formation at cell tips. Here, we compared the ability of Pom1 to control Cdc15 phosphostate and cortical localization to that of other Cdc15 kinases: Kin1, Pck1, and Shk1. We identified distinct but overlapping cohorts of Cdc15 phosphorylation sites targeted by each kinase, and the number of sites correlated with each kinases' abilities to influence Cdc15 PM localization. Coarse-grained simulations predicted that cumulative IDR phosphorylation moves the IDRs of a dimer apart and toward the F-BAR tips. Further, simulations indicated that the overall negative charge of phosphorylation masks positively charged amino acids necessary for F-BAR oligomerization and membrane interaction. Finally, simulations suggested that dephosphorylated Cdc15 undergoes phase separation driven by IDR interactions. Indeed, dephosphorylated but not phosphorylated Cdc15 undergoes liquid-liquid phase separation to form droplets in vitro that recruit Cdc15 binding partners. In cells, Cdc15 phosphomutants also formed PM-bound condensates that recruit other CR components. Together, we propose that a threshold of Cdc15 phosphorylation by assorted kinases prevents Cdc15 condensation on the PM and antagonizes CR assembly.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Aaron R Hall
- Department of Physics, Lehigh UniversityBethlehemUnited States
| | - MariaSanta C Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Maya G Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh UniversityBethlehemUnited States,Center for Computational Biology, Flatiron InstituteNew YorkUnited States
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
4
|
Fission Yeast Rho1p-GEFs: From Polarity and Cell Wall Synthesis to Genome Stability. Int J Mol Sci 2022; 23:ijms232213888. [PMID: 36430366 PMCID: PMC9697909 DOI: 10.3390/ijms232213888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Rho1p is a membrane-associated protein that belongs to the Rho family of small GTPases. These proteins coordinate processes such as actin remodelling and polarised secretion to maintain the shape and homeostasis of yeast cells. In response to extracellular stimuli, Rho1p undergoes conformational switching between a guanosine triphosphate (GTP)-bound active state and a guanosine diphosphate (GDP)-bound inactive state. Cycling is improved with guanine nucleotide exchange factor (GEF) activity necessary to activate signalling and GTPase activating protein (GAP) activity required for subsequent signal depletion. This review focuses on fission yeast Rho1p GEFs, Rgf1p, Rgf2p, and Rgf3p that belong to the family of DH-PH domain-containing Dbl-related GEFs. They are multi-domain proteins that detect biological signals that induce or inhibit their catalytic activity over Rho1p. Each of them activates Rho1p in different places and times. Rgf1p acts preferentially during polarised growth. Rgf2p is required for sporulation, and Rgf3p plays an essential function in septum synthesis. In addition, we outline the noncanonical roles of Rho1p-GEFs in genomic instability.
Collapse
|
5
|
Garno C, Irons ZH, Gamache CM, McKim Q, Reyes G, Wu X, Shuster CB, Henson JH. Building the cytokinetic contractile ring in an early embryo: Initiation as clusters of myosin II, anillin and septin, and visualization of a septin filament network. PLoS One 2021; 16:e0252845. [PMID: 34962917 PMCID: PMC8714119 DOI: 10.1371/journal.pone.0252845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023] Open
Abstract
The cytokinetic contractile ring (CR) was first described some 50 years ago, however our understanding of the assembly and structure of the animal cell CR remains incomplete. We recently reported that mature CRs in sea urchin embryos contain myosin II mini-filaments organized into aligned concatenated arrays, and that in early CRs myosin II formed discrete clusters that transformed into the linearized structure over time. The present study extends our previous work by addressing the hypothesis that these myosin II clusters also contain the crucial scaffolding proteins anillin and septin, known to help link actin, myosin II, RhoA, and the membrane during cytokinesis. Super-resolution imaging of cortices from dividing embryos indicates that within each cluster, anillin and septin2 occupy a centralized position relative to the myosin II mini-filaments. As CR formation progresses, the myosin II, septin and anillin containing clusters enlarge and coalesce into patchy and faintly linear patterns. Our super-resolution images provide the initial visualization of anillin and septin nanostructure within an animal cell CR, including evidence of a septin filament-like network. Furthermore, Latrunculin-treated embryos indicated that the localization of septin or anillin to the myosin II clusters in the early CR was not dependent on actin filaments. These results highlight the structural progression of the CR in sea urchin embryos from an array of clusters to a linearized purse string, the association of anillin and septin with this process, and provide the visualization of an apparent septin filament network with the CR structure of an animal cell.
Collapse
Affiliation(s)
- Chelsea Garno
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - Zoe H. Irons
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Courtney M. Gamache
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Quenelle McKim
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Gabriela Reyes
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - Xufeng Wu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charles B. Shuster
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - John H. Henson
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
6
|
Roncero C, Celador R, Sánchez N, García P, Sánchez Y. The Role of the Cell Integrity Pathway in Septum Assembly in Yeast. J Fungi (Basel) 2021; 7:jof7090729. [PMID: 34575767 PMCID: PMC8471060 DOI: 10.3390/jof7090729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Cytokinesis divides a mother cell into two daughter cells at the end of each cell cycle and proceeds via the assembly and constriction of a contractile actomyosin ring (CAR). Ring constriction promotes division furrow ingression, after sister chromatids are segregated to opposing sides of the cleavage plane. Cytokinesis contributes to genome integrity because the cells that fail to complete cytokinesis often reduplicate their chromosomes. While in animal cells, the last steps of cytokinesis involve extracellular matrix remodelling and mid-body abscission, in yeast, CAR constriction is coupled to the synthesis of a polysaccharide septum. To preserve cell integrity during cytokinesis, fungal cells remodel their cell wall through signalling pathways that connect receptors to downstream effectors, initiating a cascade of biological signals. One of the best-studied signalling pathways is the cell wall integrity pathway (CWI) of the budding yeast Saccharomyces cerevisiae and its counterpart in the fission yeast Schizosaccharomyces pombe, the cell integrity pathway (CIP). Both are signal transduction pathways relying upon a cascade of MAP kinases. However, despite strong similarities in the assembly of the septa in both yeasts, there are significant mechanistic differences, including the relationship of this process with the cell integrity signalling pathways.
Collapse
|
7
|
Mangione MC, Chen JS, Gould KL. Cdk1 phosphorylation of fission yeast paxillin inhibits its cytokinetic ring localization. Mol Biol Cell 2021; 32:1534-1544. [PMID: 34133210 PMCID: PMC8351747 DOI: 10.1091/mbc.e20-12-0807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 11/11/2022] Open
Abstract
Divisions of the genetic material and cytoplasm are coordinated spatially and temporally to ensure genome integrity. This coordination is mediated in part by the major cell cycle regulator cyclin-dependent kinase (Cdk1). Cdk1 activity peaks during mitosis, but during mitotic exit/cytokinesis Cdk1 activity is reduced, and phosphorylation of its substrates is reversed by various phosphatases including Cdc14, PP1, PP2A, and PP2B. Cdk1 is known to phosphorylate several components of the actin- and myosin-based cytokinetic ring (CR) that mediates division of yeast and animal cells. Here we show that Cdk1 also phosphorylates the Schizosaccharomyces pombe CR component paxillin Pxl1. We determined that both the Cdc14 phosphatase Clp1 and the PP1 phosphatase Dis2 contribute to Pxl1 dephosphorylation at mitotic exit, but PP2B/calcineurin does not. Preventing Pxl1 phosphorylation by Cdk1 results in increased Pxl1 levels, precocious Pxl1 recruitment to the division site, and increased duration of CR constriction. In vitro Cdk1-mediated phosphorylation of Pxl1 inhibits its interaction with the F-BAR domain of the cytokinetic scaffold Cdc15, thereby disrupting a major mechanism of Pxl1 recruitment. Thus, Pxl1 is a novel substrate through which S. pombe Cdk1 and opposing phosphatases coordinate mitosis and cytokinesis.
Collapse
Affiliation(s)
- MariaSanta C. Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
8
|
Rezig IM, Yaduma WG, Gould GW, McInerny CJ. Anillin/Mid1p interacts with the ESCRT-associated protein Vps4p and mitotic kinases to regulate cytokinesis in fission yeast. Cell Cycle 2021; 20:1845-1860. [PMID: 34382912 PMCID: PMC8525990 DOI: 10.1080/15384101.2021.1962637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cytokinesis is the final stage of the cell cycle which separates cellular constituents to produce two daughter cells. Using the fission yeast Schizosaccharomyces pombe we have investigated the role of various classes of proteins involved in this process. Central to these is anillin/Mid1p which forms a ring-like structure at the cell equator that predicts the site of cell separation through septation in fission yeast. Here we demonstrate a direct physical interaction between Mid1p and the endosomal sorting complex required for transport (ESCRT)-associated protein Vps4p, a genetic interaction of the mid1 and vps4 genes essential for cell viability, and a requirement of Vps4p for the correct cellular localization of Mid1p. Furthermore, we show that Mid1p is phosphorylated by aurora kinase, a genetic interaction of the mid1 and the aurora kinase ark1 genes is essential for cell viability, and that Ark1p is also required for the correct cellular localization of Mid1p. We mapped the sites of phosphorylation of Mid1p by human aurora A and the polo kinase Plk1 and assessed their importance in fission yeast by mutational analysis. Such analysis revealed serine residues S332, S523 and S531 to be required for Mid1p function and its interaction with Vps4p, Ark1p and Plo1p. Combined these data suggest a physical interaction between Mid1p and Vps4p important for cytokinesis, and identify phosphorylation of Mid1p by aurora and polo kinases as being significant for this process.
Collapse
Affiliation(s)
- Imane M Rezig
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Wandiahyel G Yaduma
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gwyn W Gould
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Christopher J McInerny
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Morano AA, Dvorin JD. The Ringleaders: Understanding the Apicomplexan Basal Complex Through Comparison to Established Contractile Ring Systems. Front Cell Infect Microbiol 2021; 11:656976. [PMID: 33954122 PMCID: PMC8089483 DOI: 10.3389/fcimb.2021.656976] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 12/02/2022] Open
Abstract
The actomyosin contractile ring is a key feature of eukaryotic cytokinesis, conserved across many eukaryotic kingdoms. Recent research into the cell biology of the divergent eukaryotic clade Apicomplexa has revealed a contractile ring structure required for asexual division in the medically relevant genera Toxoplasma and Plasmodium; however, the structure of the contractile ring, known as the basal complex in these parasites, remains poorly characterized and in the absence of a myosin II homolog, it is unclear how the force required of a cytokinetic contractile ring is generated. Here, we review the literature on the basal complex in Apicomplexans, summarizing what is known about its formation and function, and attempt to provide possible answers to this question and suggest new avenues of study by comparing the Apicomplexan basal complex to well-studied, established cytokinetic contractile rings and their mechanisms in organisms such as S. cerevisiae and D. melanogaster. We also compare the basal complex to structures formed during mitochondrial and plastid division and cytokinetic mechanisms of organisms beyond the Opisthokonts, considering Apicomplexan diversity and divergence.
Collapse
Affiliation(s)
- Alexander A Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, United States.,Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Okada H, MacTaggart B, Ohya Y, Bi E. The kinetic landscape and interplay of protein networks in cytokinesis. iScience 2021; 24:101917. [PMID: 33392480 PMCID: PMC7773586 DOI: 10.1016/j.isci.2020.101917] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/08/2022] Open
Abstract
Cytokinesis is executed by protein networks organized into functional modules. Individual proteins within each module have been characterized to various degrees. However, the collective behavior and interplay of the modules remain poorly understood. In this study, we conducted quantitative time-lapse imaging to analyze the accumulation kinetics of more than 20 proteins from different modules of cytokinesis in budding yeast. This analysis has led to a comprehensive picture of the kinetic landscape of cytokinesis, from actomyosin ring (AMR) assembly to cell separation. It revealed that the AMR undergoes biphasic constriction and that the switch between the constriction phases is likely triggered by AMR maturation and primary septum formation. This analysis also provided further insights into the functions of actin filaments and the transglutaminase-like protein Cyk3 in cytokinesis and, in addition, defined Kre6 as the likely enzyme that catalyzes β-1,6-glucan synthesis to drive cell wall maturation during cell growth and division. Cytokinesis is executed by protein modules each with a unique kinetic signature Actomyosin ring constricts in a biphasic manner that is elaborately regulated The transglutaminase-like domain in Cyk3 plays a dual role in cytokinesis Kre6 catalyzes β-1,6-glucan synthesis at the cell surface during growth and division
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Brittany MacTaggart
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| |
Collapse
|
11
|
Wang K, Okada H, Bi E. Comparative Analysis of the Roles of Non-muscle Myosin-IIs in Cytokinesis in Budding Yeast, Fission Yeast, and Mammalian Cells. Front Cell Dev Biol 2020; 8:593400. [PMID: 33330476 PMCID: PMC7710916 DOI: 10.3389/fcell.2020.593400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
The contractile ring, which plays critical roles in cytokinesis in fungal and animal cells, has fascinated biologists for decades. However, the basic question of how the non-muscle myosin-II and actin filaments are assembled into a ring structure to drive cytokinesis remains poorly understood. It is even more mysterious why and how the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and humans construct the ring structure with one, two, and three myosin-II isoforms, respectively. Here, we provide a comparative analysis of the roles of the non-muscle myosin-IIs in cytokinesis in these three model systems, with the goal of defining the common and unique features and highlighting the major questions regarding this family of proteins.
Collapse
Affiliation(s)
- Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Cell cycle-dependent phosphorylation of IQGAP is involved in assembly and stability of the contractile ring in fission yeast. Biochem Biophys Res Commun 2020; 534:1026-1032. [PMID: 33131769 DOI: 10.1016/j.bbrc.2020.10.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 11/20/2022]
Abstract
Cytokinesis is the final step in cell division and is driven by the constriction of the medial actomyosin-based contractile ring (CR) in many eukaryotic cells. In the fission yeast Schizosaccharomyces pombe, the IQGAP-like protein Rng2 is required for assembly and constriction of the CR, and specifically interacts with actin filaments (F-actin) in the CR after anaphase. However, the mechanism that timely activates Rng2 has not yet been elucidated. We herein tested the hypothesis that the cytokinetic function of Rng2 is regulated by phosphorylation by examining phenotypes of a series of non-phosphorylatable and phosphomimetic rng2 mutant strains. In phosphomimetic mutant cells, F-actin in the CR was unstable. Genetic analyses indicated that phosphorylated Rng2 was involved in CR assembly in cooperation with myosin-II, whereas the phosphomimetic mutation attenuated the localization of Rng2 to CR F-actin. The present results suggest that Rng2 is phosphorylated during CR assembly and then dephosphorylated, which enhances the interaction between Rng2 and CR F-actin to stabilize the ring, thereby ensuring secure cytokinesis.
Collapse
|
13
|
Edreira T, Celador R, Manjón E, Sánchez Y. A novel checkpoint pathway controls actomyosin ring constriction trigger in fission yeast. eLife 2020; 9:59333. [PMID: 33103994 PMCID: PMC7661037 DOI: 10.7554/elife.59333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
In fission yeast, the septation initiation network (SIN) ensures temporal coordination between actomyosin ring (CAR) constriction with membrane ingression and septum synthesis. However, questions remain about CAR regulation under stress conditions. We show that Rgf1p (Rho1p GEF), participates in a delay of cytokinesis under cell wall stress (blankophor, BP). BP did not interfere with CAR assembly or the rate of CAR constriction, but did delay the onset of constriction in the wild type cells but not in the rgf1Δ cells. This delay was also abolished in the absence of Pmk1p, the MAPK of the cell integrity pathway (CIP), leading to premature abscission and a multi-septated phenotype. Moreover, cytokinesis delay correlates with maintained SIN signaling and depends on the SIN to be achieved. Thus, we propose that the CIP participates in a checkpoint, capable of triggering a CAR constriction delay through the SIN pathway to ensure that cytokinesis terminates successfully.
Collapse
Affiliation(s)
- Tomás Edreira
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Rubén Celador
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Elvira Manjón
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Yolanda Sánchez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
14
|
Bhattacharjee R, Mangione MC, Wos M, Chen JS, Snider CE, Roberts-Galbraith RH, McDonald NA, Presti LL, Martin SG, Gould KL. DYRK kinase Pom1 drives F-BAR protein Cdc15 from the membrane to promote medial division. Mol Biol Cell 2020; 31:917-929. [PMID: 32101481 PMCID: PMC7185970 DOI: 10.1091/mbc.e20-01-0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
In many organisms, positive and negative signals cooperate to position the division site for cytokinesis. In the rod-shaped fission yeast Schizosaccharomyces pombe, symmetric division is achieved through anillin/Mid1-dependent positive cues released from the central nucleus and negative signals from the DYRK-family polarity kinase Pom1 at cell tips. Here we establish that Pom1's kinase activity prevents septation at cell tips even if Mid1 is absent or mislocalized. We also find that Pom1 phosphorylation of F-BAR protein Cdc15, a major scaffold of the division apparatus, disrupts Cdc15's ability to bind membranes and paxillin, Pxl1, thereby inhibiting Cdc15's function in cytokinesis. A Cdc15 mutant carrying phosphomimetic versions of Pom1 sites or deletion of Cdc15 binding partners suppresses division at cell tips in cells lacking both Mid1 and Pom1 signals. Thus, inhibition of Cdc15-scaffolded septum formation at cell poles is a key Pom1 mechanism that ensures medial division.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - MariaSanta C. Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Marcin Wos
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Chloe E. Snider
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | | | - Nathan A. McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Libera Lo Presti
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| |
Collapse
|
15
|
Mamun MAA, Katayama T, Cao W, Nakamura S, Maruyama JI. A novel Pezizomycotina-specific protein with gelsolin domains regulates contractile actin ring assembly and constriction in perforated septum formation. Mol Microbiol 2020; 113:964-982. [PMID: 31965663 DOI: 10.1111/mmi.14463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/29/2022]
Abstract
Septum formation in fungi is equivalent to cytokinesis. It differs mechanistically in filamentous ascomycetes (Pezizomycotina) from that of ascomycete yeasts by the retention of a central septal pore in the former group. However, septum formation in both groups is accomplished by contractile actin ring (CAR) assembly and constriction. The specific components regulating septal pore organization during septum formation are poorly understood. In this study, a novel Pezizomycotina-specific actin regulatory protein GlpA containing gelsolin domains was identified using bioinformatics. A glpA deletion mutant exhibited increased distances between septa, abnormal septum morphology and defective regulation of septal pore closure. In glpA deletion mutant hyphae, overaccumulation of actin filament (F-actin) was observed, and the CAR was abnormal with improper assembly and failure in constriction. In wild-type cells, GlpA was found at the septum formation site similarly to the CAR. The N-terminal 329 residues of GlpA are required for its localization to the septum formation site and essential for proper septum formation, while its C-terminal gelsolin domains are required for the regular CAR dynamics during septum formation. Finally, in this study we elucidated a novel Pezizomycotina-specific actin modulating component, which participates in septum formation by regulating the CAR dynamics.
Collapse
Affiliation(s)
| | - Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Wei Cao
- Faculty of Information Networking for Innovation and Design, Department of Information Networking for Innovation and Design, Toyo University, Tokyo, Japan
| | - Shugo Nakamura
- Faculty of Information Networking for Innovation and Design, Department of Information Networking for Innovation and Design, Toyo University, Tokyo, Japan
| | - Jun-Ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Paxillin-Mediated Recruitment of Calcineurin to the Contractile Ring Is Required for the Correct Progression of Cytokinesis in Fission Yeast. Cell Rep 2019; 25:772-783.e4. [PMID: 30332655 DOI: 10.1016/j.celrep.2018.09.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/01/2018] [Accepted: 09/19/2018] [Indexed: 11/21/2022] Open
Abstract
Paxillin is a scaffold protein that participates in focal adhesion signaling in mammalian cells. Fission yeast paxillin ortholog, Pxl1, is required for contractile actomyosin ring (CAR) integrity and collaborates with the β-glucan synthase Bgs1 in septum formation. We show here that Pxl1's main function is to recruit calcineurin (CN) phosphatase to the actomyosin ring; and thus the absence of either Pxl1 or calcineurin causes similar cytokinesis defects. In turn, CN participates in the dephosphorylation of the Cdc15 F-BAR protein, which recruits and concentrates Pxl1 at the CAR. Our findings suggest the existence of a positive feedback loop between Pxl1 and CN and establish that Pxl1 is a crucial component of the CN signaling pathway during cytokinesis.
Collapse
|
17
|
Mangione MC, Snider CE, Gould KL. The intrinsically disordered region of the cytokinetic F-BAR protein Cdc15 performs a unique essential function in maintenance of cytokinetic ring integrity. Mol Biol Cell 2019; 30:2790-2801. [PMID: 31509478 PMCID: PMC6789166 DOI: 10.1091/mbc.e19-06-0314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/21/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022] Open
Abstract
Successful separation of two daughter cells (i.e., cytokinesis) is essential for life. Many eukaryotic cells divide using a contractile apparatus called the cytokinetic ring (CR) that associates dynamically with the plasma membrane (PM) and generates force that contributes to PM ingression between daughter cells. In Schizosaccharomyces pombe, important membrane-CR scaffolds include the paralogous F-BAR proteins Cdc15 and Imp2. Their conserved protein structure consists of the archetypal F-BAR domain linked to an SH3 domain by an intrinsically disordered region (IDR). Functions have been assigned to the F-BAR and SH3 domains. In this study we probed the function of the central IDR. We found that the IDR of Cdc15 is essential for viability and cannot be replaced by that of Imp2, whereas the F-BAR domain of Cdc15 can be swapped with several different F-BAR domains, including that of Imp2. Deleting part of the IDR results in CR defects and abolishes calcineurin phosphatase localization to the CR. Together these results indicate that Cdc15's IDR has a nonredundant essential function that coordinates regulation of CR architecture.
Collapse
Affiliation(s)
- MariaSanta C. Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Chloe E. Snider
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
18
|
Arbizzani F, Rincon SA, Paoletti A. Increasing ergosterol levels delays formin-dependent assembly of F-actin cables and disrupts division plane positioning in fission yeast. J Cell Sci 2019; 132:jcs.227447. [PMID: 31217286 DOI: 10.1242/jcs.227447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/31/2019] [Indexed: 11/20/2022] Open
Abstract
In most eukaryotes, cytokinesis is mediated by the constriction of a contractile acto-myosin ring (CR), which promotes the ingression of the cleavage furrow. Many components of the CR interact with plasma membrane lipids suggesting that lipids may regulate CR assembly and function. Although there is clear evidence that phosphoinositides play an important role in cytokinesis, much less is known about the role of sterols in this process. Here, we studied how sterols influence division plane positioning and CR assembly in fission yeast. We show that increasing ergosterol levels in the plasma membrane blocks the assembly of F-actin cables from cytokinetic precursor nodes, preventing their compaction into a ring. Abnormal F-actin cables form after a delay, leading to randomly placed septa. Since the formin Cdc12 was detected on cytokinetic precursors and the phenotype can be partially rescued by inhibiting the Arp2/3 complex, which competes with formins for F-actin nucleation, we propose that ergosterol may inhibit formin dependent assembly of F-actin cables from cytokinetic precursors.
Collapse
Affiliation(s)
| | - Sergio A Rincon
- Institut Curie, PSL University, CNRS UMR 144, 75005 Paris, France .,Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca 37007, Spain
| | - Anne Paoletti
- Institut Curie, PSL University, CNRS UMR 144, 75005 Paris, France
| |
Collapse
|
19
|
Mangione MC, Gould KL. Molecular form and function of the cytokinetic ring. J Cell Sci 2019; 132:132/12/jcs226928. [PMID: 31209062 DOI: 10.1242/jcs.226928] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animal cells, amoebas and yeast divide using a force-generating, actin- and myosin-based contractile ring or 'cytokinetic ring' (CR). Despite intensive research, questions remain about the spatial organization of CR components, the mechanism by which the CR generates force, and how other cellular processes are coordinated with the CR for successful membrane ingression and ultimate cell separation. This Review highlights new findings about the spatial relationship of the CR to the plasma membrane and the arrangement of molecules within the CR from studies using advanced microscopy techniques, as well as mechanistic information obtained from in vitro approaches. We also consider advances in understanding coordinated cellular processes that impact the architecture and function of the CR.
Collapse
Affiliation(s)
- MariaSanta C Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
20
|
Okada H, Wloka C, Wu JQ, Bi E. Distinct Roles of Myosin-II Isoforms in Cytokinesis under Normal and Stressed Conditions. iScience 2019; 14:69-87. [PMID: 30928696 PMCID: PMC6441717 DOI: 10.1016/j.isci.2019.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/30/2019] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
To address the question of why more than one myosin-II isoform is expressed in a single cell to drive cytokinesis, we analyzed the roles of the myosin-II isoforms, Myo2 and Myp2, of the fission yeast Schizosaccharomyces pombe, in cytokinesis under normal and stressed conditions. We found that Myp2 controls the disassembly, stability, and constriction initiation of the Myo2 ring in response to high-salt stress. A C-terminal coiled-coil domain of Myp2 is required for its immobility and contractility during cytokinesis, and when fused to the tail of the dynamic Myo2, renders the chimera the low-turnover property. We also found, by following distinct processes in real time at the single-cell level, that Myo2 and Myp2 are differentially required but collectively essential for guiding extracellular matrix remodeling during cytokinesis. These results suggest that the dynamic and immobile myosin-II isoforms are evolved to carry out cytokinesis with robustness under different growth conditions. The myosin-II isoforms Myo2 and Myp2 display distinct responses to cellular stress Myp2 controls the constriction initiation of Myo2 during stress response A C-terminal region of Myp2 is required for its immobility during cytokinesis Myo2 and Myp2 are differentially required for guiding ECM remodeling during cytokinesis
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AE Groningen, The Netherlands
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
21
|
Tay YD, Leda M, Spanos C, Rappsilber J, Goryachev AB, Sawin KE. Fission Yeast NDR/LATS Kinase Orb6 Regulates Exocytosis via Phosphorylation of the Exocyst Complex. Cell Rep 2019; 26:1654-1667.e7. [PMID: 30726745 PMCID: PMC6367570 DOI: 10.1016/j.celrep.2019.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/03/2018] [Accepted: 01/08/2019] [Indexed: 11/22/2022] Open
Abstract
NDR/LATS kinases regulate multiple aspects of cell polarity and morphogenesis from yeast to mammals. Fission yeast NDR/LATS kinase Orb6 has been proposed to control cell polarity by regulating the Cdc42 guanine nucleotide exchange factor Gef1. Here, we show that Orb6 regulates polarity largely independently of Gef1 and that Orb6 positively regulates exocytosis. Through Orb6 inhibition in vivo and quantitative global phosphoproteomics, we identify Orb6 targets, including proteins involved in membrane trafficking. We confirm Sec3 and Sec5, conserved components of the exocyst complex, as substrates of Orb6 both in vivo and in vitro, and we show that Orb6 kinase activity is important for exocyst localization to cell tips and for exocyst activity during septum dissolution after cytokinesis. We further find that Orb6 phosphorylation of Sec3 contributes to exocyst function in concert with exocyst protein Exo70. We propose that Orb6 contributes to polarized growth by regulating membrane trafficking at multiple levels.
Collapse
Affiliation(s)
- Ye Dee Tay
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Marcin Leda
- SynthSys-Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK; Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, 13355, Germany
| | - Andrew B Goryachev
- SynthSys-Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Kenneth E Sawin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
22
|
Molecular mechanisms of contractile-ring constriction and membrane trafficking in cytokinesis. Biophys Rev 2018; 10:1649-1666. [PMID: 30448943 DOI: 10.1007/s12551-018-0479-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the molecular mechanisms of cytokinesis from plants to humans, with a focus on contribution of membrane trafficking to cytokinesis. Selection of the division site in fungi, metazoans, and plants is reviewed, as well as the assembly and constriction of a contractile ring in fungi and metazoans. We also provide an introduction to exocytosis and endocytosis, and discuss how they contribute to successful cytokinesis in eukaryotic cells. The conservation in the coordination of membrane deposition and cytoskeleton during cytokinesis in fungi, metazoans, and plants is highlighted.
Collapse
|
23
|
Zheng S, Dong F, Rasul F, Yao X, Jin QW, Zheng F, Fu C. Septins regulate the equatorial dynamics of the separation initiation network kinase Sid2p and glucan synthases to ensure proper cytokinesis. FEBS J 2018; 285:2468-2480. [PMID: 29722930 DOI: 10.1111/febs.14487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
Septins generally function as scaffolds and as cortical barriers to restrict the diffusion of membrane proteins. In the fission yeast Schizosaccharomyces pombe, septins form a ring structure at the septum after spindle breakdown during the constriction of the contractile actomyosin ring (CAR) and serve as a scaffold to recruit glucanases to mediate ultimate daughter cell separation. Despite this, it remains unclear if septins play any significant roles before the cell separation during cytokinesis. Employing live cell microscopy, we carefully examined SIN (Septation Initiation Network) signaling and glucan synthases, two key factors ensuring proper function of the CAR. In the absence of the core septin component Spn1p, the formation of a compact CAR is advanced and the CAR constriction rate is slightly but significantly decreased. Moreover, the SIN kinase Sid2p and the glucan synthases Bgs1p and Ags1p form an equatorial ring quite prematurely, but their maintenance at the equatorial region is diminished spn1Δ cells. These findings suggest that septins act as key players in an accurate establishment and the maintenance of CAR by orchestrating the equatorial dynamics of Sid2p and glucan synthases. Hence, this work demonstrates that, in addition to their function during ultimate cell septation, septins have important roles in regulating earlier cytokinetic events, including CAR assembly and constriction, SIN signaling, and the cortical dynamics of the glucan synthases.
Collapse
Affiliation(s)
- Shengnan Zheng
- Chinese Academy of Sciences Center for Excellence in Molecular Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, University of Science and Technology of China, Hefei, Anhui, China
| | - Fenfen Dong
- Chinese Academy of Sciences Center for Excellence in Molecular Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, University of Science and Technology of China, Hefei, Anhui, China
| | - Faiz Rasul
- Chinese Academy of Sciences Center for Excellence in Molecular Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuebiao Yao
- Chinese Academy of Sciences Center for Excellence in Molecular Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, University of Science and Technology of China, Hefei, Anhui, China
| | - Quan-Wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Fan Zheng
- Chinese Academy of Sciences Center for Excellence in Molecular Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, University of Science and Technology of China, Hefei, Anhui, China
| | - Chuanhai Fu
- Chinese Academy of Sciences Center for Excellence in Molecular Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
24
|
Pollard TD. Nine unanswered questions about cytokinesis. J Cell Biol 2017; 216:3007-3016. [PMID: 28807993 PMCID: PMC5626534 DOI: 10.1083/jcb.201612068] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022] Open
Abstract
Experiments on model systems have revealed that cytokinesis in cells with contractile rings (amoebas, fungi, and animals) depends on shared molecular mechanisms in spite of some differences that emerged during a billion years of divergent evolution. Understanding these fundamental mechanisms depends on identifying the participating proteins and characterizing the mechanisms that position the furrow, assemble the contractile ring, anchor the ring to the plasma membrane, trigger ring constriction, produce force to form a furrow, disassemble the ring, expand the plasma membrane in the furrow, and separate the daughter cell membranes. This review reveals that fascinating questions remain about each step.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Department of Cell Biology, Yale University, New Haven, CT
| |
Collapse
|
25
|
McDonald NA, Lind AL, Smith SE, Li R, Gould KL. Nanoscale architecture of the Schizosaccharomyces pombe contractile ring. eLife 2017; 6:28865. [PMID: 28914606 PMCID: PMC5779233 DOI: 10.7554/elife.28865] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022] Open
Abstract
The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0–80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80–160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160–350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function.
Collapse
Affiliation(s)
- Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Abigail L Lind
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, United States
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
26
|
Snider CE, Willet AH, Chen JS, Arpağ G, Zanic M, Gould KL. Phosphoinositide-mediated ring anchoring resists perpendicular forces to promote medial cytokinesis. J Cell Biol 2017; 216:3041-3050. [PMID: 28784611 PMCID: PMC5626552 DOI: 10.1083/jcb.201705070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/23/2017] [Accepted: 07/07/2017] [Indexed: 11/27/2022] Open
Abstract
Altering phosphoinositide composition through deletion of efr3, a PI4 kinase scaffold, results in type V myosin-dependent cytokinetic ring sliding in Schizosaccharomyces pombe. Membrane-binding proteins contribute to ring anchoring to resist perpendicular forces and thereby promote medial cytokinesis. Many eukaryotic cells divide by assembling and constricting an actin- and myosin-based contractile ring (CR) that is physically linked to the plasma membrane (PM). In this study, we report that Schizosaccharomyces pombe cells lacking efr3, which encodes a conserved PM scaffold for the phosphatidylinositol-4 kinase Stt4, build CRs that can slide away from the cell middle during anaphase in a myosin V–dependent manner. The Efr3-dependent CR-anchoring mechanism is distinct from previously reported pathways dependent on the Fes/CIP4 homology Bin-Amphiphysin-Rvs167 (F-BAR) protein Cdc15 and paxillin Pxl1. In efr3Δ, the concentrations of several membrane-binding proteins were reduced in the CR and/or on the PM. Our results suggest that proper PM lipid composition is important to stabilize the central position of the CR and resist myosin V–based forces to promote the fidelity of cell division.
Collapse
Affiliation(s)
- Chloe E Snider
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Göker Arpağ
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
27
|
Chromosome segregation drives division site selection in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2017; 114:E5959-E5968. [PMID: 28674002 DOI: 10.1073/pnas.1620608114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accurate spatial and temporal positioning of the tubulin-like protein FtsZ is key for proper bacterial cell division. Streptococcus pneumoniae (pneumococcus) is an oval-shaped, symmetrically dividing opportunistic human pathogen lacking the canonical systems for division site control (nucleoid occlusion and the Min-system). Recently, the early division protein MapZ was identified and implicated in pneumococcal division site selection. We show that MapZ is important for proper division plane selection; thus, the question remains as to what drives pneumococcal division site selection. By mapping the cell cycle in detail, we show that directly after replication both chromosomal origin regions localize to the future cell division sites, before FtsZ. Interestingly, Z-ring formation occurs coincidently with initiation of DNA replication. Perturbing the longitudinal chromosomal organization by mutating the condensin SMC, by CRISPR/Cas9-mediated chromosome cutting, or by poisoning DNA decatenation resulted in mistiming of MapZ and FtsZ positioning and subsequent cell elongation. Together, we demonstrate an intimate relationship between DNA replication, chromosome segregation, and division site selection in the pneumococcus, providing a simple way to ensure equally sized daughter cells.
Collapse
|
28
|
Steinberg G, Peñalva MA, Riquelme M, Wösten HA, Harris SD. Cell Biology of Hyphal Growth. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0034-2016. [PMID: 28429675 PMCID: PMC11687463 DOI: 10.1128/microbiolspec.funk-0034-2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/30/2022] Open
Abstract
Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.
Collapse
Affiliation(s)
- Gero Steinberg
- Department of Biosciences, College of Live and Environmental Sciences, University of Exeter, EX1 1TE Exeter, United Kingdom
- Department of Biology, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, 28040, Spain
| | - Meritxell Riquelme
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada, CICESE, Ensenada, Baja California C.P. 22860, Mexico
| | - Han A Wösten
- Department of Biology, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Steven D Harris
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0660
| |
Collapse
|
29
|
Rincon SA, Estravis M, Dingli F, Loew D, Tran PT, Paoletti A. SIN-Dependent Dissociation of the SAD Kinase Cdr2 from the Cell Cortex Resets the Division Plane. Curr Biol 2017; 27:534-542. [PMID: 28162898 DOI: 10.1016/j.cub.2016.12.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/28/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022]
Abstract
Proper division plane positioning is crucial for faithful chromosome segregation but also influences cell size, position, or fate [1]. In fission yeast, medial division is controlled through negative signaling by the cell tips during interphase and positive signaling by the centrally placed nucleus at mitotic entry [2-4]: the cell geometry network (CGN), controlled by the inhibitory cortical gradient of the DYRK kinase Pom1 emanating from the cell tips, first promotes the medial localization of cytokinetic ring precursors organized by the SAD kinase Cdr2 to pre-define the division plane [5-8]; then, massive nuclear export of the anillin-like protein Mid1 at mitosis entry confirms or readjusts the division plane according to nuclear position and triggers the assembly of a medial contractile ring [5, 9-11]. Strikingly, the Hippo-like septation initiation network (SIN) induces Cdr2 dissociation from cytokinetic precursors at this stage [12-14]. We show here that SIN-dependent phosphorylation of Cdr2 promotes its interaction with the 14-3-3 protein Rad24 that sequesters it in the cytoplasm during cell division. If this interaction is compromised, cytokinetic precursors are asymmetrically distributed in the cortex of newborn cells, leading to asymmetrical division if nuclear signaling is abolished. We conclude that, through this new function, the SIN resets the division plane in newborn cells to ensure medial division.
Collapse
Affiliation(s)
- Sergio A Rincon
- Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France.
| | - Miguel Estravis
- Institute of Genetics and Development of Rennes, CNRS, UMR 6290, 35043 Rennes Cedex, France
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 75005 Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 75005 Paris, France
| | - Phong T Tran
- Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France; Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anne Paoletti
- Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France.
| |
Collapse
|
30
|
Altamirano S, Chandrasekaran S, Kozubowski L. Mechanisms of Cytokinesis in Basidiomycetous Yeasts. FUNGAL BIOL REV 2017; 31:73-87. [PMID: 28943887 DOI: 10.1016/j.fbr.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
While mechanisms of cytokinesis exhibit considerable plasticity, it is difficult to precisely define the level of conservation of this essential part of cell division in fungi, as majority of our knowledge is based on ascomycetous yeasts. However, in the last decade more details have been uncovered regarding cytokinesis in the second largest fungal phylum, basidiomycetes, specifically in two yeasts, Cryptococcus neoformans and Ustilago maydis. Based on these findings, and current sequenced genomes, we summarize cytokinesis in basidiomycetous yeasts, indicating features that may be unique to this phylum, species-specific characteristics, as well as mechanisms that may be common to all eukaryotes.
Collapse
Affiliation(s)
- Sophie Altamirano
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | | | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
31
|
Sethi K, Palani S, Cortés JCG, Sato M, Sevugan M, Ramos M, Vijaykumar S, Osumi M, Naqvi NI, Ribas JC, Balasubramanian M. A New Membrane Protein Sbg1 Links the Contractile Ring Apparatus and Septum Synthesis Machinery in Fission Yeast. PLoS Genet 2016; 12:e1006383. [PMID: 27749909 PMCID: PMC5066963 DOI: 10.1371/journal.pgen.1006383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/23/2016] [Indexed: 01/14/2023] Open
Abstract
Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the β-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the β-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast. Cell division in many organisms requires the function of an actomyosin ring, an apparatus that resembles the force generating machinery in the muscle. This ring apparatus is attached to the cell periphery (cell membranes) such that when it contracts, it brings the cell periphery together with it, leading to cell division. How the actomyosin ring is attached to the cell membrane at the division site is unknown. In this manuscript, we identify and describe Sbg1, a protein that links the actomyosin ring and the cell membranes since Sbg1 has a sequence that allows it to be inserted into the cell membrane. Sbg1 specifically localizes to the cell division site and also cooperates with a cell wall biosynthetic enzyme Bgs1 to achieve cell division. Consistently, in the absence of Sbg1, cells fail to divide leading to lethality. Sbg1 interacts with a number of cell division proteins, such as Cdc15, Rga7, Imp2, and Pxl1, to achieve its function as a bridge between the cell membrane and the actomyosin ring. Our work identifies a direct molecular link between the actomyosin ring and the cell membranes, explaining how ring contraction leads to inward movement of the cell periphery.
Collapse
Affiliation(s)
- Kriti Sethi
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Saravanan Palani
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Juan C. G. Cortés
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Cinetificas/Universidad de Salamanca, Salamanca, Spain
| | - Mamiko Sato
- Laboratory of Electron Microscopy/Bio-imaging Centre, and Department of Chemical and Biological Sciences, Faculty of Sciences, Japan Women’s University, Mejirodai, Bunkyo-ku, Tokyo, Japan
| | - Mayalagu Sevugan
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore
| | - Mariona Ramos
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Cinetificas/Universidad de Salamanca, Salamanca, Spain
| | - Shruthi Vijaykumar
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Masako Osumi
- Laboratory of Electron Microscopy/Bio-imaging Centre, and Department of Chemical and Biological Sciences, Faculty of Sciences, Japan Women’s University, Mejirodai, Bunkyo-ku, Tokyo, Japan
- NPO Integrated Imaging Research Support, Hirakawa-cho, Chiyoda-ku, Tokyo, Japan
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Juan Carlos Ribas
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Cinetificas/Universidad de Salamanca, Salamanca, Spain
| | - Mohan Balasubramanian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Molecular organization of cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live fission yeast. Proc Natl Acad Sci U S A 2016; 113:E5876-E5885. [PMID: 27647921 PMCID: PMC5056082 DOI: 10.1073/pnas.1608252113] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cytokinesis in animals, fungi, and amoebas depends on the constriction of a contractile ring built from a common set of conserved proteins. Many fundamental questions remain about how these proteins organize to generate the necessary tension for cytokinesis. Using quantitative high-speed fluorescence photoactivation localization microscopy (FPALM), we probed this question in live fission yeast cells at unprecedented resolution. We show that nodes, protein assembly precursors to the contractile ring, are discrete structural units with stoichiometric ratios and distinct distributions of constituent proteins. Anillin Mid1p, Fes/CIP4 homology-Bin/amphiphysin/Rvs (F-BAR) Cdc15p, IQ motif containing GTPase-activating protein (IQGAP) Rng2p, and formin Cdc12p form the base of the node that anchors the ends of myosin II tails to the plasma membrane, with myosin II heads extending into the cytoplasm. This general node organization persists in the contractile ring where nodes move bidirectionally during constriction. We observed the dynamics of the actin network during cytokinesis, starting with the extension of short actin strands from nodes, which sometimes connected neighboring nodes. Later in cytokinesis, a broad network of thick bundles coalesced into a tight ring around the equator of the cell. The actin ring was ∼125 nm wide and ∼125 nm thick. These observations establish the organization of the proteins in the functional units of a cytokinetic contractile ring.
Collapse
|
33
|
Cheffings T, Burroughs N, Balasubramanian M. Actomyosin Ring Formation and Tension Generation in Eukaryotic Cytokinesis. Curr Biol 2016; 26:R719-R737. [DOI: 10.1016/j.cub.2016.06.071] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Abstract
In animal cells, cytokinesis requires the formation of a cleavage furrow that divides the cell into two daughter cells. Furrow formation is achieved by constriction of an actomyosin ring that invaginates the plasma membrane. However, fungal cells contain a rigid extracellular cell wall surrounding the plasma membrane; thus, fungal cytokinesis also requires the formation of a special septum wall structure between the dividing cells. The septum biosynthesis must be strictly coordinated with the deposition of new plasma membrane material and actomyosin ring closure and must occur in such a way that no breach in the cell wall occurs at any time. Because of the high turgor pressure in the fungal cell, even a minor local defect might lead to cell lysis and death. Here we review our knowledge of the septum structure in the fission yeast Schizosaccharomyces pombe and of the recent advances in our understanding of the relationship between septum biosynthesis and actomyosin ring constriction and how the two collaborate to build a cross-walled septum able to support the high turgor pressure of the cell. In addition, we discuss the importance of the septum biosynthesis for the steady ingression of the cleavage furrow.
Collapse
|
35
|
Pérez P, Cortés JCG, Martín-García R, Ribas JC. Overview of fission yeast septation. Cell Microbiol 2016; 18:1201-7. [PMID: 27155541 DOI: 10.1111/cmi.12611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 02/04/2023]
Abstract
Cytokinesis is the final process of the vegetative cycle, which divides a cell into two independent daughter cells once mitosis is completed. In fungi, as in animal cells, cytokinesis requires the formation of a cleavage furrow originated by constriction of an actomyosin ring which is connected to the plasma membrane and causes its invagination. Additionally, because fungal cells have a polysaccharide cell wall outside the plasma membrane, cytokinesis requires the formation of a septum coincident with the membrane ingression. Fission yeast Schizosaccharomyces pombe is a unicellular, rod-shaped fungus that has become a popular model organism for the study of actomyosin ring formation and constriction during cell division. Here we review the current knowledge of the septation and separation processes in this fungus, as well as recent advances in understanding the functional interaction between the transmembrane enzymes that build the septum and the actomyosin ring proteins.
Collapse
Affiliation(s)
- Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, 37007, Spain
| | - Juan C G Cortés
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, 37007, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, 37007, Spain
| | - Juan C Ribas
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, 37007, Spain
| |
Collapse
|
36
|
Cortés JCG, Ramos M, Osumi M, Pérez P, Ribas JC. Fission yeast septation. Commun Integr Biol 2016; 9:e1189045. [PMID: 27574536 PMCID: PMC4988442 DOI: 10.1080/19420889.2016.1189045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 11/09/2022] Open
Abstract
In animal cells cytokinesis relies on the contraction of an actomyosin ring that pulls the plasma membrane to create a cleavage furrow, whose ingression finally divides the mother cell into two daughter cells. Fungal cells are surrounded by a tough and flexible structure called cell wall, which is considered to be the functional equivalent of the extracellular matrix in animal cells. Therefore, in addition to cleavage furrow ingression, fungal cytokinesis also requires the centripetal formation of a septum wall structure that develops between the dividing cells, whose genesis must be strictly coordinated with both the actomyosin ring closure and plasma membrane ingression. Here we briefly review what is known about the septum structure and composition in the fission yeast Schizosaccharomyces pombe, the recent progress about the relationship between septum biosynthesis and actomyosin ring constriction, and the importance of the septum and ring in the steady progression of the cleavage furrow.
Collapse
Affiliation(s)
- Juan C G Cortés
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca , Salamanca, Spain
| | - Mariona Ramos
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca , Salamanca, Spain
| | - Masako Osumi
- Faculty of Science, Laboratory of Electron Microscopy, Japan Women's University, Tokyo, Japan; Integrated Imaging Research Support, Tokyo, Japan
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca , Salamanca, Spain
| | - Juan Carlos Ribas
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca , Salamanca, Spain
| |
Collapse
|
37
|
Martín-García R, Santos B. The price of independence: cell separation in fission yeast. World J Microbiol Biotechnol 2016; 32:65. [PMID: 26931605 DOI: 10.1007/s11274-016-2021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022]
Abstract
The ultimate goal of cell division is to give rise to two viable independent daughter cells. A tight spatial and temporal regulation between chromosome segregation and cytokinesis ensures the viability of the daughter cells. Schizosaccharomyces pombe, commonly known as fission yeast, has become a leading model organism for studying essential and conserved mechanisms of the eukaryotic cell division process. Like many other eukaryotic cells it divides by binary fission and the cleavage furrow undergoes ingression due to the contraction of an actomyosin ring. In contrast to mammalian cells, yeasts as cell-walled organisms, also need to form a division septum made of cell wall material to complete the process of cytokinesis. The division septum is deposited behind the constricting ring and it will constitute the new ends of the daughter cells. Cell separation also involves cell wall degradation and this process should be precisely regulated to avoid cell lysis. In this review, we will give a brief overview of the whole cytokinesis process in fission yeast, from the positioning and assembly of the contractile ring to the final step of cell separation, and the problems generated when these processes are not precise.
Collapse
Affiliation(s)
- Rebeca Martín-García
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007, Salamanca, Spain
| | - Beatriz Santos
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007, Salamanca, Spain.
- Departamento de Microbiología y Genética, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
38
|
Rincon SA, Paoletti A. Molecular control of fission yeast cytokinesis. Semin Cell Dev Biol 2016; 53:28-38. [PMID: 26806637 DOI: 10.1016/j.semcdb.2016.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/06/2016] [Indexed: 12/29/2022]
Abstract
Cytokinesis gives rise to two independent daughter cells at the end of the cell division cycle. The fission yeast Schizosaccharomyces pombe has emerged as one of the most powerful systems to understand how cytokinesis is controlled molecularly. Like in most eukaryotes, fission yeast cytokinesis depends on an acto-myosin based contractile ring that assembles at the division site under the control of spatial cues that integrate information on cell geometry and the position of the mitotic apparatus. Cytokinetic events are also tightly coordinated with nuclear division by the cell cycle machinery. These spatial and temporal regulations ensure an equal cleavage of the cytoplasm and an accurate segregation of the genetic material in daughter cells. Although this model system has specificities, the basic mechanisms of contractile ring assembly and function deciphered in fission yeast are highly valuable to understand how cytokinesis is controlled in other organisms that rely on a contractile ring for cell division.
Collapse
Affiliation(s)
- Sergio A Rincon
- Institut Curie, Centre de Recherche, PSL Research University, F-75248 Paris, France; CNRS UMR144, F-75248 Paris, France
| | - Anne Paoletti
- Institut Curie, Centre de Recherche, PSL Research University, F-75248 Paris, France; CNRS UMR144, F-75248 Paris, France.
| |
Collapse
|