1
|
Raza S, Sarkar D, Chan LJG, Mae J, Sutter M, Petzold CJ, Kerfeld CA, Ralston CY, Gupta S, Vermaas JV. Comparative Pore Structure and Dynamics for Bacterial Microcompartment Shell Protein Assemblies in Sheets or Shells. ACS OMEGA 2024; 9:35503-35514. [PMID: 39184480 PMCID: PMC11339822 DOI: 10.1021/acsomega.4c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024]
Abstract
Bacterial microcompartments (BMCs) are protein-bound organelles found in some bacteria that encapsulate enzymes for enhanced catalytic activity. These compartments spatially sequester enzymes within semipermeable shell proteins, analogous to many membrane-bound organelles. The shell proteins assemble into multimeric tiles; hexamers, trimers, and pentamers, and these tiles self-assemble into larger assemblies with icosahedral symmetry. While icosahedral shells are the predominant form in vivo, the tiles can also form nanoscale cylinders or sheets. The individual multimeric tiles feature central pores that are key to regulating transport across the protein shell. Our primary interest is to quantify pore shape changes in response to alternative component morphologies at the nanoscale. We used molecular modeling tools to develop atomically detailed models for both planar sheets of tiles and curved structures representative of the complete shells found in vivo. Subsequently, these models were animated using classical molecular dynamics simulations. From the resulting trajectories, we analyzed the overall structural stability, water accessibility to individual residues, water residence time, and pore geometry for the hexameric and trimeric protein tiles from the Haliangium ochraceum model BMC shell. These exhaustive analyses suggest no substantial variation in pore structure or solvent accessibility between the flat and curved shell geometries. We additionally compare our analysis to hydroxyl radical footprinting data to serve as a check against our simulation results, highlighting specific residues where water molecules are bound for a long time. Although with little variation in morphology or water interaction, we propose that the planar and capsular morphology can be used interchangeably when studying permeability through BMC pores.
Collapse
Affiliation(s)
- Saad Raza
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Daipayan Sarkar
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Leanne Jade G. Chan
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joshua Mae
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Markus Sutter
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J. Petzold
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Cheryl A. Kerfeld
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Corie Y. Ralston
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sayan Gupta
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Josh V. Vermaas
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Waltmann C, Shrestha A, Olvera de la Cruz M. Patterning of multicomponent elastic shells by gaussian curvature. Phys Rev E 2024; 109:054409. [PMID: 38907410 DOI: 10.1103/physreve.109.054409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/19/2024] [Indexed: 06/24/2024]
Abstract
Recent findings suggest that shell protein distribution and the morphology of bacterial microcompartments regulate the chemical fluxes facilitating reactions which dictate their biological function. We explore how the morphology and component patterning are coupled through the competition of mean and gaussian bending energies in multicomponent elastic shells that form three-component irregular polyhedra. We observe two softer components with lower bending rigidities allocated on the edges and vertices while the harder component occupies the faces. When subjected to a nonzero interfacial line tension, the two softer components further separate and pattern into subdomains that are mediated by the gaussian curvature. We find that this degree of fractionation is maximized when there is a weaker line tension and when the ratio of bending rigidities between the two softer domains ≈2. Our results reveal a patterning mechanism in multicomponent shells that can capture the observed morphologies of bacterial microcompartments, and moreover, can be realized in synthetic vesicles.
Collapse
Affiliation(s)
| | | | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Center for Computation and Theory of Soft Materials, Northwestern University, Evanston, Illinois 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
3
|
Jones JA, Andreas MP, Giessen TW. Structural basis for peroxidase encapsulation inside the encapsulin from the Gram-negative pathogen Klebsiella pneumoniae. Nat Commun 2024; 15:2558. [PMID: 38519509 PMCID: PMC10960027 DOI: 10.1038/s41467-024-46880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP and TP-binding site mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Raza S, Sarkar D, Chan LJG, Mae J, Sutter M, Petzold CJ, Kerfeld CA, Ralston CY, Gupta S, Vermaas JV. Comparative Pore Structure and Dynamics for Bacterial Microcompartment Shell Protein Assemblies in Sheets or Shells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584231. [PMID: 38559214 PMCID: PMC10980050 DOI: 10.1101/2024.03.12.584231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bacterial microcompartments (BMCs) are protein-bound organelles found in some bacteria which encapsulate enzymes for enhanced catalytic activity. These compartments spatially sequester enzymes within semi-permeable shell proteins, analogous to many membrane-bound organelles. The shell proteins assemble into multimeric tiles; hexamers, trimers, and pentamers, and these tiles self-assemble into larger assemblies with icosahedral symmetry. While icosahedral shells are the predominant form in vivo, the tiles can also form nanoscale cylinders or sheets. The individual multimeric tiles feature central pores that are key to regulating transport across the protein shell. Our primary interest is to quantify pore shape changes in response to alternative component morphologies at the nanoscale. We use molecular modeling tools to develop atomically detailed models for both planar sheets of tiles and curved structures representative of the complete shells found in vivo. Subsequently, these models were animated using classical molecular dynamics simulations. From the resulting trajectories, we analyzed overall structural stability, water accessibility to individual residues, water residence time, and pore geometry for the hexameric and trimeric protein tiles from the Haliangium ochraceum model BMC shell. These exhaustive analyses suggest no substantial variation in pore structure or solvent accessibility between the flat and curved shell geometries. We additionally compare our analysis to hydroxyl radical footprinting data to serve as a check against our simulation results, highlighting specific residues where water molecules are bound for a long time. Although with little variation in morphology or water interaction, we propose that the planar and capsular morphology can be used interchangeably when studying permeability through BMC pores.
Collapse
Affiliation(s)
- Saad Raza
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
| | - Daipayan Sarkar
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
| | - Leanne Jade G Chan
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Current address: Calico Life Sciences LLC, South San Francisco, CA 94080
| | - Joshua Mae
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
- Department Of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
- Department Of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824
| |
Collapse
|
5
|
Veres T, Kerestély M, Kovács BM, Keresztes D, Schulc K, Seitz E, Vassy Z, Veres DV, Csermely P. Cellular forgetting, desensitisation, stress and ageing in signalling networks. When do cells refuse to learn more? Cell Mol Life Sci 2024; 81:97. [PMID: 38372750 PMCID: PMC10876757 DOI: 10.1007/s00018-024-05112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024]
Abstract
Recent findings show that single, non-neuronal cells are also able to learn signalling responses developing cellular memory. In cellular learning nodes of signalling networks strengthen their interactions e.g. by the conformational memory of intrinsically disordered proteins, protein translocation, miRNAs, lncRNAs, chromatin memory and signalling cascades. This can be described by a generalized, unicellular Hebbian learning process, where those signalling connections, which participate in learning, become stronger. Here we review those scenarios, where cellular signalling is not only repeated in a few times (when learning occurs), but becomes too frequent, too large, or too complex and overloads the cell. This leads to desensitisation of signalling networks by decoupling signalling components, receptor internalization, and consequent downregulation. These molecular processes are examples of anti-Hebbian learning and 'forgetting' of signalling networks. Stress can be perceived as signalling overload inducing the desensitisation of signalling pathways. Ageing occurs by the summative effects of cumulative stress downregulating signalling. We propose that cellular learning desensitisation, stress and ageing may be placed along the same axis of more and more intensive (prolonged or repeated) signalling. We discuss how cells might discriminate between repeated and unexpected signals, and highlight the Hebbian and anti-Hebbian mechanisms behind the fold-change detection in the NF-κB signalling pathway. We list drug design methods using Hebbian learning (such as chemically-induced proximity) and clinical treatment modalities inducing (cancer, drug allergies) desensitisation or avoiding drug-induced desensitisation. A better discrimination between cellular learning, desensitisation and stress may open novel directions in drug design, e.g. helping to overcome drug resistance.
Collapse
Affiliation(s)
- Tamás Veres
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Márk Kerestély
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Borbála M Kovács
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Dávid Keresztes
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Klára Schulc
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Erik Seitz
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Zsolt Vassy
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Dániel V Veres
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
- Turbine Ltd, Budapest, Hungary
| | - Peter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Huang Y, Wu Y, Hu H, Tong B, Wang J, Zhang S, Wang Y, Zhang J, Yin Y, Dai S, Zhao W, An B, Pu J, Wang Y, Peng C, Li N, Zhou J, Tan Y, Zhong C. Accelerating the design of pili-enabled living materials using an integrative technological workflow. Nat Chem Biol 2024; 20:201-210. [PMID: 38012344 DOI: 10.1038/s41589-023-01489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Bacteria can be programmed to create engineered living materials (ELMs) with self-healing and evolvable functionalities. However, further development of ELMs is greatly hampered by the lack of engineerable nonpathogenic chassis and corresponding programmable endogenous biopolymers. Here, we describe a technological workflow for facilitating ELMs design by rationally integrating bioinformatics, structural biology and synthetic biology technologies. We first develop bioinformatics software, termed Bacteria Biopolymer Sniffer (BBSniffer), that allows fast mining of biopolymers and biopolymer-producing bacteria of interest. As a proof-of-principle study, using existing pathogenic pilus as input, we identify the covalently linked pili (CLP) biosynthetic gene cluster in the industrial workhorse Corynebacterium glutamicum. Genetic manipulation and structural characterization reveal the molecular mechanism of the CLP assembly, ultimately enabling a type of programmable pili for ELM design. Finally, engineering of the CLP-enabled living materials transforms cellulosic biomass into lycopene by coupling the extracellular and intracellular bioconversion ability.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Yanfei Wu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Han Hu
- Shenzhen Xbiome Biotech Co. Ltd, Shenzhen, China
| | | | - Jie Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Siyu Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yanyi Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jicong Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Shengkun Dai
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjuan Zhao
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bolin An
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiahua Pu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yaomin Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Nan Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiahai Zhou
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Yan Tan
- Shenzhen Xbiome Biotech Co. Ltd, Shenzhen, China.
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| |
Collapse
|
7
|
Fang Z, Zhu YJ, Qian ZG, Xia XX. Designer protein compartments for microbial metabolic engineering. Curr Opin Biotechnol 2024; 85:103062. [PMID: 38199036 DOI: 10.1016/j.copbio.2023.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Protein compartments are distinct structures assembled in living cells via self-assembly or phase separation of specific proteins. Significant efforts have been made to discover their molecular structures and formation mechanisms, as well as their fundamental roles in spatiotemporal control of cellular metabolism. Here, we review the design and construction of synthetic protein compartments for spatial organization of target metabolic pathways toward increased efficiency and specificity. In particular, we highlight the compartmentalization strategies and recent examples to speed up desirable metabolic reactions, to reduce the accumulation of toxic metabolic intermediates, and to switch competing metabolic pathways. We also identify the most important challenges that need to be addressed for exploitation of these designer compartments as a versatile toolkit in metabolic reprogramming.
Collapse
Affiliation(s)
- Zhen Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Ya-Jiao Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| |
Collapse
|
8
|
Su Y, Mangus AM, Cordell WT, Pfleger BF. Overcoming barriers to medium-chain fatty alcohol production. Curr Opin Biotechnol 2024; 85:103063. [PMID: 38219523 PMCID: PMC10922944 DOI: 10.1016/j.copbio.2023.103063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Medium-chain fatty alcohols (mcFaOHs) are aliphatic primary alcohols containing six to twelve carbons that are widely used in materials, pharmaceuticals, and cosmetics. Microbial biosynthesis has been touted as a route to less-abundant chain-length molecules and as a sustainable alternative to current petrochemical processes. Several metabolic engineering strategies for producing mcFaOHs have been demonstrated in the literature, yet processes continue to suffer from poor selectivity and mcFaOH toxicity, leading to reduced titers, rates, and yields of the desired compounds. This opinion examines the current state of microbial mcFaOH biosynthesis, summarizing engineering efforts to tailor selectivity and improve product tolerance by implementing engineering strategies that circumvent or overcome mcFaOH toxicity.
Collapse
Affiliation(s)
- Yun Su
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna M Mangus
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William T Cordell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Zeng Z, Wijnands LM, Boeren S, Smid EJ, Notebaart RA, Abee T. Impact of vitamin B 12 on rhamnose metabolism, stress defense and in-vitro virulence of Listeria monocytogenes. Int J Food Microbiol 2024; 410:110486. [PMID: 37992553 DOI: 10.1016/j.ijfoodmicro.2023.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/05/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Listeria monocytogenes is a facultative anaerobe which can cause a severe food-borne infection known as listeriosis. L. monocytogenes is capable of utilizing various nutrient sources including rhamnose, a naturally occurring deoxy sugar abundant in foods. L. monocytogenes can degrade rhamnose into lactate, acetate and 1,2-propanediol. Our previous study showed that addition of vitamin B12 stimulated anaerobic growth of L. monocytogenes on rhamnose due to the activation of bacterial microcompartments for 1,2-propanediol utilization (pdu BMC) with concomitant production of propionate and propanol. Notably, anaerobic 1,2-propanediol metabolism has been linked to virulence of enteric pathogens including Salmonella spp. and L. monocytogenes. In this study we investigated the impact of B12 and BMC activation on i) aerobic and anerobic growth of L. monocytogenes on rhamnose and ii) the level of virulence. We observed B12-induced pdu BMC activation and growth stimulation only in anaerobically grown cells. Comparative Caco-2 virulence assays showed that these pdu BMC-induced cells have significantly higher translocation efficiency compared to non-induced cells (anaerobic growth without B12; aerobic growth with or without B12), while adhesion and invasion capacity is similar for all cells. Comparative proteome analysis showed specific and overlapping responses linked to metabolic shifts, activation of stress defense proteins and virulence factors, with RNA polymerase sigma factor SigL, teichoic acid export ATP-binding protein TagH, DNA repair and protection proteins, RadA and DPS, and glutathione synthase GshAB, previously linked to activation of virulence response in L. monocytogenes, uniquely upregulated in anaerobically rhamnose grown pdu-induced cells. Our results shed light on possible effects of B12 on L. monocytogenes competitive fitness and virulence activation when utilizing rhamnose in anaerobic conditions encountered during transmission and the human intestine.
Collapse
Affiliation(s)
- Zhe Zeng
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Lucas M Wijnands
- National Institute of Public Health and the Environment, Bilthoven, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Eddy J Smid
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Richard A Notebaart
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
10
|
Agena E, Gois IM, Bowers CM, Mahadevan R, Scarborough MJ, Lawson CE. Evaluating the feasibility of medium-chain oleochemical synthesis using microbial chain elongation. J Ind Microbiol Biotechnol 2024; 51:kuae027. [PMID: 39090985 PMCID: PMC11388927 DOI: 10.1093/jimb/kuae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
Chain elongating bacteria are a unique guild of strictly anaerobic bacteria that have garnered interest for sustainable chemical manufacturing from carbon-rich wet and gaseous waste streams. They produce C6-C8 medium-chain fatty acids, which are valuable platform chemicals that can be used directly, or derivatized to service a wide range of chemical industries. However, the application of chain elongating bacteria for synthesizing products beyond C6-C8 medium-chain fatty acids has not been evaluated. In this study, we assess the feasibility of expanding the product spectrum of chain elongating bacteria to C9-C12 fatty acids, along with the synthesis of C6 fatty alcohols, dicarboxylic acids, diols, and methyl ketones. We propose several metabolic engineering strategies to accomplish these conversions in chain elongating bacteria and utilize constraint-based metabolic modelling to predict pathway stoichiometries, assess thermodynamic feasibility, and estimate ATP and product yields. We also evaluate how producing alternative products impacts the growth rate of chain elongating bacteria via resource allocation modelling, revealing a trade-off between product chain length and class versus cell growth rate. Together, these results highlight the potential for using chain elongating bacteria as a platform for diverse oleochemical biomanufacturing and offer a starting point for guiding future metabolic engineering efforts aimed at expanding their product range. ONE-SENTENCE SUMMARY In this work, the authors use constraint-based metabolic modelling and enzyme cost minimization to assess the feasibility of using metabolic engineering to expand the product spectrum of anaerobic chain elongating bacteria.
Collapse
Affiliation(s)
- Ethan Agena
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5T 3E5, Canada
| | - Ian M Gois
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5T 3E5, Canada
| | - Connor M Bowers
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5T 3E5, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5T 3E5, Canada
- Institute of Biomedical Engineering, 164 College St., Toronto, ON M5S 3E2, Canada
| | - Matthew J Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT 05405-0156, USA
| | - Christopher E Lawson
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5T 3E5, Canada
| |
Collapse
|
11
|
Česle EEL, Ta Rs K, Jansons J, Kalniņš G. Modulation of Hybrid GRM2-type Bacterial Microcompartment Shells through BMC-H Shell Protein Fusion and Incorporation of Non-native BMC-T Shell Proteins. ACS Synth Biol 2023; 12:3275-3286. [PMID: 37937366 DOI: 10.1021/acssynbio.3c00281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Bacterial microcompartments (BMCs) are organelle-like structures in bacteria that facilitate a wide range of enzymatic reactions. The microcompartment shell contains an encapsulated enzymatic core and, in contrast to phospholipid-based eukaryotic organelle membranes, has a pseudoicosahedral shape composed of BMC-H, BMC-T, and BMC-P proteins with conserved structures. This semipermeable microcompartment shell delineates the enzymatic core assemblies and the intermediates from the rest of the cell. It is also thought to function as a barrier against toxic intermediates as well as to increase the reaction rate. These properties of BMCs have made them intriguing candidates for biotechnological applications, for which it is important to explore the potential scope of the BMC shell modulation possibilities. In this work, we explore two BMC shell modulation mechanisms: first, confirming the incorporation of three trimeric BMC-T shell proteins and two truncated BMC-T shell proteins into Klebsiella pneumoniae GRM2-type BMC protein shells containing no representatives of this group, and second, producing BMC particles from double- and triple-fused hexameric BMC-H shell proteins. These results reveal the potential for "mix and match" synthetic BMC shell formation to ensure shell properties specifically suited to the encapsulated cargo and show for the first time the involvement of an essentially dimeric pseudohexameric shell protein in BMC shell formation.
Collapse
Affiliation(s)
- Eva Emi Lija Česle
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Kaspars Ta Rs
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
- University of Latvia, Jelgavas 1, Riga 1004, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| |
Collapse
|
12
|
Rudd SR, Miranda LS, Curtis HR, Bigot Y, Diaz-Mendoza M, Hice R, Nizet V, Park HW, Blaha G, Federici BA, Bideshi DK. The Parasporal Body of Bacillus thuringiensis subsp. israelensis: A Unique Phage Capsid-Associated Prokaryotic Insecticidal Organelle. BIOLOGY 2023; 12:1421. [PMID: 37998020 PMCID: PMC10669011 DOI: 10.3390/biology12111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
The three most important commercial bacterial insecticides are all derived from subspecies of Bacillus thuringiensis (Bt). Specifically, Bt subsp. kurstaki (Btk) and Bt subsp. aizawai (Bta) are used to control larval lepidopteran pests. The third, Bt subsp. israelensis (Bti), is primarily used to control mosquito and blackfly larvae. All three subspecies produce a parasporal body (PB) during sporulation. The PB is composed of insecticidal proteins that damage the midgut epithelium, initiating a complex process that results in the death of the insect. Among these three subspecies of Bt, Bti is unique as it produces the most complex PB consisting of three compartments. Each compartment is bound by a multilaminar fibrous matrix (MFM). Two compartments contain one protein each, Cry11Aa1 and Cyt1Aa1, while the third contains two, Cry4Aa1/Cry4Ba1. Each compartment is packaged independently before coalescing into the mature spherical PB held together by additional layers of the MFM. This distinctive packaging process is unparalleled among known bacterial organelles, although the underlying molecular biology is yet to be determined. Here, we present structural and molecular evidence that the MFM has a hexagonal pattern to which Bti proteins Bt152 and Bt075 bind. Bt152 binds to a defined spot on the MFM during the development of each compartment, yet its function remains unknown. Bt075 appears to be derived from a bacteriophage major capsid protein (MCP), and though its sequence has markedly diverged, it shares striking 3-D structural similarity to the Escherichia coli phage HK97 Head 1 capsid protein. Both proteins are encoded on Bti's pBtoxis plasmid. Additionally, we have also identified a six-amino acid motif that appears to be part of a novel molecular process responsible for targeting the Cry and Cyt proteins to their cytoplasmic compartments. This paper describes several previously unknown features of the Bti organelle, representing a first step to understanding the biology of a unique process of sorting and packaging of proteins into PBs. The insights from this research suggest a potential for future applications in nanotechnology.
Collapse
Affiliation(s)
- Sarah R. Rudd
- Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA; (S.R.R.); (L.S.M.); (H.R.C.); (H.-W.P.)
- School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Pediatrics, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA;
| | - Leticia Silva Miranda
- Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA; (S.R.R.); (L.S.M.); (H.R.C.); (H.-W.P.)
| | - Hannah R. Curtis
- Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA; (S.R.R.); (L.S.M.); (H.R.C.); (H.-W.P.)
- School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yves Bigot
- UMR CNRS7247, Centre INRA Val de Loire, 37380 Nouzilly, France;
| | - Mercedes Diaz-Mendoza
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Robert Hice
- Department of Entomology, University of California, Riverside, CA 92521, USA;
| | - Victor Nizet
- Department of Pediatrics, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA;
| | - Hyun-Woo Park
- Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA; (S.R.R.); (L.S.M.); (H.R.C.); (H.-W.P.)
| | - Gregor Blaha
- Department of Biochemistry, University of California, Riverside, CA 92521, USA;
| | - Brian A. Federici
- Department of Entomology, University of California, Riverside, CA 92521, USA;
| | - Dennis K. Bideshi
- Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA; (S.R.R.); (L.S.M.); (H.R.C.); (H.-W.P.)
| |
Collapse
|
13
|
Jones JA, Andreas MP, Giessen TW. Structural basis for peroxidase encapsulation in a protein nanocompartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558302. [PMID: 37790520 PMCID: PMC10542125 DOI: 10.1101/2023.09.18.558302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Jesse A. Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Abstract
Encapsulins are a recently discovered class of prokaryotic self-assembling icosahedral protein nanocompartments measuring between 24 and 42 nm in diameter, capable of selectively encapsulating dedicated cargo proteins in vivo. They have been classified into four families based on sequence identity and operon structure, and thousands of encapsulin systems have recently been computationally identified across a wide range of bacterial and archaeal phyla. Cargo encapsulation is mediated by the presence of specific targeting motifs found in all native cargo proteins that interact with the interior surface of the encapsulin shell during self-assembly. Short C-terminal targeting peptides (TPs) are well documented in Family 1 encapsulins, while more recently, larger N-terminal targeting domains (TDs) have been discovered in Family 2. The modular nature of TPs and their facile genetic fusion to non-native cargo proteins of interest has made cargo encapsulation, both in vivo and in vitro, readily exploitable and has therefore resulted in a range of rationally engineered nano-compartmentalization systems. This review summarizes current knowledge on cargo protein encapsulation within encapsulins and highlights select studies that utilize TP fusions to non-native cargo in creative and useful ways.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Robert Benisch
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Abrahamson CH, Palmero BJ, Kennedy NW, Tullman-Ercek D. Theoretical and Practical Aspects of Multienzyme Organization and Encapsulation. Annu Rev Biophys 2023; 52:553-572. [PMID: 36854212 DOI: 10.1146/annurev-biophys-092222-020832] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The advent of biotechnology has enabled metabolic engineers to assemble heterologous pathways in cells to produce a variety of products of industrial relevance, often in a sustainable way. However, many pathways face challenges of low product yield. These pathways often suffer from issues that are difficult to optimize, such as low pathway flux and off-target pathway consumption of intermediates. These issues are exacerbated by the need to balance pathway flux with the health of the cell, particularly when a toxic intermediate builds up. Nature faces similar challenges and has evolved spatial organization strategies to increase metabolic pathway flux and efficiency. Inspired by these strategies, bioengineers have developed clever strategies to mimic spatial organization in nature. This review explores the use of spatial organization strategies, including protein scaffolding and protein encapsulation inside of proteinaceous shells, toward overcoming bottlenecks in metabolic engineering efforts.
Collapse
Affiliation(s)
- Charlotte H Abrahamson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA;
| | - Brett J Palmero
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, USA
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA;
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
16
|
Hu L, Wang Y, Wang L, Xiao S, Zheng Y, Yin G, Du G, Chen J, Kang Z. Construction of Osmotic Pressure Responsive Vacuole-like Bacterial Organelles with Capsular Polysaccharides as Building Blocks. ACS Synth Biol 2023; 12:750-760. [PMID: 36872621 DOI: 10.1021/acssynbio.2c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Many artificial organelles or subcellular compartments have been developed to tune gene expression, regulate metabolic pathways, or endow new cell functions. Most of these organelles or compartments were built using proteins or nucleic acids as building blocks. In this study, we demonstrated that capsular polysaccharide (CPS) retained inside bacteria cytosol assembled into mechanically stable CPS compartments. The CPS compartments were able to accommodate and release protein molecules but not lipids or nucleic acids. Intriguingly, we found that the CPS compartment size responds to osmotic stress and this compartment improves cell survival under high osmotic pressures, which was similar to the vacuole functionalities. By fine-tuning the synthesis and degradation of CPS with osmotic stress-responsive promoters, we achieved dynamic regulation of the size of CPS compartments and the host cells in response to external osmotic stress. Our results shed new light on developing prokaryotic artificial organelles with carbohydrate macromolecules.
Collapse
Affiliation(s)
- Litao Hu
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lingling Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Sen Xiao
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yilin Zheng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Mills CE, Waltmann C, Archer AG, Kennedy NW, Abrahamson CH, Jackson AD, Roth EW, Shirman S, Jewett MC, Mangan NM, Olvera de la Cruz M, Tullman-Ercek D. Vertex protein PduN tunes encapsulated pathway performance by dictating bacterial metabolosome morphology. Nat Commun 2022; 13:3746. [PMID: 35768404 PMCID: PMC9243111 DOI: 10.1038/s41467-022-31279-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Engineering subcellular organization in microbes shows great promise in addressing bottlenecks in metabolic engineering efforts; however, rules guiding selection of an organization strategy or platform are lacking. Here, we study compartment morphology as a factor in mediating encapsulated pathway performance. Using the 1,2-propanediol utilization microcompartment (Pdu MCP) system from Salmonella enterica serovar Typhimurium LT2, we find that we can shift the morphology of this protein nanoreactor from polyhedral to tubular by removing vertex protein PduN. Analysis of the metabolic function between these Pdu microtubes (MTs) shows that they provide a diffusional barrier capable of shielding the cytosol from a toxic pathway intermediate, similar to native MCPs. However, kinetic modeling suggests that the different surface area to volume ratios of MCP and MT structures alters encapsulated pathway performance. Finally, we report a microscopy-based assay that permits rapid assessment of Pdu MT formation to enable future engineering efforts on these structures.
Collapse
Affiliation(s)
- Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Andre G Archer
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Charlotte H Abrahamson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Alexander D Jackson
- Master of Science in Biotechnology Program, Northwestern University, Evanston, IL, USA
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Evanston, IL, USA
| | - Sasha Shirman
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
18
|
Linking the Salmonella enterica 1,2-Propanediol Utilization Bacterial Microcompartment Shell to the Enzymatic Core via the Shell Protein PduB. J Bacteriol 2022; 204:e0057621. [PMID: 35575582 DOI: 10.1128/jb.00576-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacterial microcompartments (MCPs) are protein-based organelles that house the enzymatic machinery for metabolism of niche carbon sources, allowing enteric pathogens to outcompete native microbiota during host colonization. While much progress has been made toward understanding MCP biogenesis, questions still remain regarding the mechanism by which core MCP enzymes are enveloped within the MCP protein shell. Here, we explore the hypothesis that the shell protein PduB is responsible for linking the shell of the 1,2-propanediol utilization (Pdu) MCP from Salmonella enterica serovar Typhimurium LT2 to its enzymatic core. Using fluorescent reporters, we demonstrate that all members of the Pdu enzymatic core are encapsulated in Pdu MCPs. We also demonstrate that PduB is critical for linking the entire Pdu enzyme core to the MCP shell. Using MCP purifications, transmission electron microscopy, and fluorescence microscopy, we find that shell assembly can be decoupled from the enzymatic core, as apparently empty MCPs are formed in Salmonella strains lacking PduB. Mutagenesis studies reveal that PduB is incorporated into the Pdu MCP shell via a conserved, lysine-mediated hydrogen bonding mechanism. Finally, growth assays and system-level pathway modeling reveal that unencapsulated pathway performance is strongly impacted by enzyme concentration, highlighting the importance of minimizing polar effects when conducting these functional assays. Together, these results provide insight into the mechanism of enzyme encapsulation within Pdu MCPs and demonstrate that the process of enzyme encapsulation and shell assembly are separate processes in this system, a finding that will aid future efforts to understand MCP biogenesis. IMPORTANCE MCPs are unique, genetically encoded organelles used by many bacteria to survive in resource-limited environments. There is significant interest in understanding the biogenesis and function of these organelles, both as potential antibiotic targets in enteric pathogens and also as useful tools for overcoming metabolic engineering bottlenecks. However, the mechanism by which these organelles are formed natively is still not completely understood. Here, we provide evidence of a potential mechanism in S. enterica by which a single protein, PduB, links the MCP shell and metabolic core. This finding is critical for those seeking to disrupt MCPs during pathogenic infections or for those seeking to harness MCPs as nanobioreactors in industrial settings.
Collapse
|
19
|
Williams TJ, Allen MA, Panwar P, Cavicchioli R. Into the darkness: the ecologies of novel 'microbial dark matter' phyla in an Antarctic lake. Environ Microbiol 2022; 24:2576-2603. [PMID: 35466505 PMCID: PMC9324843 DOI: 10.1111/1462-2920.16026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Uncultivated microbial clades ('microbial dark matter') are inferred to play important but uncharacterized roles in nutrient cycling. Using Antarctic lake (Ace Lake, Vestfold Hills) metagenomes, 12 metagenome-assembled genomes (MAGs; 88%-100% complete) were generated for four 'dark matter' phyla: six MAGs from Candidatus Auribacterota (=Aureabacteria, SURF-CP-2), inferred to be hydrogen- and sulfide-producing fermentative heterotrophs, with individual MAGs encoding bacterial microcompartments (BMCs), gas vesicles, and type IV pili; one MAG (100% complete) from Candidatus Hinthialibacterota (=OLB16), inferred to be a facultative anaerobe capable of dissimilatory nitrate reduction to ammonia, specialized for mineralization of complex organic matter (e.g. sulfated polysaccharides), and encoding BMCs, flagella, and Tad pili; three MAGs from Candidatus Electryoneota (=AABM5-125-24), previously reported to include facultative anaerobes capable of dissimilatory sulfate reduction, and here inferred to perform sulfite oxidation, reverse tricarboxylic acid cycle for autotrophy, and possess numerous proteolytic enzymes; two MAGs from Candidatus Lernaellota (=FEN-1099), inferred to be capable of formate oxidation, amino acid fermentation, and possess numerous enzymes for protein and polysaccharide degradation. The presence of 16S rRNA gene sequences in public metagenome datasets (88%-100% identity) suggests these 'dark matter' phyla contribute to sulfur cycling, degradation of complex organic matter, ammonification and/or chemolithoautotrophic CO2 fixation in diverse global environments.
Collapse
Affiliation(s)
- Timothy J. Williams
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| | - Michelle A. Allen
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| | - Pratibha Panwar
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| |
Collapse
|
20
|
Zeng Z, Dank A, Smid EJ, Notebaart RA, Abee T. Bacterial microcompartments in food-related microbes. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Tullman-Ercek D, Warren M. Editorial overview: Bacterial microcompartments to the fore as metabolism is put in its place. Curr Opin Microbiol 2021; 64:159-161. [PMID: 34740525 DOI: 10.1016/j.mib.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL, 60208, USA.
| | - Martin Warren
- Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ, UK
| |
Collapse
|
22
|
Huffine CA, Wheeler LC, Wing B, Cameron JC. Computational modeling and evolutionary implications of biochemical reactions in bacterial microcompartments. Curr Opin Microbiol 2021; 65:15-23. [PMID: 34717259 DOI: 10.1016/j.mib.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 11/19/2022]
Abstract
Bacterial microcompartments (BMCs) are protein-encapsulated compartments found across at least 23 bacterial phyla. BMCs contain a variety of metabolic processes that share the commonality of toxic or volatile intermediates, oxygen-sensitive enzymes and cofactors, or increased substrate concentration for magnified reaction rates. These compartmentalized reactions have been computationally modeled to explore the encapsulated dynamics, ask evolutionary-based questions, and develop a more systematic understanding required for the engineering of novel BMCs. Many crucial aspects of these systems remain unknown or unmeasured, such as substrate permeabilities across the protein shell, feasibility of pH gradients, and transport rates of associated substrates into the cell. This review explores existing BMC models, dominated in the literature by cyanobacterial carboxysomes, and highlights potentially important areas for exploration.
Collapse
Affiliation(s)
- Clair A Huffine
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA; Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA; Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Lucas C Wheeler
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Boswell Wing
- Department of Geological Sciences, Boulder, CO 80309, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA; National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
23
|
Abstract
Increasing efficiency is an important driving force behind cellular organization and often achieved through compartmentalization. Long recognized as a core principle of eukaryotic cell organization, its widespread occurrence in prokaryotes has only recently come to light. Despite the early discovery of a few microcompartments such as gas vesicles and carboxysomes, the vast majority of these structures in prokaryotes are less than 100 nm in diameter - too small for conventional light microscopy and electron microscopic thin sectioning. Consequently, these smaller-sized nanocompartments have therefore been discovered serendipitously and then through bioinformatics shown to be broadly distributed. Their small uniform size, robust self-assembly, high stability, excellent biocompatibility, and large cargo capacity make them excellent candidates for biotechnology applications. This review will highlight our current knowledge of nanocompartments, the prospects for applications as well as open question and challenges that need to be addressed to fully understand these important structures.
Collapse
|