1
|
Warschkau D, Klein S, Schadt E, Doellinger J, Schares G, Seeber F. Proteomic identification of a Toxoplasma gondii sporozoite-specific antigen using HDAC3 inhibitor-treated tachyzoites as surrogate. FEMS MICROBES 2024; 6:xtae034. [PMID: 39802703 PMCID: PMC11719624 DOI: 10.1093/femsmc/xtae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
The apicomplexan parasite Toxoplasma gondii has a complex life cycle. Access to sexual stages and sporozoite-containing oocysts, essential for studying the parasite's environmental transmission, is limited and requires animal experiments with cats. Thus, alternatives and resource-efficient methods are needed. Several molecular factors and transcriptional switches responsible for differentiation have been identified in recent years. In tachyzoites, drug-induced inhibition of the histone deacetylase HDAC3, or genetic depletion of transcription factors regulating HDAC3, leads to the expression of genes that are specific to sexual stages and oocysts. Here, we applied this concept and showed that the commercially available HDAC3 inhibitor apicidin could be used to identify the hitherto unknown antigen of the sporozoite-specific monoclonal antibody G1/19 in tachyzoites. Using mass spectrometry of immunoprecipitated G1/19 target protein from apicidin-treated cultures, we identified it as SporoSAG. In addition, for the much less abundant sporozoite-specific protein LEA860, apicidin treatment was still sufficient to induce a detectable protein level in immunofluorescence microscopy. We also discuss further applications and the limitations of this approach. This allows to overcome issues with the paucity of material of sexual stages and oocysts from T. gondii to some extent without the need for cat-derived material.
Collapse
Affiliation(s)
- David Warschkau
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, 13353 Berlin, Germany
- Humboldt-Universität zu Berlin, Department of Biology, 10099 Berlin, Germany
| | - Sandra Klein
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, 13353 Berlin, Germany
| | - Ella Schadt
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, 13353 Berlin, Germany
| | - Joerg Doellinger
- ZBS6: Proteomics and Spectroscopy, Robert Koch Institute, 13353 Berlin, Germany
| | - Gereon Schares
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Laboratory for Toxoplasmosis, 17493 Greifswald-Insel Riems, Germany
| | - Frank Seeber
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, 13353 Berlin, Germany
| |
Collapse
|
2
|
Yu Z, Chen S, Aleem M, He S, Yang Y, Zhou T, Liu J, Luo J, Yan R, Xu L, Song X, Li X. Histone deacetylase SIR2 in Toxoplasma gondii modulates functions of murine macrophages in vitro and protects mice against acute toxoplasmosis in vivo. Microb Pathog 2021; 154:104835. [PMID: 33731306 DOI: 10.1016/j.micpath.2021.104835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022]
Abstract
Silent information regulator 2 (SIR2) in histone deacetylase (HDAC) is particularly conserved and widely expressed in all eukaryotic cells. HDAC is a crucial post-translational modification protein regulating gene expression. In the present study, a Toxoplasma gondii (T. gondii) silent information regulator 2 (TgSIR2) gene in HDAC was cloned and the modulation effects of recombinant TgSIR2 (rTgSIR2) on murine Ana-1 macrophages were characterized in vitro. The results indicated that rTgSIR2 had a good capacity to eliminate T. gondii by promoting proliferation, apoptosis, and phagocytosis, and modulating the secretion of nitric oxide (NO), pro-inflammatory cytokines, and anti-inflammatory cytokines. In in vivo experiments, animals were immunized with recombinant TgSIR2, followed by a lethal dose of T. gondii RH strain challenge 14 days after the second immunization. As compared to the blank and control group, the animals immunized with rTgSIR2 could generate specific humoral responses, as demonstrated by the significantly high titers of total IgG and subclasses IgG1 and IgG2a. Significant increases of IFN-γ, IL-4, and IL-10 were seen, while no significant changes were detected in IL-17. The percentage of CD4+ and CD8+ T lymphocytes in animals immunized with rTgSIR2 significantly increased. A significantly long survival time was also observed in animals vaccinated with rTgSIR2 14 days after the last immunization. All these results clearly indicate that rTgSIR2 played an essential role in modulating host macrophages and offered the potential to develop a therapeutic strategy against T. gondii.
Collapse
Affiliation(s)
- ZhengQing Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - SiYing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - MuhammadTahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - SuHui He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Yang Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - TianYuan Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - JunLong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China.
| | - JianXun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China.
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
3
|
Salvioni A, Belloy M, Lebourg A, Bassot E, Cantaloube-Ferrieu V, Vasseur V, Blanié S, Liblau RS, Suberbielle E, Robey EA, Blanchard N. Robust Control of a Brain-Persisting Parasite through MHC I Presentation by Infected Neurons. Cell Rep 2020; 27:3254-3268.e8. [PMID: 31189109 DOI: 10.1016/j.celrep.2019.05.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2018] [Revised: 03/03/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Control of CNS pathogens by CD8 T cells is key to avoid fatal neuroinflammation. Yet, the modalities of MHC I presentation in the brain are poorly understood. Here, we analyze the antigen presentation mechanisms underlying CD8 T cell-mediated control of the Toxoplasma gondii parasite in the CNS. We show that MHC I presentation of an efficiently processed model antigen (GRA6-OVA), even when not expressed in the bradyzoite stage, reduces cyst burden and dampens encephalitis in C57BL/6 mice. Antigen presentation assays with infected primary neurons reveal a correlation between lower MHC I presentation of tachyzoite antigens by neurons and poor parasite control in vivo. Using conditional MHC I-deficient mice, we find that neuronal MHC I presentation is required for robust restriction of T. gondii in the CNS during chronic phase, showing the importance of MHC I presentation by CNS neurons in the control of a prevalent brain pathogen.
Collapse
Affiliation(s)
- Anna Salvioni
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Marcy Belloy
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Aurore Lebourg
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Emilie Bassot
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Vincent Cantaloube-Ferrieu
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Virginie Vasseur
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Sophie Blanié
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Roland S Liblau
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Elsa Suberbielle
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Ellen A Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicolas Blanchard
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France.
| |
Collapse
|
4
|
The Bradyzoite: A Key Developmental Stage for the Persistence and Pathogenesis of Toxoplasmosis. Pathogens 2020; 9:pathogens9030234. [PMID: 32245165 PMCID: PMC7157559 DOI: 10.3390/pathogens9030234] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous parasitic protist found in a wide variety of hosts, including a large proportion of the human population. Beyond an acute phase which is generally self-limited in immunocompetent individuals, the ability of the parasite to persist as a dormant stage, called bradyzoite, is an important aspect of toxoplasmosis. Not only is this stage not eliminated by current treatments, but it can also reactivate in immunocompromised hosts, leading to a potentially fatal outcome. Yet, despite its critical role in the pathology, the bradyzoite stage is relatively understudied. One main explanation is that it is a considerably challenging model, which essentially has to be derived from in vivo sources. However, recent progress on genetic manipulation and in vitro differentiation models now offers interesting perspectives for tackling key biological questions related to this particularly important developmental stage.
Collapse
|
5
|
Vanagas L, Jeffers V, Bogado SS, Dalmasso MC, Sullivan WJ, Angel SO. Toxoplasma histone acetylation remodelers as novel drug targets. Expert Rev Anti Infect Ther 2013. [PMID: 23199404 DOI: 10.1586/eri.12.100] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Abstract
Toxoplasma gondii is a leading cause of neurological birth defects and a serious opportunistic pathogen. The authors and others have found that Toxoplasma uses a unique nucleosome composition supporting a fine gene regulation together with other factors. Post-translational modifications in histones facilitate the establishment of a global chromatin environment and orchestrate DNA-related biological processes. Histone acetylation is one of the most prominent post-translational modifications influencing gene expression. Histone acetyltransferases and histone deacetylases have been intensively studied as potential drug targets. In particular, histone deacetylase inhibitors have activity against apicomplexan parasites, underscoring their potential as a new class of antiparasitic compounds. In this review, we summarize what is known about Toxoplasma histone acetyltransferases and histone deacetylases, and discuss the inhibitors studied to date. Finally, the authors discuss the distinct possibility that the unique nucleosome composition of Toxoplasma, which harbors a nonconserved H2Bv variant histone, might be targeted in novel therapeutics directed against this parasite.
Collapse
Affiliation(s)
- Laura Vanagas
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
6
|
Dixon SE, Stilger KL, Elias EV, Naguleswaran A, Sullivan WJ. A decade of epigenetic research in Toxoplasma gondii. Mol Biochem Parasitol 2010; 173:1-9. [PMID: 20470832 DOI: 10.1016/j.molbiopara.2010.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2010] [Revised: 04/30/2010] [Accepted: 05/04/2010] [Indexed: 11/25/2022]
Abstract
In the past 10 years, the field of parasitology has witnessed an explosion of studies investigating gene regulation. In this review, we will describe recent advances largely stemming from the study of Toxoplasma gondii, a significant opportunistic pathogen and useful model for other apicomplexan protozoa. Surprising findings have emerged, including the discovery of a wealth of epigenetic machinery in these primitive eukaryotes, unusual histone variants, and a battery of plant-like transcription factors. We will elaborate on how these unusual features impact parasite physiology and potential therapeutics as we summarize some of the key discoveries from the last decade. We will close by proposing a few questions to address in the next 10 years.
Collapse
Affiliation(s)
- Stacy E Dixon
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, 46202, United States
| | | | | | | | | |
Collapse
|
7
|
Bougdour A, Braun L, Cannella D, Hakimi MA. Chromatin modifications: implications in the regulation of gene expression inToxoplasma gondii. Cell Microbiol 2010; 12:413-23. [DOI: 10.1111/j.1462-5822.2010.01446.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
|
8
|
Sullivan WJ, Smith AT, Joyce BR. Understanding mechanisms and the role of differentiation in pathogenesis of Toxoplasma gondii: a review. Mem Inst Oswaldo Cruz 2010; 104:155-61. [PMID: 19430637 DOI: 10.1590/s0074-02762009000200005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2008] [Accepted: 12/16/2008] [Indexed: 11/22/2022] Open
Abstract
Parasite differentiation from proliferating tachyzoites into latent bradyzoites is central to pathogenesis and transmission of the intracellular protozoan pathogen Toxoplasma gondii. The presence of bradyzoite-containing cysts in human hosts and their subsequent rupture can cause life-threatening recrudescence of acute infection in the immunocompromised and cyst formation in other animals contributes to zoonotic transmission and widespread dissemination of the parasite. In this review, we discuss the evidence showing how the clinically relevant process of bradyzoite differentiation is regulated at both transcriptional and post-transcriptional levels. Specific regulatory factors implicated in modulating bradyzoite differentiation include promoter-based cis-elements, epigenetic modifications and protein translation control through eukaryotic initiation factor -2 (eIF2). In addition to a summary of the current state of knowledge in these areas we discuss the pharmacological ramifications and pose some questions for future research.
Collapse
Affiliation(s)
- William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
9
|
Ehrenkaufer GM, Hackney JA, Singh U. A developmentally regulated Myb domain protein regulates expression of a subset of stage-specific genes in Entamoeba histolytica. Cell Microbiol 2009; 11:898-910. [PMID: 19239479 DOI: 10.1111/j.1462-5822.2009.01300.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Abstract
Conversion between a cyst and trophozoite stage is essential to disease transmission and pathogenesis in the parasitic protist Entamoeba histolytica. A transcriptomic analysis of E. histolytica cysts and trophozoites has recently been accomplished, but the molecular basis of the regulation of encystation is not known. We have now identified a developmentally regulated Myb protein (belonging to the SHAQKY family of Myb proteins), which controls expression of a subset of amoebic stage-specific genes. Overexpression of the nuclear localized Myb protein resulted in a transcriptome that overlapped significantly with the expression profile of amoebic cysts. Analysis of promoters from genes regulated by the Myb protein identified a CCCCCC promoter motif to which amoebic nuclear protein(s) bind in a sequence-specific manner. Chromatin immunoprecipitation demonstrated that the E. histolytica Myb protein binds to promoters of genes which contain the CCCCCC motif and which are regulated by the Myb protein. This work is the first identification of a transcription factor, which regulates expression of a subset of stage-specific genes in E. histolytica. Identification of transcriptional regulatory networks that control developmental pathways will provide novel insights into the biology of this important human pathogen.
Collapse
Affiliation(s)
- Gretchen M Ehrenkaufer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5107, USA
| | | | | |
Collapse
|
10
|
Xia D, Sanderson SJ, Jones AR, Prieto JH, Yates JR, Bromley E, Tomley FM, Lal K, Sinden RE, Brunk BP, Roos DS, Wastling JM. The proteome of Toxoplasma gondii: integration with the genome provides novel insights into gene expression and annotation. Genome Biol 2008; 9:R116. [PMID: 18644147 PMCID: PMC2530874 DOI: 10.1186/gb-2008-9-7-r116] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2008] [Revised: 06/17/2008] [Accepted: 07/21/2008] [Indexed: 11/10/2022] Open
Abstract
A proteomics analysis identifies one third of the predicted Toxoplasma gondii proteins and integrates proteomics and genomics data to refine genome annotation. Background Although the genomes of many of the most important human and animal pathogens have now been sequenced, our understanding of the actual proteins expressed by these genomes and how well they predict protein sequence and expression is still deficient. We have used three complementary approaches (two-dimensional electrophoresis, gel-liquid chromatography linked tandem mass spectrometry and MudPIT) to analyze the proteome of Toxoplasma gondii, a parasite of medical and veterinary significance, and have developed a public repository for these data within ToxoDB, making for the first time proteomics data an integral part of this key genome resource. Results The draft genome for Toxoplasma predicts around 8,000 genes with varying degrees of confidence. Our data demonstrate how proteomics can inform these predictions and help discover new genes. We have identified nearly one-third (2,252) of all the predicted proteins, with 2,477 intron-spanning peptides providing supporting evidence for correct splice site annotation. Functional predictions for each protein and key pathways were determined from the proteome. Importantly, we show evidence for many proteins that match alternative gene models, or previously unpredicted genes. For example, approximately 15% of peptides matched more convincingly to alternative gene models. We also compared our data with existing transcriptional data in which we highlight apparent discrepancies between gene transcription and protein expression. Conclusion Our data demonstrate the importance of protein data in expression profiling experiments and highlight the necessity of integrating proteomic with genomic data so that iterative refinements of both annotation and expression models are possible.
Collapse
Affiliation(s)
- Dong Xia
- Department of Pre-clinical Veterinary Science, Faculty of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
It has been 100 years since Toxoplasma gondii was initially described in Tunis by Nicolle and Manceaux (1908) in the tissues of the gundi (Ctenodoactylus gundi) and in Brazil by Splendore (1908) in the tissues of a rabbit. T. gondii is a ubiquitous, Apicomplexan parasite of warm-blooded animals that can cause several clinical syndromes including encephalitis, chorioretinitis and congenital infection. Due to the extensive repertoire of applicable experimental techniques available for this pathogen it has become a model organism for the study of intracellular pathogens. Data obtained from genome-wide expression studies, including ChIP on chip and proteomics surveys, are refining our understanding of the genetic networks involved in the developmental biology of this pathogen as well as the interactions of the parasite with its host. This review addresses recent advances in our understanding of the developmental biology and host-pathogen relationships of T. gondii.
Collapse
|
12
|
Behnke MS, Radke JB, Smith AT, Sullivan WJ, White MW. The transcription of bradyzoite genes in Toxoplasma gondii is controlled by autonomous promoter elements. Mol Microbiol 2008; 68:1502-18. [PMID: 18433450 PMCID: PMC2440561 DOI: 10.1111/j.1365-2958.2008.06249.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 04/06/2008] [Indexed: 11/28/2022]
Abstract
Experimental evidence suggests that apicomplexan parasites possess bipartite promoters with basal and regulated cis-elements similar to other eukaryotes. Using a dual luciferase model adapted for recombinational cloning and use in Toxoplasma gondii, we show that genomic regions flanking 16 parasite genes, which encompass examples of constitutive and tachyzoite- and bradyzoite-specific genes, are able to reproduce the appropriate developmental stage expression in a transient luciferase assay. Mapping of cis-acting elements in several bradyzoite promoters led to the identification of short sequence spans that are involved in control of bradyzoite gene expression in multiple strains and under different bradyzoite induction conditions. Promoters that regulate the heat shock protein BAG1 and a novel bradyzoite-specific NTPase during bradyzoite development were fine mapped to a 6-8 bp resolution and these minimal cis-elements were capable of converting a constitutive promoter to one that is induced by bradyzoite conditions. Gel-shift experiments show that mapped cis-elements are bound by parasite protein factors with the appropriate functional sequence specificity. These studies are the first to identify the minimal sequence elements that are required and sufficient for bradyzoite gene expression and to show that bradyzoite promoters are maintained in a 'poised' chromatin state throughout the intermediate host life cycle in low passage strains. Together, these data demonstrate that conventional eukaryotic promoter mechanisms work with epigenetic processes to regulate developmental gene expression during tissue cyst formation.
Collapse
Affiliation(s)
- Michael S Behnke
- Department of Veterinary Molecular Biology, Montana State University BozemanMT 59717, USA
| | - Josh B Radke
- Department of Veterinary Molecular Biology, Montana State University BozemanMT 59717, USA
| | - Aaron T Smith
- Department Pharmacology and Toxicology, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - William J Sullivan
- Department Pharmacology and Toxicology, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - Michael W White
- Department of Veterinary Molecular Biology, Montana State University BozemanMT 59717, USA
| |
Collapse
|
13
|
Miska KB, Fetterer RH, Rosenberg GH. Analysis of Transcripts from Intracellular Stages of Eimeria acervulina Using Expressed Sequence Tags. J Parasitol 2008; 94:462-6. [DOI: 10.1645/ge-1186.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022] Open
|
14
|
Langsley G, van Noort V, Carret C, Meissner M, de Villiers EP, Bishop R, Pain A. Comparative genomics of the Rab protein family in Apicomplexan parasites. Microbes Infect 2008; 10:462-70. [PMID: 18468471 PMCID: PMC3317772 DOI: 10.1016/j.micinf.2008.01.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2008] [Accepted: 01/30/2008] [Indexed: 11/24/2022]
Abstract
Rab genes encode a subgroup of small GTP-binding proteins within the ras super-family that regulate targeting and fusion of transport vesicles within the secretory and endocytic pathways. These genes are of particular interest in the protozoan phylum Apicomplexa, since a family of Rab GTPases has been described for Plasmodium and most putative secretory pathway proteins in Apicomplexa have conventional predicted signal peptides. Moreover, peptide motifs have now been identified within a large number of secreted Plasmodium proteins that direct their targeting to the red blood cell cytosol, the apicoplast, the food vacuole and Maurer's clefs; in contrast, motifs that direct proteins to secretory organelles (rhoptries, micronemes and microspheres) have yet to be defined. The nature of the vesicle in which these proteins are transported to their destinations remains unknown and morphological structures equivalent to the endoplasmic reticulum and trans-Golgi stacks typical of other eukaryotes cannot be visualised in Apicomplexa. Since Rab GTPases regulate vesicular traffic in all eukaryotes, and this traffic in intracellular parasites could regulate import of nutrient and drugs and export of antigens, host cell modulatory proteins and lactate we compare and contrast here the Rab families of Apicomplexa.
Collapse
Affiliation(s)
- Gordon Langsley
- Département de Maladies Infectieuses, Institut Cochin, Inserm, U567, CNRS, UMR 8104, Faculté de Médecine Paris V - Hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ehrenkaufer GM, Eichinger DJ, Singh U. Trichostatin A effects on gene expression in the protozoan parasite Entamoeba histolytica. BMC Genomics 2007; 8:216. [PMID: 17612405 PMCID: PMC1940012 DOI: 10.1186/1471-2164-8-216] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2007] [Accepted: 07/05/2007] [Indexed: 12/29/2022] Open
Abstract
Background Histone modification regulates chromatin structure and influences gene expression associated with diverse biological functions including cellular differentiation, cancer, maintenance of genome architecture, and pathogen virulence. In Entamoeba, a deep-branching eukaryote, short chain fatty acids (SCFA) affect histone acetylation and parasite development. Additionally, a number of active histone modifying enzymes have been identified in the parasite genome. However, the overall extent of gene regulation tied to histone acetylation is not known. Results In order to identify the genome-wide effects of histone acetylation in regulating E. histolytica gene expression, we used whole-genome expression profiling of parasites treated with SCFA and Trichostatin A (TSA). Despite significant changes in histone acetylation patterns, exposure of parasites to SCFA resulted in minimal transcriptional changes (11 out of 9,435 genes transcriptionally regulated). In contrast, exposure to TSA, a more specific inhibitor of histone deacetylases, significantly affected transcription of 163 genes (122 genes upregulated and 41 genes downregulated). Genes modulated by TSA were not regulated by treatment with 5-Azacytidine, an inhibitor of DNA-methyltransferase, indicating that in E. histolytica the crosstalk between DNA methylation and histone modification is not substantial. However, the set of genes regulated by TSA overlapped substantially with genes regulated during parasite development: 73/122 genes upregulated by TSA exposure were upregulated in E. histolytica cysts (p-value = 6 × 10-53) and 15/41 genes downregulated by TSA exposure were downregulated in E. histolytica cysts (p-value = 3 × 10-7). Conclusion This work represents the first genome-wide analysis of histone acetylation and its effects on gene expression in E. histolytica. The data indicate that SCFAs, despite their ability to influence histone acetylation, have minimal effects on gene transcription in cultured parasites. In contrast, the effect of TSA on E. histolytica gene expression is more substantial and includes genes involved in the encystation pathway. These observations will allow further dissection of the effects of histone acetylation and the genetic pathways regulating stage conversion in this pathogenic parasite.
Collapse
Affiliation(s)
- Gretchen M Ehrenkaufer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, 94305-5107, USA
| | - Daniel J Eichinger
- Department of Medical Parasitology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Upinder Singh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, 94305-5107, USA
- Division of Infectious Diseases, Department of Internal Medicine, S-143 Grant Building, 300 Pasteur Drive, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Abstract
Protozoan parasites are early branching eukaryotes causing significant morbidity and mortality in humans and livestock. Single-celled parasites have evolved complex life cycles, which may involve multiple host organisms, and strategies to evade host immune responses. Consequently, two key aspects of virulence that underlie pathogenesis are parasite differentiation and antigenic variation, both of which require changes in the expressed genome. Complicating these requisite alterations in the parasite transcriptome is chromatin, which serves as a formidable barrier to DNA processes including transcription, repair, replication and recombination. Considerable progress has been made in the study of chromatin dynamics in other eukaryotes, and there is much to be gained in extending these analyses to protozoan parasites. Much of the work completed to date has focused on histone acetylation and methylation in the apicomplexans and trypanosomatids. As we describe in this review, such studies provide a unique vantage point of the evolutionary picture of eukaryotic cell development, and reveal unique phenomena that could be exploited pharmacologically to treat protozoal diseases.
Collapse
Affiliation(s)
- William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
17
|
Schnappinger D, Ehrt S. Introduction: genomic approaches in infectious diseases. Microbes Infect 2006; 8:1611-2. [PMID: 16697238 DOI: 10.1016/j.micinf.2005.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2005] [Accepted: 11/30/2005] [Indexed: 11/19/2022]
|