1
|
Montalvo-Ocotoxtle IG, Rojas-Velasco G, Rodríguez-Morales O, Arce-Fonseca M, Baeza-Herrera LA, Arzate-Ramírez A, Meléndez-Ramírez G, Manzur-Sandoval D, Lara-Romero ML, Reyes-Ortega A, Espinosa-González P, Palacios-Rosas E. Chagas Heart Disease: Beyond a Single Complication, from Asymptomatic Disease to Heart Failure. J Clin Med 2022; 11:7262. [PMID: 36555880 PMCID: PMC9784121 DOI: 10.3390/jcm11247262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Chagas cardiomyopathy (CC), caused by the protozoan Trypanosoma cruzi, is an important cause of cardiovascular morbidity and mortality in developing countries. It is estimated that 6 to 7 million people worldwide are infected, and it is predicted that it will be responsible for 200,000 deaths by 2025. The World Health Organization (WHO) considers Chagas disease (CD) as a Neglected Tropical Disease (NTD), which must be acknowledged and detected in time, as it remains a clinical and diagnostic challenge in both endemic and non-endemic regions and at different levels of care. The literature on CC was analyzed by searching different databases (Medline, Cochrane Central, EMBASE, PubMed, Google Scholar, EBSCO) from 1968 until October 2022. Multicenter and bioinformatics trials, systematic and bibliographic reviews, international guidelines, and clinical cases were included. The reference lists of the included papers were checked. No linguistic restrictions or study designs were applied. This review is intended to address the current incidence and prevalence of CD and to identify the main pathogenic mechanisms, clinical presentation, and diagnosis of CC.
Collapse
Affiliation(s)
- Isis G. Montalvo-Ocotoxtle
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Gustavo Rojas-Velasco
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Olivia Rodríguez-Morales
- Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Minerva Arce-Fonseca
- Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Luis A. Baeza-Herrera
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Arturo Arzate-Ramírez
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Gabriela Meléndez-Ramírez
- Magnetic Resonance Imaging Department, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Daniel Manzur-Sandoval
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Mayra L. Lara-Romero
- Academic Department of Health Sciences, School of Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N. San Andrés Cholula, Puebla 72810, Mexico
| | - Antonio Reyes-Ortega
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Patricia Espinosa-González
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Erika Palacios-Rosas
- Academic Department of Health Sciences, School of Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N. San Andrés Cholula, Puebla 72810, Mexico
| |
Collapse
|
2
|
Neuroprotective Treatments for Digestive Forms of Chagas Disease in Experimental Models: A Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9397290. [PMID: 36199427 PMCID: PMC9527410 DOI: 10.1155/2022/9397290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/12/2022] [Indexed: 12/09/2022]
Abstract
Chagas disease is an anthropozoonosis caused by the protozoan Trypanosoma cruzi and is characterized as a neglected disease. It is currently endemic in 21 countries on the Latin American continent, including Bolivia, Argentina, and Paraguay. Unfortunately, there are no optimally effective treatments that can reduce the damage caused in the digestive form of the disease, such as the neuronal destruction of the myenteric plexus of both the esophagus and the colon. Therefore, the objective of this systematic review was to report the possible pharmacological neuroprotective agents that were tested in murine models of the digestive form of Chagas disease. Inclusion criteria are in vivo experimental studies that used different murine models for digestive forms of Chagas disease related to pharmacological interventions with neuroprotective potential, without year and language restriction. On the other hand, the exclusion criteria were studies that did not approach murine models with the digestive form of the disease or did not use neuroprotective treatments, among others. The search in the PubMed, Web of Science, Embase, and LILACS databases was performed on September 4, 2021. In addition, a manual search was performed using the references of the included articles. The risk of bias assessment of the studies was performed based on the SYRCLE tool guidelines, and the data from the selected articles are presented in this review as a narrative description and in tables. Eight articles were included, 4 of which addressed treatment with acetylsalicylic acid, 3 with cyclophosphamide, and 1 with Lycopodium clavatum 13c. In view of the results of the studies, most of them show neuroprotective activity of the treatments, with the potential to reduce the number of damaged neurons, as well as positive changes in the structure of these cells. However, more studies are needed to understand the mechanisms triggered by each drug, as well as their safety and immunogenicity. Systematic review registration is as follows: PROSPERO database (CRD42022289746).
Collapse
|
3
|
de Araújo FF, Lima Torres KC, Viana Peixoto S, Pinho Ribeiro AL, Vaz Melo Mambrini J, Bortolo Rezende V, Lima Silva ML, Loyola Filho AI, Teixeira-Carvalho A, Lima-Costa MF, Martins-Filho OA. CXCL9 and CXCL10 display an age-dependent profile in Chagas patients: a cohort study of aging in Bambui, Brazil. Infect Dis Poverty 2020; 9:51. [PMID: 32393333 PMCID: PMC7216412 DOI: 10.1186/s40249-020-00663-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Background Chagas disease is endemic in Latin America and still represents an important public health problem in the region. Chronic cardiomyopathy is the most significant chronic form due to its association with morbidity and mortality. The last decade has seen increasing evidence that inflammatory cytokines and chemokines are responsible for the generation of inflammatory infiltrate and tissue damage, with chronic chagasic cardiomyopathy patients presenting a pro-inflammatory immune response. Although studies have evaluated the role of chemokines in experimental T. cruzi infection, few have addressed their systemic profile, especially for human infection and in aging populations. The present work aimed to use the data from a large population based study of older adults, conducted in an endemic area for Chagas disease, to examine the association between serum levels of cytokines and chemokines, T. cruzi infection and electrocardiogram (ECG) abnormality. Methods The present work evaluated serum levels of CCL2, CXCL9, CXCL10, CCL5, CXCL8, IL-1β, IL-6, TNF, IL-12 and IL-10 by Flow Cytometric Bead Array assay (CBA) and the results expressed in pg/ml. The baseline survey started in January 1st 1997, with 1284 participants of an aged population-based cohort. Participants signed an informed consent at baseline and at each subsequent visit and authorized death certificate and medical records verification. Results Our results demonstrated that Chagas disease patients had higher serum levels of CXCL9, CXCL10 and IL-1β and lower serum levels of CCL5 than non-infected subjects. Moreover, our data demonstrated that CXCL9 and CXCL10 increased in an age-dependent profile in Chagas disease patients. Conclusion Together, this study provided evidences that serum biomarkers increase along the age continuum and may have potential implications for establishing clinical management protocols and therapeutic intervention in Chagas disease patients.
Collapse
Affiliation(s)
- Fernanda Fortes de Araújo
- Integrated Research Group in Biomarkers, Rene Rachou Institute, Oswaldo Cruz Foundation, Avenida Augusto de Lima, 1715 - Barro Preto -, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Karen Cecília Lima Torres
- Integrated Research Group in Biomarkers, Rene Rachou Institute, Oswaldo Cruz Foundation, Avenida Augusto de Lima, 1715 - Barro Preto -, Belo Horizonte, Minas Gerais, 30190-002, Brazil.,José do Rosário Vellano University, UNIFENAS/BH, Belo Horizonte, Brazil
| | - Sérgio Viana Peixoto
- Center for Studies in Public Health and Aging, Rene Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | | | - Juliana Vaz Melo Mambrini
- Center for Studies in Public Health and Aging, Rene Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Vitor Bortolo Rezende
- Integrated Research Group in Biomarkers, Rene Rachou Institute, Oswaldo Cruz Foundation, Avenida Augusto de Lima, 1715 - Barro Preto -, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Maria Luiza Lima Silva
- Center for Studies in Public Health and Aging, Rene Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Antônio Ignácio Loyola Filho
- Center for Studies in Public Health and Aging, Rene Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Andréa Teixeira-Carvalho
- Integrated Research Group in Biomarkers, Rene Rachou Institute, Oswaldo Cruz Foundation, Avenida Augusto de Lima, 1715 - Barro Preto -, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Maria Fernanda Lima-Costa
- Center for Studies in Public Health and Aging, Rene Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Olindo Assis Martins-Filho
- Integrated Research Group in Biomarkers, Rene Rachou Institute, Oswaldo Cruz Foundation, Avenida Augusto de Lima, 1715 - Barro Preto -, Belo Horizonte, Minas Gerais, 30190-002, Brazil.
| |
Collapse
|
4
|
Arce-Fonseca M, Rios-Castro M, Carrillo-Sánchez SDC, Martínez-Cruz M, Rodríguez-Morales O. Prophylactic and therapeutic DNA vaccines against Chagas disease. Parasit Vectors 2015; 8:121. [PMID: 25885641 PMCID: PMC4343048 DOI: 10.1186/s13071-015-0738-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/13/2015] [Indexed: 12/26/2022] Open
Abstract
Chagas disease is a zoonosis caused by Trypanosoma cruzi in which the most affected organ is the heart. Conventional chemotherapy has a very low effectiveness; despite recent efforts, there is currently no better or more effective treatment available. DNA vaccines provide a new alternative for both prevention and treatment of a variety of infectious disorders, including Chagas disease. Recombinant DNA technology has allowed some vaccines to be developed using recombinant proteins or virus-like particles capable of inducing both a humoral and cellular specific immune response. This type of immunization has been successfully used in preclinical studies and there are diverse models for viral, bacterial and/or parasitic diseases, allergies, tumors and other diseases. Therefore, several research groups have been given the task of designing a DNA vaccine against experimental infection with T. cruzi. In this review we explain what DNA vaccines are and the most recent studies that have been done to develop them with prophylactic or therapeutic purposes against Chagas disease.
Collapse
Affiliation(s)
- Minerva Arce-Fonseca
- Department of Molecular Biology, Laboratory of Molecular Immunology and Proteomics. Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, C.P. 14080, Mexico City, Mexico.
| | - Martha Rios-Castro
- Department of Molecular Biology, Laboratory of Molecular Immunology and Proteomics. Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, C.P. 14080, Mexico City, Mexico.
| | - Silvia del Carmen Carrillo-Sánchez
- Department of Molecular Biology, Laboratory of Molecular Immunology and Proteomics. Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, C.P. 14080, Mexico City, Mexico.
| | - Mariana Martínez-Cruz
- Department of Molecular Biology, Laboratory of Molecular Immunology and Proteomics. Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, C.P. 14080, Mexico City, Mexico.
| | - Olivia Rodríguez-Morales
- Department of Molecular Biology, Laboratory of Molecular Immunology and Proteomics. Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, C.P. 14080, Mexico City, Mexico.
| |
Collapse
|
5
|
Lewis MD, Fortes Francisco A, Taylor MC, Burrell-Saward H, McLatchie AP, Miles MA, Kelly JM. Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell Microbiol 2014; 16:1285-300. [PMID: 24712539 PMCID: PMC4190689 DOI: 10.1111/cmi.12297] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/18/2014] [Indexed: 12/12/2022]
Abstract
Summary Chronic Trypanosoma cruzi infections lead to cardiomyopathy in 20–30% of cases. A causal link between cardiac infection and pathology has been difficult to establish because of a lack of robust methods to detect scarce, focally distributed parasites within tissues. We developed a highly sensitive bioluminescence imaging system based on T. cruzi expressing a novel luciferase that emits tissue-penetrating orange-red light. This enabled long-term serial evaluation of parasite burdens in individual mice with an in vivo limit of detection of significantly less than 1000 parasites. Parasite distributions during chronic infections were highly focal and spatiotemporally dynamic, but did not localize to the heart. End-point ex vivo bioluminescence imaging allowed tissue-specific quantification of parasite loads with minimal sampling bias. During chronic infections, the gastro-intestinal tract, specifically the colon and stomach, was the only site where T. cruzi infection was consistently observed. Quantitative PCR-inferred parasite loads correlated with ex vivo bioluminescence and confirmed the gut as the parasite reservoir. Chronically infected mice developed myocarditis and cardiac fibrosis, despite the absence of locally persistent parasites. These data identify the gut as a permissive niche for long-term T. cruzi infection and show that canonical features of Chagas disease can occur without continual myocardium-specific infection.
Collapse
Affiliation(s)
- Michael D Lewis
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Cazorla SI, Frank FM, Malchiodi EL. Vaccination approaches againstTrypanosoma cruziinfection. Expert Rev Vaccines 2014; 8:921-35. [DOI: 10.1586/erv.09.45] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Prondzinsky R, Unverzagt S, Lemm H, Wegener N, Heinroth K, Buerke U, Fiedler M, Thiery J, Haerting J, Werdan K, Buerke M. Acute myocardial infarction and cardiogenic shock. Med Klin Intensivmed Notfmed 2012; 107:476-84. [DOI: 10.1007/s00063-012-0117-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 04/27/2012] [Indexed: 01/29/2023]
|
8
|
Machado FS, Tyler KM, Brant F, Esper L, Teixeira MM, Tanowitz HB. Pathogenesis of Chagas disease: time to move on. Front Biosci (Elite Ed) 2012; 4:1743-58. [PMID: 22201990 DOI: 10.2741/495] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease. The contributions of parasite and immune system for disease pathogenesis remain unresolved and controversial. The possibility that Chagas disease was an autoimmune progression triggered by T. cruzi infection led some to question the benefit of treating chronically T. cruzi-infected persons with drugs. Furthermore, it provided the rationale for not investing in research aimed at a vaccine which might carry a risk of inducing autoimmunity or exacerbating inflammation. This viewpoint was adopted by cash-strapped health systems in the developing economies where the disease is endemic and has been repeatedly challenged by researchers and clinicians in recent years and there is now a considerable body of evidence and broad consensus that parasite persistence is requisite for pathogenesis and that antiparasitic immunity can be protective against T. cruzi pathogenesis without eliciting autoimmune pathology. Thus, treatment of chronically infected patients is likely to yield positive outcomes and efforts to understand immunity and vaccine development should be recognized as a priority area of research for Chagas disease.
Collapse
Affiliation(s)
- Fabiana S Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Vázquez-Chagoyán JC, Gupta S, Garg NJ. Vaccine development against Trypanosoma cruzi and Chagas disease. ADVANCES IN PARASITOLOGY 2011; 75:121-46. [PMID: 21820554 DOI: 10.1016/b978-0-12-385863-4.00006-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathology of Chagas disease presents a complicated and diverse picture in humans. The major complications and destructive evolutionary outcomes of chronic infection by Trypanosoma cruzi in humans include ventricular fibrillation, thromboembolism and congestive heart failure. Studies in animal models and human patients have revealed the pathogenic mechanisms during disease progression, pathology of disease and features of protective immunity. Accordingly, several antigens, antigen-delivery vehicles and adjuvants have been tested to elicit immune protection to T. cruzi in experimental animals. This review summarizes the research efforts in vaccine development against Chagas disease during the past decade.
Collapse
Affiliation(s)
- Juan C Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Estado de México, Toluca, Mexico
| | | | | |
Collapse
|
10
|
Talvani A, Teixeira MM. Inflammation and Chagas disease some mechanisms and relevance. ADVANCES IN PARASITOLOGY 2011; 76:171-94. [PMID: 21884892 DOI: 10.1016/b978-0-12-385895-5.00008-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chagas cardiomyopathy is caused by infection with flagellated protozoan Trypanosoma cruzi. In patients, there is a fine balance between control of the replication and the intensity of the inflammatory response so that the host is unable to eliminate the parasite resulting in the parasite persisting as a lifelong infection in most individuals. However, the parasite persists in such a way that it causes no or little disease. This chapter reviews our understanding of many of the mediators of inflammation and cells which are involved in the inflammatory response of mammals to T. cruzi infection. Particular emphasis is given to the role of chemokines, endothelin and lipid mediators. Understanding the full range of mediators and cells present and how they interact with each other in Chagas disease may shed light on how we modulate disease pathogenesis and define new approaches to treat or prevent the disease.
Collapse
|
11
|
Roffê E, Oliveira F, Souza ALS, Pinho V, Souza DG, Souza PRS, Russo RC, Santiago HC, Romanha AJ, Tanowitz HB, Valenzuela JG, Teixeira MM. Role of CCL3/MIP-1alpha and CCL5/RANTES during acute Trypanosoma cruzi infection in rats. Microbes Infect 2010; 12:669-76. [PMID: 20452453 DOI: 10.1016/j.micinf.2010.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 03/30/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
Chagas' disease is caused by Trypanosoma cruzi infection and is characterized by chronic fibrogenic inflammation and heart dysfunction. Chemokines are produced during infection and drive tissue inflammation. In rats, acute infection is characterized by intense myocarditis and regression of inflammation after control of parasitism. We investigated the role of CCL3 and CCL5 during infection by using DNA vaccination encoding for each chemokine separately or simultaneously. MetRANTES treatment was used to evaluate the role of CCR1 and CCR5, the receptors for CCL3 and CCL5. Vaccination with CCL3 or CCL5 increased heart parasitism and decreased local IFN-gamma production, but did not influence intensity of inflammation. Simultaneous treatment with both plasmids or treatment with MetRANTES enhanced cardiac inflammation, fibrosis and parasitism. In conclusion, chemokines CCL3 and CCL5 are relevant, but not essential, for control of T. cruzi infection in rats. On the other hand, combined blockade of these chemokines or their receptors enhanced tissue inflammation and fibrosis, clearly contrasting with available data in murine models of T. cruzi infection. These data reinforce the important role of chemokines during T. cruzi infection but suggest that caution must be taken when expanding the therapeutic modulation of the chemokine system in mice to the human infection.
Collapse
Affiliation(s)
- Ester Roffê
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Paiva CN, Figueiredo RT, Kroll-Palhares K, Silva AA, Silvério JC, Gibaldi D, Pyrrho ADS, Benjamim CF, Lannes-Vieira J, Bozza MT. CCL2/MCP-1 controls parasite burden, cell infiltration, and mononuclear activation during acuteTrypanosoma cruziinfection. J Leukoc Biol 2009; 86:1239-46. [DOI: 10.1189/jlb.0309187] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
13
|
Lannes-Vieira J, Silverio JC, Pereira IR, Vinagre NF, Carvalho CME, Paiva CN, Silva AAD. Chronic Trypanosoma cruzi-elicited cardiomyopathy: from the discovery to the proposal of rational therapeutic interventions targeting cell adhesion molecules and chemokine receptors - how to make a dream come true. Mem Inst Oswaldo Cruz 2009; 104 Suppl 1:226-35. [DOI: 10.1590/s0074-02762009000900029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/01/2009] [Indexed: 01/13/2023] Open
|
14
|
de Lima Pereira SA, Severino VO, Kohl NLM, Rodrigues DBR, Alves PM, Clemente-Napimoga JT, dos Reis MA, Teixeira VPA, Napimoga MH. Expression of cytokines and chemokines and microvasculature alterations of the tongue from patients with chronic Chagas’ disease. Parasitol Res 2009; 105:1031-9. [DOI: 10.1007/s00436-009-1513-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 05/27/2009] [Indexed: 01/08/2023]
|
15
|
Chou B, Hisaeda H, Shen J, Duan X, Imai T, Tu L, Murata S, Tanaka K, Himeno K. Critical contribution of immunoproteasomes in the induction of protective immunity against Trypanosoma cruzi in mice vaccinated with a plasmid encoding a CTL epitope fused to green fluorescence protein. Microbes Infect 2007; 10:241-50. [PMID: 18321749 DOI: 10.1016/j.micinf.2007.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 10/30/2007] [Accepted: 11/24/2007] [Indexed: 11/17/2022]
Abstract
Acquired immunity against infection with Trypanosoma cruzi is dependent on CD8(+)T cells. Here, to develop a vaccine strategy taking advantage of activated CD8(+)T cells, we constructed a DNA vaccine, designated pGFP-TSA1, encoding a fusion protein linking GFP to a single CTL epitope of TSA1, a leading candidate for vaccine against T. cruzi. C57BL/6 mice vaccinated with this plasmid showed suppressed parasitemia and prolonged survival. Vaccination with pGFP-TSA1 enhanced epitope-specific cytotoxicity and IFN-gamma secretion by CD8(+)T cells. Furthermore, the depletion of CD8(+)T cells prior to challenge infection with T. cruzi completely abolished this protection, indicating that CD8(+)T cells are the principal effector T cells involved. When mice deficient in the proteasome activator PA28alpha/beta or the immunoproteasome subunits LMP2 and LMP7 were used, the protective immunity against infection was profoundly attenuated. Our findings clearly demonstrate that vaccination with pGFP-TSA1 successfully induces protection dependent on CD8(+)T cell activation, in which immunoproteasomes play a crucial role. It is noteworthy to document that physical binding of the epitope and GFP is required for induction of this protection, since mice vaccinated with pTSA1-IRES-GFP failed to acquire resistance, probably because the epitope and GFP are separately expressed in the antigen-presenting cells.
Collapse
Affiliation(s)
- Bin Chou
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|