1
|
Guo P, Liu Y, Feng J, Tang S, Wei F, Feng J. p21-activated kinase 1 (PAK1) as a therapeutic target for cardiotoxicity. Arch Toxicol 2022; 96:3143-3162. [DOI: 10.1007/s00204-022-03384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
|
2
|
Fu J, Li L, Yang X, Yang R, Amjad N, Liu L, Tan C, Chen H, Wang X. Transactivated Epidermal Growth Factor Receptor Recruitment of α-actinin-4 From F-actin Contributes to Invasion of Brain Microvascular Endothelial Cells by Meningitic Escherichia coli. Front Cell Infect Microbiol 2019; 8:448. [PMID: 30687645 PMCID: PMC6333852 DOI: 10.3389/fcimb.2018.00448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023] Open
Abstract
Bacterial penetration of the blood-brain barrier requires its successful invasion of brain microvascular endothelial cells (BMECs), and host actin cytoskeleton rearrangement in these cells is a key prerequisite for this process. We have reported previously that meningitic Escherichia coli can induce the activation of host's epidermal growth factor receptor (EGFR) to facilitate its invasion of BMECs. However, it is unknown how EGFR specifically functions during this invasion process. Here, we identified an important EGFR-interacting protein, α-actinin-4 (ACTN4), which is involved in maintaining and regulating the actin cytoskeleton. We observed that transactivated-EGFR competitively recruited ACTN4 from intracellular F-actin fibers to disrupt the cytoskeleton, thus facilitating bacterial invasion of BMECs. Strikingly, this mechanism operated not only for meningitic E. coli, but also for infections with Streptococcus suis, a Gram-positive meningitis-causing bacterial pathogen, thus revealing a common mechanism hijacked by these meningitic pathogens where EGFR competitively recruits ACTN4. Ever rising levels of antibiotic-resistant bacteria and the emergence of their extended-spectrum antimicrobial-resistant counterparts remind us that EGFR could act as an alternative non-antibiotic target to better prevent and control bacterial meningitis.
Collapse
Affiliation(s)
- Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaopei Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Nouman Amjad
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
3
|
Loh LN, McCarthy EMC, Narang P, Khan NA, Ward TH. Escherichia coli K1 utilizes host macropinocytic pathways for invasion of brain microvascular endothelial cells. Traffic 2017; 18:733-746. [PMID: 28799243 DOI: 10.1111/tra.12508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023]
Abstract
Eukaryotic cells utilize multiple endocytic pathways for specific uptake of ligands or molecules, and these pathways are commonly hijacked by pathogens to enable host cell invasion. Escherichia coli K1, a pathogenic bacterium that causes neonatal meningitis, invades the endothelium of the blood-brain barrier, but the entry route remains unclear. Here, we demonstrate that the bacteria trigger an actin-mediated uptake route, stimulating fluid phase uptake, membrane ruffling and macropinocytosis. The route of uptake requires intact lipid rafts as shown by cholesterol depletion. Using a variety of perturbants we demonstrate that small Rho GTPases and their downstream effectors have a significant effect on bacterial invasion. Furthermore, clathrin-mediated endocytosis appears to play an indirect role in E. coli K1 uptake. The data suggest that the bacteria effect a complex interplay between the Rho GTPases to increase their chances of uptake by macropinocytosis into human brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Lip Nam Loh
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Elizabeth M C McCarthy
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Priyanka Narang
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Naveed A Khan
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, Selangor, Malaysia
| | - Theresa H Ward
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
4
|
Chang AC, Krishnan S, Prasadarao NV. The effects of cytotoxic necrotizing factor 1 expression in the uptake of Escherichia coli K1 by macrophages and the onset of meningitis in newborn mice. Virulence 2016; 7:806-18. [PMID: 27221788 DOI: 10.1080/21505594.2016.1192730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Macrophages are a permissive niche for E. coli K1 multiplication for which the interaction of the bacterial outer membrane protein A and its cognate receptor CD64 are critical. Using in vitro immunofluorescence and live microscopy with ex vivo macrophage cultures from RFP-Lifeact mice, we show that cytotoxic necrotizing factor 1 (CNF1) secreted by E. coli K1 sequesters cellular actin toward microspike formation, thereby limiting actin availability for OmpA-mediated bacterial invasion. Surprisingly, the observed effects of CNF1 occur despite the absence of 67-kDa laminin receptor in macrophages. Concomitantly, the CNF1 deletion mutant of E. coli K1 (Δcnf1) invades macrophages and the brains of newborn mice in greater numbers compared to wild-type. However, the Δcnf1 strain induces less severe pathology in the brain. These results suggest a novel role for CNF1 in limiting E. coli K1 entry into macrophages while exacerbating disease severity in the brains of newborn mice.
Collapse
Affiliation(s)
- Alexander C Chang
- a Division of Infectious Diseases and Department of Pediatrics , Children's Hospital Los Angeles , Los Angeles , CA , USA
| | - Subramanian Krishnan
- a Division of Infectious Diseases and Department of Pediatrics , Children's Hospital Los Angeles , Los Angeles , CA , USA
| | - Nemani V Prasadarao
- a Division of Infectious Diseases and Department of Pediatrics , Children's Hospital Los Angeles , Los Angeles , CA , USA.,b Department of Surgery , Children's Hospital Los Angeles , Los Angeles , CA , USA.,c Keck School of Medicine , University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
5
|
Daub JT, Hofer T, Cutivet E, Dupanloup I, Quintana-Murci L, Robinson-Rechavi M, Excoffier L. Evidence for polygenic adaptation to pathogens in the human genome. Mol Biol Evol 2013; 30:1544-58. [PMID: 23625889 DOI: 10.1093/molbev/mst080] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most approaches aiming at finding genes involved in adaptive events have focused on the detection of outlier loci, which resulted in the discovery of individually "significant" genes with strong effects. However, a collection of small effect mutations could have a large effect on a given biological pathway that includes many genes, and such a polygenic mode of adaptation has not been systematically investigated in humans. We propose here to evidence polygenic selection by detecting signals of adaptation at the pathway or gene set level instead of analyzing single independent genes. Using a gene-set enrichment test to identify genome-wide signals of adaptation among human populations, we find that most pathways globally enriched for signals of positive selection are either directly or indirectly involved in immune response. We also find evidence for long-distance genotypic linkage disequilibrium, suggesting functional epistatic interactions between members of the same pathway. Our results show that past interactions with pathogens have elicited widespread and coordinated genomic responses, and suggest that adaptation to pathogens can be considered as a primary example of polygenic selection.
Collapse
Affiliation(s)
- Josephine T Daub
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Berne, Berne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
6
|
Shanmuganathan MV, Krishnan S, Fu X, Prasadarao NV. Attenuation of biopterin synthesis prevents Escherichia coli K1 invasion of brain endothelial cells and the development of meningitis in newborn mice. J Infect Dis 2013; 207:61-71. [PMID: 23100563 PMCID: PMC3523800 DOI: 10.1093/infdis/jis656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/10/2012] [Indexed: 11/12/2022] Open
Abstract
Elevated levels of pterins and nitric oxide (NO) are observed in patients with septic shock and bacterial meningitis. We demonstrate that Escherichia coli K1 infection of human brain microvascular endothelial cells (HBMECs) induces the expression of guanosine triphosphate cyclohydrolase (GCH1), the rate-limiting enzyme in pterin synthesis, thereby elevating levels of biopterin. DAHP (2,4-diamino hydroxyl pyrimidine), a specific inhibitor of GCH1, prevented biopterin and NO production and invasion of E. coli K1 in HBMECs. GCH1 interaction with Ecgp96, the receptor for outer membrane protein A of E. coli K1, also increases on infection, and suppression of Ecgp96 expression prevents GCH1 activation and biopterin synthesis. Pretreatment of newborn mice with DAHP prevented the production of biopterin and the development of meningitis. These results suggest a novel role for biopterin synthesis in the pathogenesis of E. coli K1 meningitis.
Collapse
Affiliation(s)
| | | | - Xiaowei Fu
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles
| | - Nemani V. Prasadarao
- Division of Infectious Diseases, Department of Pediatrics
- Department of Surgery
- Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
7
|
Guo S, Zhou Y, Xing C, Lok J, Som AT, Ning M, Ji X, Lo EH. The vasculome of the mouse brain. PLoS One 2012; 7:e52665. [PMID: 23285140 PMCID: PMC3527566 DOI: 10.1371/journal.pone.0052665] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/20/2012] [Indexed: 01/08/2023] Open
Abstract
The blood vessel is no longer viewed as passive plumbing for the brain. Increasingly, experimental and clinical findings suggest that cerebral endothelium may possess endocrine and paracrine properties – actively releasing signals into and receiving signals from the neuronal parenchyma. Hence, metabolically perturbed microvessels may contribute to central nervous system (CNS) injury and disease. Furthermore, cerebral endothelium can serve as sensors and integrators of CNS dysfunction, releasing measurable biomarkers into the circulating bloodstream. Here, we define and analyze the concept of a brain vasculome, i.e. a database of gene expression patterns in cerebral endothelium that can be linked to other databases and systems of CNS mediators and markers. Endothelial cells were purified from mouse brain, heart and kidney glomeruli. Total RNA were extracted and profiled on Affymetrix mouse 430 2.0 micro-arrays. Gene expression analysis confirmed that these brain, heart and glomerular preparations were not contaminated by brain cells (astrocytes, oligodendrocytes, or neurons), cardiomyocytes or kidney tubular cells respectively. Comparison of the vasculome between brain, heart and kidney glomeruli showed that endothelial gene expression patterns were highly organ-dependent. Analysis of the brain vasculome demonstrated that many functionally active networks were present, including cell adhesion, transporter activity, plasma membrane, leukocyte transmigration, Wnt signaling pathways and angiogenesis. Analysis of representative genome-wide-association-studies showed that genes linked with Alzheimer’s disease, Parkinson’s disease and stroke were detected in the brain vasculome. Finally, comparison of our mouse brain vasculome with representative plasma protein databases demonstrated significant overlap, suggesting that the vasculome may be an important source of circulating signals in blood. Perturbations in cerebral endothelial function may profoundly affect CNS homeostasis. Mapping and dissecting the vasculome of the brain in health and disease may provide a novel database for investigating disease mechanisms, assessing therapeutic targets and exploring new biomarkers for the CNS.
Collapse
Affiliation(s)
- Shuzhen Guo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SG); (EHL)
| | - Yiming Zhou
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Changhong Xing
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Angel T. Som
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - MingMing Ning
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xunming Ji
- Cerebrovascular Research Center, XuanWu Hospital, Capital Medical University, Beijing, Peoples Republic of China
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SG); (EHL)
| |
Collapse
|
8
|
IbeA and OmpA of Escherichia coli K1 Exploit Rac1 Activation for Invasion of Human Brain Microvascular Endothelial Cells. Infect Immun 2012. [DOI: 10.1128/iai.00855-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Krishnan S, Chen S, Turcatel G, Arditi M, Prasadarao NV. Regulation of Toll-like receptor 2 interaction with Ecgp96 controls Escherichia coli K1 invasion of brain endothelial cells. Cell Microbiol 2012; 15:63-81. [PMID: 22963587 DOI: 10.1111/cmi.12026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/16/2012] [Accepted: 09/04/2012] [Indexed: 01/19/2023]
Abstract
The interaction of outer membrane protein A (OmpA) with its receptor, Ecgp96 (a homologue of Hsp90β), is critical for the pathogenesis of Escherichia coli K1 meningitis. Since Hsp90 chaperones Toll-like receptors (TLRs), we examined the role of TLRs in E. coli K1 infection. Herein, we show that newborn TLR2(-/-) mice are resistant to E. coli K1 meningitis, while TLR4(-/-) mice succumb to infection sooner. In vitro, OmpA+ E. coli infection selectively upregulates Ecgp96 and TLR2 in human brain microvascular endothelial cells (HBMEC), whereas OmpA- E. coli upregulates TLR4 in these cells. Furthermore, infection with OmpA+ E. coli causes Ecgp96 and TLR2 translocate to the plasma membrane of HBMEC as a complex. Immunoprecipitation studies of the plasma membrane fractions from infected HBMEC reveal that the C termini of Ecgp96 and TLR2 are critical for OmpA+ E. coli invasion. Knockdown of TLR2 using siRNA results in inefficient membrane translocation of Ecgp96 and significantly reduces invasion. In addition, the interaction of Ecgp96 andTLR2 induces a bipartite signal, one from Ecgp96 through PKC-α while the other from TLR2 through MyD88, ERK1/2 and NF-κB. This bipartite signal ultimately culminates in the efficient production of NO, which in turn promotes E. coli K1 invasion of HBMEC.
Collapse
Affiliation(s)
- Subramanian Krishnan
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | |
Collapse
|
10
|
Krishnan S, Fernandez GE, Sacks DB, Prasadarao NV. IQGAP1 mediates the disruption of adherens junctions to promote Escherichia coli K1 invasion of brain endothelial cells. Cell Microbiol 2012; 14:1415-33. [PMID: 22519731 DOI: 10.1111/j.1462-5822.2012.01805.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 04/09/2012] [Accepted: 04/16/2012] [Indexed: 12/17/2022]
Abstract
The transcellular entry of Escherichia coli K1 through human brain microvascular endothelial cells (HBMEC) is responsible for tight junction disruption, leading to brain oedema in neonatal meningitis. Previous studies demonstrated that outer membrane protein A (OmpA) of E. coli K1 interacts with its receptor, Ecgp96, to induce PKC-α phosphorylation, adherens junction (AJ) disassembly (by dislodging β-catenin from VE-cadherin), and remodelling of actin in HBMEC. We report here that IQGAP1 mediates β-catenin dissociation from AJs to promote actin polymerization required for E. coli K1 invasion of HBMEC. Overexpression of C-terminal truncated IQGAP1 (IQΔC) that cannot bind β-catenin prevents both AJ disruption and E. coli K1 entry. Of note, phospho-PKC-α interacts with the C-terminal portion of Ecgp96 as well as with VE-cadherin after IQGAP1-mediated AJ disassembly. HBMEC overexpressing either C-terminal truncated Ecgp96 (Ecgp96Δ200) or IQΔC upon infection with E. coli showed no interaction of phospho-PKC-α with Ecgp96. These data indicate that the binding of OmpA to Ecgp96 induces PKC-α phosphorylation and association of phospho-PKC-α with Ecgp96, and then signals IQGAP1 to detach β-catenin from AJs. Subsequently, IQGAP1/β-catenin bound actin translocates to the site of E. coli K1 attachment to promote invasion.
Collapse
Affiliation(s)
- Subramanian Krishnan
- Division of Infectious Diseases, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California School of Medicine, Los Angeles, CA 90027, USA
| | | | | | | |
Collapse
|
11
|
Krishnan S, Prasadarao NV. Outer membrane protein A and OprF: versatile roles in Gram-negative bacterial infections. FEBS J 2012; 279:919-31. [PMID: 22240162 DOI: 10.1111/j.1742-4658.2012.08482.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Outer membrane protein A (OmpA) is an abundant protein of Escherichia coli and other enterobacteria and has a multitude of functions. Although the structural features and porin function of OmpA have been well studied, its role in the pathogenesis of various bacterial infections has emerged only during the last decade. The four extracellular loops of OmpA interact with a variety of host tissues for adhesion to and invasion of the cell and for evasion of host-defense mechanisms when inside the cell. This review describes how various regions present in the extracellular loops of OmpA contribute to the pathogenesis of neonatal meningitis induced by E. coli K1 and to many other functions. In addition, the function of OmpA-like proteins, such as OprF of Pseudomonas aeruginosa, is discussed.
Collapse
Affiliation(s)
- Subramanian Krishnan
- Division of Infectious Diseases, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, CA, USA
| | | |
Collapse
|
12
|
Maruvada R, Argon Y, Prasadarao NV. Escherichia coli interaction with human brain microvascular endothelial cells induces signal transducer and activator of transcription 3 association with the C-terminal domain of Ec-gp96, the outer membrane protein A receptor for invasion. Cell Microbiol 2008; 10:2326-38. [PMID: 18662321 PMCID: PMC2579944 DOI: 10.1111/j.1462-5822.2008.01214.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our inability to develop new therapeutic strategies to prevent meningitis due to Escherichia coli K1 is attributed to our incomplete understanding of the pathophysiology of the disease. Previously, we demonstrated that outer membrane protein A of E. coli interacts with a gp96 homologue, Ec-gp96, on human brain microvascular endothelial cells (HBMEC) for invasion. However, signalling events mediated by Ec-gp96 that allow internalization of E. coli are incompletely understood. Here, we demonstrate that signal transducer and activator of transcription 3 (Stat3) activation and its interaction with Ec-gp96 were critical for E. coli invasion. The activated Stat3 was colocalized with Ec-gp96 at the actin condensation sites, and overexpressing a dominant negative (DN) form of Stat3 in HBMEC significantly abrogated the invasion. Furthermore, overexpression of Ec-gp96Delta200, the C-terminal 214-amino-acid truncated Ec-gp96, prevented the invasion of E. coli in HBMEC. In contrast, lack of ATP binding by gp96 did not affect the invasion. Overexpression of DN forms of either phosphatidyl inositol-3 kinase (PI3-kinase) subunit p85 or protein kinase C-alpha (PKC-alpha) had no effect on the activation of Stat3 and its association with Ec-gp96, whereas overexpression of DN-Stat3 abolished the activation of both PI3-kinase and PKC-alpha. Together, our findings identified a novel interaction of Stat3 with Ec-gp96, upstream of PI3-kinase and PKC-alpha activation that is required for the invasion of E. coli into HBMEC.
Collapse
Affiliation(s)
- Ravi Maruvada
- Division of Infectious Diseases, The Saban Research Institute, Childrens Hospital Los Angeles
| | - Yair Argon
- Division of Cell Pathology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nemani V. Prasadarao
- Division of Infectious Diseases, The Saban Research Institute, Childrens Hospital Los Angeles
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
13
|
Sahni SK. Endothelial cell infection and hemostasis. Thromb Res 2007; 119:531-49. [PMID: 16875715 DOI: 10.1016/j.thromres.2006.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 06/09/2006] [Accepted: 06/09/2006] [Indexed: 01/24/2023]
Abstract
As an important component of the vasculature, endothelial cell lining covers the inner surface of blood vessels and provides an active barrier interface between the vascular and perivascular compartments. In addition to maintaining vasomotor equilibrium and organ homeostasis and communicating with circulating blood cells, the vascular endothelium also serves as the preferred target for a number of infectious agents. This review article focuses on the roles of interactions between vascular endothelial cells and invading pathogens and resultant endothelial activation in the pathogenesis of important human diseases with viral and bacterial etiologies. In this perspective, the signal transduction events that regulate vascular inflammation and basis for endothelial cell tropism exhibited by certain specific viruses and pathogenic bacteria are also discussed.
Collapse
Affiliation(s)
- Sanjeev K Sahni
- Department of Medicine, Hematology-Oncology Unit, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|