1
|
Masoori L, Khalaf AK, Ezzatkhah F, Balaña-Fouce R, Mahmoudvand H. Promising effects of 1,8 Cineole to control Giardia lamblia infection: Targeting the inflammation, oxidative stress, and infectivity. Acta Trop 2024; 255:107201. [PMID: 38604329 DOI: 10.1016/j.actatropica.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Reportedly, synthetic drugs such as metronidazole, furazolidone, tinidazole, and quinacrine are used for the treatment of giardiasis but are associated with adverse effects. In this study, we aimed to investigate the in vitro and in vivo effects of eucalyptol (ECT, 1,8 cineole) alone and in combination with metronidazole (MNZ) on Giardia lamblia. The effects of ECT on cell viability, plasma membrane permeability, and gene expression levels of adenylate cyclase (AK) and extracellular signal kinases 1 and 2 (ERK1 and ERK2) in trophozoites of G. lamblia were assessed. In vivo, the effects of ECT alone and in combination with MNZ were assessed on mice infected with G. lamblia. In addition, the gene expression of inflammatory genes (e.g., TNF-α, IL-1β, and IL-10) and antioxidant genes (catalase (CAT), superoxide dismutase 1 (SOD1), glutathione peroxidase 2 (GPX2)) was determined by real-time PCR. The IC50 values of ECT, MNZ, and ECT+MNZ on trophozoites were 30.2 µg/mL, 21.6 µg/mL, and 8.5 µg/mL, respectively. The estimated Fractional inhibitory concentration index (FICI) values for ECT and MNZ were 0.28 and 0.39, respectively. The application of ECT on G. lamblia trophozoites resulted in a dose-dependent increase in plasma membrane permeability, particularly at concentrations of ½ IC50 and IC50 (P < 0.05). The treatment of infected mice with various doses of ECT, mainly in combination with MNZ for 7 days, resulted in a significant decrease (P < 0.001) in the average number and viability of cysts. ECT, especially when combined with MNZ, caused a significant (P < 0.001) reduction in the expression of TNF-α and IL-6 genes, and an increase (P < 0.05) in the expression of IL-10 genes. ECT alone and mainly in combination with MNZ leads to a significant (P < 0.001) increase in the gene expression of CAT, SOD, and GPX genes. These findings demonstrate that the use of ECT in these doses, even for 14 days, does not have any toxic effects on the function of vital liver and kidney tissues. The study findings confirmed the promising effects of ECT against G. lamblia infection both in vitro and in vivo. Considering the possible mechanisms, ECT increases plasma membrane permeability and reduces the expression levels of infectivity-related genes. In addition, ECT suppresses inflammation and oxidative stress, controlling giardiasis in mice. More studies are needed to clarify these findings.
Collapse
Affiliation(s)
- Leila Masoori
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amal Khudair Khalaf
- Department of Microbiology, College of Medicine, University of Thiqar, Thiqar, Iraq
| | - Fatemeh Ezzatkhah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León 24071 León, Spain
| | - Hossein Mahmoudvand
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
2
|
Zhang H, Zhao C, Zhang X, Li J, Gong P, Wang X, Li X, Wang X, Zhang X, Cheng S, Yue T, Zhang N. A potential role for Giardia chaperone protein GdDnaJ in regulating Giardia proliferation and Giardiavirus replication. Parasit Vectors 2023; 16:168. [PMID: 37226181 DOI: 10.1186/s13071-023-05787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Giardia duodenalis (referred to as Giardia) is a flagellated binucleate protozoan parasite, which causes one of the most common diarrheal diseases, giardiasis, worldwide. Giardia can be infected by Giardiavirus (GLV), a small endosymbiotic dsRNA virus belongs to the Totiviridae family. However, the regulation of GLV and a positive correlation between GLV and Giardia virulence is yet to be elucidated. METHODS To identify potential regulators of GLV, we performed a yeast two-hybrid (Y2H) screen to search for interacting proteins of RdRp. GST pull-down, co-immunoprecipitation and bimolecular fluorescence complementation (BiFC) assay were used to verify the direct physical interaction between GLV RdRp and its new binding partner. In addition, their in vivo interaction and colocalization in Giardia trophozoites were examined by using Duolink proximal ligation assay (Duolink PLA). RESULTS From Y2H screen, the Giardia chaperone protein, Giardia DnaJ (GdDnaJ), was identified as a new binding partner for GLV RdRp. The direct interaction between GdDnaJ and GLV RdRp was verified via GST pull-down, co-immunoprecipitation and BiFC. In addition, colocalization and in vivo interaction between GdDnaJ and RdRp in Giardia trophozoites were confirmed by Duolink PLA. Further analysis revealed that KNK437, the inhibitor of GdDnaJ, can significantly reduce the replication of GLVs and the proliferation of Giardia. CONCLUSION Taken together, our results suggested a potential role of GdDnaJ in regulating Giardia proliferation and GLV replication through interaction with GLV RdRp.
Collapse
Affiliation(s)
- Hongbo Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Chunyan Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shuqin Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Taotao Yue
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Santos R, Ástvaldsson Á, Pipaliya SV, Zumthor JP, Dacks JB, Svärd S, Hehl AB, Faso C. Combined nanometric and phylogenetic analysis of unique endocytic compartments in Giardia lamblia sheds light on the evolution of endocytosis in Metamonada. BMC Biol 2022; 20:206. [PMID: 36127707 PMCID: PMC9490929 DOI: 10.1186/s12915-022-01402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
Background Giardia lamblia, a parasitic protist of the Metamonada supergroup, has evolved one of the most diverged endocytic compartment systems investigated so far. Peripheral endocytic compartments, currently known as peripheral vesicles or vacuoles (PVs), perform bulk uptake of fluid phase material which is then digested and sorted either to the cell cytosol or back to the extracellular space. Results Here, we present a quantitative morphological characterization of these organelles using volumetric electron microscopy and super-resolution microscopy (SRM). We defined a morphological classification for the heterogenous population of PVs and performed a comparative analysis of PVs and endosome-like organelles in representatives of phylogenetically related taxa, Spironucleus spp. and Tritrichomonas foetus. To investigate the as-yet insufficiently understood connection between PVs and clathrin assemblies in G. lamblia, we further performed an in-depth search for two key elements of the endocytic machinery, clathrin heavy chain (CHC) and clathrin light chain (CLC), across different lineages in Metamonada. Our data point to the loss of a bona fide CLC in the last Fornicata common ancestor (LFCA) with the emergence of a protein analogous to CLC (GlACLC) in the Giardia genus. Finally, the location of clathrin in the various compartments was quantified. Conclusions Taken together, this provides the first comprehensive nanometric view of Giardia’s endocytic system architecture and sheds light on the evolution of GlACLC analogues in the Fornicata supergroup and, specific to Giardia, as a possible adaptation to the formation and maintenance of stable clathrin assemblies at PVs. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01402-3.
Collapse
Affiliation(s)
- Rui Santos
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland.,Institute of Anatomy, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Ásgeir Ástvaldsson
- Department of Cell and Molecular Biology, University of Uppsala, Husargatan 3, 752 37, Uppsala, Sweden.,Department of Microbiology, National Veterinary Institute, 751 23, Uppsala, Sweden
| | - Shweta V Pipaliya
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jon Paulin Zumthor
- Amt für Lebensmittelsicherheit und Tiergesundheit Graubünden, Chur, Switzerland
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Institute of Parasitology, Biology Centre, CAS, v.v.i., Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Staffan Svärd
- Department of Cell and Molecular Biology, University of Uppsala, Husargatan 3, 752 37, Uppsala, Sweden
| | - Adrian B Hehl
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, 8057, Zürich, Switzerland
| | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland. .,Multidisciplinary Center for Infectious Diseases, Vetsuisse, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Eissa FMA, Abdel-Shafi IR, El-Sayed SH, Negm MS, Ahmed JA. Assessment of therapeutic potential of Allium sativum and Zingiber officinale commercial supplements in experimental giardiasis models. J Parasit Dis 2022; 46:704-713. [PMID: 36091266 PMCID: PMC9458793 DOI: 10.1007/s12639-022-01489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/30/2022] [Indexed: 11/27/2022] Open
Abstract
Giardia lamblia is one of the most common protozoal parasites in humans, and a major cause of diarrheal illness. Treatment of giardiasis relies on metronidazole (MTZ) and other nitroimidazoles which exhibit some limitations, including variable treatment efficacy and parasite-drug resistance. In this work, we investigated the therapeutic effects of the commercial products of Allium sativum (A. sativum) and Zingiber officinale (Z. officinale), alone and in combination with MTZ, on giardiasis in experimentally infected hamsters. Parasitological assessments: cysts count, cysts viability and trophozoites count, and histopathological assessment were performed. Results revealed that the percentage of reduction in cysts number in the A. sativum, Z. officinale, A. sativum/MTZ, and Z. officinale/MTZ treated groups were of 84.5, 88.9, 82, and 86.1%, respectively, compared to infected non-treated group. While MTZ treated group showed percentage of reduction 79.7%. Regarding the cyst viability, it was reduced by 73.4, 76.9, 64.9, and 70.7%, in the A. sativum, Z. officinale, A. sativum/MTZ, and Z. officinale/MTZ treated groups respectively, compared to 61.9% in the MTZ treated group. For the trophozoites, the percentage of reduction was 64.1, 60.2, 59.4, and 47.3%, respectively, compared to 38.6% in MTZ treated group. The examination of duodenal sections revealed remarkable improvement in the histopathological changes in the A. sativum, Z. officinale, and the MTZ combination groups. In conclusion, A. sativum and Z. officinale preparations showed higher anti-giardial activity compared to MTZ, with higher reduction in Giardia cyst numbers, viability and trophozoite numbers in the experimentally infected hamsters. Further in vivo trials are recommended using A. sativum and Z. officinale preparations in increasing doses to reach a higher cure rate.
Collapse
Affiliation(s)
- Fatma M. A. Eissa
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Al-Saray St., El Manial, Cairo, 11956 Egypt
| | - Iman R. Abdel-Shafi
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Al-Saray St., El Manial, Cairo, 11956 Egypt
| | - Shaimaa H. El-Sayed
- Department of Medical Parasitology, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Mohamed S. Negm
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Jumana A. Ahmed
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Al-Saray St., El Manial, Cairo, 11956 Egypt
| |
Collapse
|
5
|
Castellanos IC, Calvo EP, Wasserman M. A new gene inventory of the ubiquitin and ubiquitin-like conjugation pathways in Giardia intestinalis. Mem Inst Oswaldo Cruz 2020; 115:e190242. [PMID: 32130365 PMCID: PMC7029713 DOI: 10.1590/0074-02760190242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/02/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Ubiquitin (Ub) and Ub-like proteins (Ub-L) are critical regulators of complex cellular processes such as the cell cycle, DNA repair, transcription, chromatin remodeling, signal translation, and protein degradation. Giardia intestinalis possesses an experimentally proven Ub-conjugation system; however, a limited number of enzymes involved in this process were identified using basic local alignment search tool (BLAST). This is due to the limitations of BLAST’s ability to identify homologous functional regions when similarity between the sequences dips to < 30%. In addition Ub-Ls and their conjugating enzymes have not been fully elucidated in Giardia. OBJETIVE To identify the enzymes involved in the Ub and Ub-Ls conjugation processes using intelligent systems based on the hidden Markov models (HMMs). METHODS We performed an HMM search of functional Pfam domains found in the key enzymes of these pathways in Giardia’s proteome. Each open reading frame identified was analysed by sequence homology, domain architecture, and transcription levels. FINDINGS We identified 118 genes, 106 of which corresponded to the ubiquitination process (Ub, E1, E2, E3, and DUB enzymes). The E3 ligase group was the largest group with 82 members; 71 of which harbored a characteristic RING domain. Four Ub-Ls were identified and the conjugation enzymes for NEDD8 and URM1 were described for first time. The 3D model for Ub-Ls displayed the β-grasp fold typical. Furthermore, our sequence analysis for the corresponding activating enzymes detected the essential motifs required for conjugation. MAIN CONCLUSIONS Our findings highlight the complexity of Giardia’s Ub-conjugation system, which is drastically different from that previously reported, and provides evidence for the presence of NEDDylation and URMylation enzymes in the genome and transcriptome of G. intestinalis.
Collapse
Affiliation(s)
| | | | - Moisés Wasserman
- Universidad Nacional de Colombia, Laboratorio de Investigaciones Básicas en Bioquímica, Bogotá, Colombia
| |
Collapse
|
6
|
|
7
|
Müller J, Hemphill A, Müller N. Physiological aspects of nitro drug resistance in Giardia lamblia. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:271-277. [PMID: 29738984 PMCID: PMC6039359 DOI: 10.1016/j.ijpddr.2018.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 11/01/2022]
Abstract
For over 50 years, metronidazole and other nitro compounds such as nitazoxanide have been used as a therapy of choice against giardiasis and more and more frequently, resistance formation has been observed. Model systems allowing studies on biochemical aspects of resistance formation to nitro drugs are, however, scarce since resistant strains are often unstable in culture. In order to fill this gap, we have generated a stable metronidazole- and nitazoxanide-resistant Giardia lamblia WBC6 clone, the strain C4. Previous studies on strain C4 and the corresponding wild-type strain WBC6 revealed marked differences in the transcriptomes of both strains. Here, we present a physiological comparison between trophozoites of both strains with respect to their ultrastructure, whole cell activities such as oxygen consumption and resazurin reduction assays, key enzyme activities, and several metabolic key parameters such as NAD(P)+/NAD(P)H and ADP/ATP ratios and FAD contents. We show that nitro compound-resistant C4 trophozoites exhibit lower nitroreductase activities, lower oxygen consumption and resazurin reduction rates, lower ornithine-carbamyl-transferase activity, reduced FAD and NADP(H) pool sizes and higher ADP/ATP ratios than wildtype trophozoites. The present results suggest that resistance formation against nitro compounds is correlated with metabolic adaptations resulting in a reduction of the activities of FAD-dependent oxidoreductases.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland.
| |
Collapse
|
8
|
In silico analysis of the EF-hand proteins in the genome of Giardia intestinalis assembly A. Parasitol Res 2018; 117:1035-1041. [PMID: 29404745 DOI: 10.1007/s00436-018-5780-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
Abstract
Giardia intestinalis is a parasite that inhabits the small intestine of humans and other mammals, causing a disease that can manifest itself with acute diarrhea. This parasite is an early divergent eukaryote with a compact genome and a life cycle composed of two distinct cell types: the trophozoite, the replicative form, and the cyst, the infectious form. Signal transduction pathways implicated in differentiation processes of G. intestinalis are largely unknown. Calcium, considered an essential messenger in cell signaling, has been shown to regulate a myriad of key cell processes including metabolism, motility, and exocytosis, among other important functions, through calcium-binding proteins (CaBPs). The most important and largest family of CaBPs is the EF-hand protein family. To investigate the nature of calcium signaling pathways present in this protozoan, an in silico analysis of the genome to identify genes encoding EF-hand proteins was undertaken. Twenty-eight sequences containing EF-hand domains were found; most of which have only a pair of domains, and half of the sequences were divergent or unique to Giardia. In addition, the transcription pattern for eight genes encoding EF-hand proteins was assessed during encystation. It was found that all the genes were differentially transcribed suggesting a different function in this process. The in silico results suggest that in G. intestinalis, calcium is involved in the regulation of protein phosphorylation through kinases and phosphatases.
Collapse
|
9
|
Drug-Free Approach To Study the Unusual Cell Cycle of Giardia intestinalis. mSphere 2017; 2:mSphere00384-16. [PMID: 28959734 PMCID: PMC5607323 DOI: 10.1128/msphere.00384-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/21/2017] [Indexed: 11/20/2022] Open
Abstract
Giardia intestinalis is a protozoan parasite that causes giardiasis, a form of severe and infectious diarrhea. Despite the importance of the cell cycle in the control of proliferation and differentiation during a giardia infection, it has been difficult to study this process due to the absence of a synchronization procedure that would not induce cellular damage resulting in artifacts. We utilized counterflow centrifugal elutriation (CCE), a size-based separation technique, to successfully obtain fractions of giardia cultures enriched in G1, S, and G2. Unlike drug-induced synchronization of giardia cultures, CCE did not induce double-stranded DNA damage or endoreplication. We observed increases in the appearance and size of the median body in the cells from elutriation fractions corresponding to the progression of the cell cycle from early G1 to late G2. Consequently, CCE could be used to examine the dynamics of the median body and other structures and organelles in the giardia cell cycle. For the cell cycle gene expression studies, the actin-related gene was identified by the program geNorm as the most suitable normalizer for reverse transcription-quantitative PCR (RT-qPCR) analysis of the CCE samples. Ten of 11 suspected cell cycle-regulated genes in the CCE fractions have expression profiles in giardia that resemble those of higher eukaryotes. However, the RNA levels of these genes during the cell cycle differ less than 4-fold to 5-fold, which might indicate that large changes in gene expression are not required by giardia to regulate the cell cycle. IMPORTANCE Giardias are among the most commonly reported intestinal protozoa in the world, with infections seen in humans and over 40 species of animals. The life cycle of giardia alternates between the motile trophozoite and the infectious cyst. The regulation of the cell cycle controls the proliferation of giardia trophozoites during an active infection and contains the restriction point for the differentiation of trophozoite to cyst. Here, we developed counterflow centrifugal elutriation as a drug-free method to obtain fractions of giardia cultures enriched in cells from the G1, S, and G2 stages of the cell cycle. Analysis of these fractions showed that the cells do not show side effects associated with the drugs used for synchronization of giardia cultures. Therefore, counterflow centrifugal elutriation would advance studies on key regulatory events during the giardia cell cycle and identify potential drug targets to block giardia proliferation and transmission.
Collapse
|
10
|
Matsuura Y, Matsubayashi M, Nukata S, Shibahara T, Ayukawa O, Kondo Y, Matsuo T, Uni S, Furuya M, Tani H, Tsuji N, Sasai K. Report of fatal mixed infection with Cryptosporidium parvum and Giardia intestinalis in neonatal calves. Acta Parasitol 2017; 62:214-220. [PMID: 28030344 PMCID: PMC7089474 DOI: 10.1515/ap-2017-0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/24/2016] [Indexed: 12/23/2022]
Abstract
In the production and management of beef and dairy cattle, controlling diarrhea is one of the important concerns. Pathogenic agents of the disease, protozoan parasites including Cryptosporidium spp., are difficult to control, making prevention, diagnoses, and treatment of diarrhea. In the present study, we investigated a farm with a history of calf deaths over a period of 10 years in order to determine the cause of disease and to clarify the detailed distribution of the pathogens. In four examined calves that were reared in calf pens, all were positive with Cryptosporidium and/or Giardia, while the other breeding stock and adult cattle were negative. Molecular analyses revealed that the isolates from calves were C. parvum subtype IIaA15G2R1 as a zoonotic and G. intestinalis assemblage E. Other pathogenic bacteria and diarrhea-causing viruses were not detected. After treating the calf pens with boiling water and milk of lime (Ca[OH]2), oocysts of C. parvum and cysts of G. intestinalis were not found and no additional calves died. This is the first report to describe the mixed infection of both parasites in Japan.
Collapse
Affiliation(s)
- Yuu Matsuura
- Toubu Veterinary Clinic, Chiba Prefectural Federation of Agricultural Mutual Aid Association, Sanmu, Chiba, 289-1326 Japan
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531 Japan
| | - Makoto Matsubayashi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531 Japan
- National Institute of Animal Health, NARO, Tsukuba, Ibaraki, 305-0856 Japan
| | - Satoko Nukata
- Toubu Veterinary Clinic, Chiba Prefectural Federation of Agricultural Mutual Aid Association, Sanmu, Chiba, 289-1326 Japan
| | - Tomoyuki Shibahara
- National Institute of Animal Health, NARO, Tsukuba, Ibaraki, 305-0856 Japan
| | - Osamu Ayukawa
- Toubu Veterinary Clinic, Chiba Prefectural Federation of Agricultural Mutual Aid Association, Sanmu, Chiba, 289-1326 Japan
| | - Yasuko Kondo
- Toubu Veterinary Clinic, Chiba Prefectural Federation of Agricultural Mutual Aid Association, Sanmu, Chiba, 289-1326 Japan
| | - Tomohide Matsuo
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065 Japan
| | - Shigehiko Uni
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Masaru Furuya
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531 Japan
| | - Hiroyuki Tani
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531 Japan
| | - Naotoshi Tsuji
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Kazumi Sasai
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531 Japan
| |
Collapse
|
11
|
Prokaryotic Expression of α-13 Giardin Gene and Its Intracellular Localization in Giardia lamblia. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1603264. [PMID: 28286754 PMCID: PMC5329650 DOI: 10.1155/2017/1603264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/18/2017] [Indexed: 12/02/2022]
Abstract
To study prokaryotic expression and subcellular localization of α-13 giardin in Giardia lamblia trophozoites, α-13 giardin gene was amplified and cloned into prokaryotic expression vector pET-28a(+). The positive recombinant plasmid was transformed into E. coli BL21(DE3) for expression by using IPTG and autoinduction expression system (ZYM-5052). The target protein was validated by SDS-PAGE and Western blotting and purified by Ni-NTA Resin. Rabbits were immunized with purified fusion proteins for preparation of polyclonal antibody; then the intracellular location of α-13 giardin was determined by fluorescence immunoassay. The results showed that the length of α-13 giardin gene was 1038 bp, encoding a polypeptide of 345 amino acids. The expressed product was a fusion protein with about 40 kDa largely present in soluble form. The target protein accounted for 21.0% of total proteins after being induced with IPTG, while it accounted for 28.8% with ZYM-5052. The anti-α13-giardin polyclonal antibody possessed good antigenic specificity as well as excellent binding activity with recombinant α-13 giardin. Immunofluorescence assays revealed that α-13 giardin was localized in the cytoplasm of G. lamblia trophozoite, suggesting that it is a cytoplasm-associated protein. The present study may lay a foundation for further functional research on α-13 giardin of G. lamblia.
Collapse
|
12
|
Singh G, Rani S, Gawri S, Sinha S, Sehgal R. Adamantylated organosilatranes: design, synthesis, and potential appraisal in surface modification and anti-protozoal activity. NEW J CHEM 2017. [DOI: 10.1039/c7nj01456b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of organosilatranes tethered with the privileged adamantane motif has been prepared and their pharmacokinetic profiles were scrutinized.
Collapse
Affiliation(s)
| | - Sunita Rani
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | | | - Shweta Sinha
- Department of Medical Parasitology
- Research Block-A
- PGIMER
- Chandigarh
- India
| | - Rakesh Sehgal
- Department of Medical Parasitology
- Research Block-A
- PGIMER
- Chandigarh
- India
| |
Collapse
|
13
|
Aguilar-Diaz H, Canizalez-Roman A, Nepomuceno-Mejia T, Gallardo-Vera F, Hornelas-Orozco Y, Nazmi K, Bolscher JGM, Carrero JC, Leon-Sicairos C, Leon-Sicairos N. Parasiticidal effect of synthetic bovine lactoferrin peptides on the enteric parasite Giardia intestinalis. Biochem Cell Biol 2016; 95:82-90. [PMID: 28165283 DOI: 10.1139/bcb-2016-0079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Giardia intestinalis is the most common infectious protozoan parasite in children. Despite the effectiveness of some drugs, the disease remains a major worldwide problem. Consequently, the search for new treatments is important for disease eradication. Biological molecules with antimicrobial properties represent a promising alternative to combat pathogens. Bovine lactoferrin (bLF) is a key component of the innate host defense system, and its peptides have exhibited strong antimicrobial activity. Based on these properties, we evaluated the parasiticidal activity of these peptides on G. intestinalis. Trophozoites were incubated with different peptide concentrations for different periods of time, and the growth or viability was determined by carboxyfluorescein-succinimidyl-diacetate-ester (CFDA) and propidium iodide (PI) staining. Endocytosis of peptides was investigated by confocal microscopy, damage was analyzed by transmission and scanning electron microscopy, and the type of programmed cell death was analyzed by flow cytometry. Our results showed that the LF peptides had giardicidal activity. The LF peptides interacted with G. intestinalis and exposure to LF peptides correlated with an increase in the granularity and vacuolization of the cytoplasm. Additionally, the formation of pores, extensive membrane disruption, and programmed cell death was observed in trophozoites treated with LF peptides. Our results demonstrate that LF peptides exhibit potent in vitro antigiardial activity.
Collapse
Affiliation(s)
- Hugo Aguilar-Diaz
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México
| | - Adrian Canizalez-Roman
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México.,b Departamento de Investigación, Hospital de la Mujer, Boulevard Miguel Tamayo Espinoza de los Monteros S/N, Col. Desarrollo Urbano Tres Ríos, Culiacán 80020, Sinaloa, México
| | - Tomas Nepomuceno-Mejia
- c Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Calle 4a, Avenida Norte esquina con Calle 19 Pte S/N, Centro, Tapachula 30700, Chiapas, Mexico
| | - Francisco Gallardo-Vera
- d Laboratorio Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad Universitaria, México DF 04510, México
| | - Yolanda Hornelas-Orozco
- e Servicio Académico de Microscopía Electrónica de Barrido, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, México, D. F. 04510, México
| | - Kamran Nazmi
- f Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA, Amsterdam, the Netherlands
| | - Jan G M Bolscher
- f Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA, Amsterdam, the Netherlands
| | - Julio Cesar Carrero
- g Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF 04510, México
| | - Claudia Leon-Sicairos
- h Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Avenida de las Américas y Josefa Ortiz (Ciudad Universitaria), Culiacán 80030, Sinaloa, México
| | - Nidia Leon-Sicairos
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México.,i Departamento de Investigación, Hospital Pediátrico de Sinaloa, Boulevard Constitución S/N, Col. Jorge Almada, Culiacan 80200, Sinaloa, México
| |
Collapse
|
14
|
Carranza PG, Gargantini PR, Prucca CG, Torri A, Saura A, Svärd S, Lujan HD. Specific histone modifications play critical roles in the control of encystation and antigenic variation in the early-branching eukaryote Giardia lamblia. Int J Biochem Cell Biol 2016; 81:32-43. [PMID: 27771437 DOI: 10.1016/j.biocel.2016.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/29/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022]
Abstract
During evolution, parasitic microorganisms have faced the challenges of adapting to different environments to colonize a variety of hosts. Giardia lamblia, a common cause of intestinal disease, has developed fascinating strategies to adapt both outside and inside its host's intestine, such as trophozoite differentiation into cyst and the switching of its major surface antigens. How gene expression is regulated during these adaptive processes remains undefined. Giardia lacks some typical eukaryotic features, like canonical transcription factors, linker histone H1, and complex promoter regions; suggesting that post-transcriptional and translational control of gene expression is essential for parasite survival. However, epigenetic factors may also play critical roles at the transcriptional level. Here, we describe the most common post-translational histone modifications; characterize enzymes involved in these reactions, and analyze their association with the Giardia's differentiation processes. We present evidence that NAD+-dependent and NAD+-independent histone deacetylases regulate encystation; however, a unique NAD+-independent histone deacetylase modulate antigenic switching. The rates of acetylation of H4K8 and H4K16 are critical for encystation, whereas a decrease in acetylation of H4K8 and methylation of H3K9 occur preferentially during antigenic variation. These results show the complexity of the mechanisms regulating gene expression in this minimalistic protozoan parasite.
Collapse
Affiliation(s)
- Pedro G Carranza
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba, Argentina
| | - Pablo R Gargantini
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba, Argentina; Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - César G Prucca
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba, Argentina
| | - Alessandro Torri
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba, Argentina
| | - Alicia Saura
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba, Argentina; Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Hugo D Lujan
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba, Argentina; Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
15
|
Abstract
The NADH oxidase family of enzymes catalyzes the oxidation of NADH by reducing molecular O2 to H2O2, H2O or both. In the protozoan parasite Giardia lamblia, the NADH oxidase enzyme (GlNOX) produces H2O as end product without production of H2O2. GlNOX has been implicated in the parasite metabolism, the intracellular redox regulation and the resistance to drugs currently used against giardiasis; therefore, it is an interesting protein from diverse perspectives. In this work, the GlNOX gene was amplified from genomic G. lamblia DNA and expressed in Escherichia coli as a His-Tagged protein; then, the enzyme was purified by immobilized metal affinity chromatography, characterized, and its properties compared with those of the endogenous enzyme previously isolated from trophozoites (Brown et al. in Eur J Biochem 241(1):155-161, 1996). In comparison with the trophozoite-extracted enzyme, which was scarce and unstable, the recombinant heterologous expression system and one-step purification method produce a stable protein preparation with high yield and purity. The recombinant enzyme mostly resembles the endogenous protein; where differences were found, these were attributable to methodological discrepancies or artifacts. This homogenous, pure and functional protein preparation can be used for detailed structural or functional studies of GlNOX, which will provide a deeper understanding of the biology and pathogeny of G. lamblia.
Collapse
|
16
|
Ito Y, Itoh N, Kimura Y, Kanai K. Prevalence of intestinal parasites in breeding cattery cats in Japan. J Feline Med Surg 2016; 18:834-7. [PMID: 26208865 PMCID: PMC11112212 DOI: 10.1177/1098612x15597023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
OBJECTIVES To address the lack of up-to-date published data, the present study assessed the prevalence of intestinal parasites in breeding catteries in Japan. METHODS Fresh faecal samples were randomly collected from 342 cats (aged 1 month to 12 years) in seven breeding catteries in Japan, located in prefectures of Nagano (n = 2), Saitama (n = 1), Aichi (n = 2), Gifu (n = 1) and Miyagi (n = 1), on a single occasion. The samples were tested for the presence of Giardia species copro-antigen using a commercially available enzyme-linked immunosorbent assay kit. Other intestinal parasites were identified microscopically using the formalin-ethyl acetate sedimentation technique. RESULTS The total prevalence of intestinal parasites was 20.8%; only two genera of protozoa (Giardia species: 18.7% and Cystoisospora species: 5.0%) were detected. Coinfections of both protozoans were recorded in 2.9% of cats. In contrast, no helminths were detected. The presence of total infection, Giardia species, Cystoisospora species and multiple infections in cats <1 year old were significantly more prevalent than in cats ⩾1 year old. There were no significant differences among faecal conditions with or without intestinal parasites. Giardia species infection was present in samples from all breeding catteries, except for one facility. Cystoisospora species and coinfections were shown in four and two breeding catteries, respectively. The prevalence of intestinal parasites was markedly variable among the breeding catteries. CONCLUSIONS AND RELEVANCE The present study demonstrates the significance of Giardia species and Cystoisospora species infections in breeding cattery cats. Additionally, it is suggested that environmental contamination is the most important factor influencing the prevalence of protozoal infections in breeding catteries.
Collapse
Affiliation(s)
- Yoichi Ito
- Ito Animal Hospital, Miyashiro, Minami Saitama, Saitama, Japan Department of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Naoyuki Itoh
- Department of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Yuya Kimura
- Department of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Kazutaka Kanai
- Department of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| |
Collapse
|
17
|
Lara-Martínez R, De Lourdes Segura-Valdez M, De La Mora-De La Mora I, López-Velázquez G, JimÉnez-García LF. Morphological Studies of Nucleologenesis inGiardia lamblia. Anat Rec (Hoboken) 2016; 299:549-56. [DOI: 10.1002/ar.23323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 11/05/2022]
|
18
|
Lopez-Romero G, Quintero J, Astiazarán-García H, Velazquez C. Host defences againstGiardia lamblia. Parasite Immunol 2015; 37:394-406. [DOI: 10.1111/pim.12210] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/08/2015] [Indexed: 02/06/2023]
Affiliation(s)
- G. Lopez-Romero
- Coordinación de Nutrición; Centro de Investigación en Alimentación y Desarrollo A.C.; Hermosillo Sonora México
| | - J. Quintero
- Department of Chemistry-Biology; University of Sonora; Hermosillo Sonora México
| | - H. Astiazarán-García
- Coordinación de Nutrición; Centro de Investigación en Alimentación y Desarrollo A.C.; Hermosillo Sonora México
| | - C. Velazquez
- Department of Chemistry-Biology; University of Sonora; Hermosillo Sonora México
| |
Collapse
|
19
|
Ganz KR, Clime L, Farber JM, Corneau N, Veres T, Dixon BR. Enhancing the Detection of Giardia duodenalis Cysts in Foods by Inertial Microfluidic Separation. Appl Environ Microbiol 2015; 81:3925-33. [PMID: 25841016 PMCID: PMC4524145 DOI: 10.1128/aem.03868-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/22/2015] [Indexed: 11/20/2022] Open
Abstract
The sensitivity and specificity of current Giardia cyst detection methods for foods are largely determined by the effectiveness of the elution, separation, and concentration methods used. The aim of these methods is to produce a final suspension with an adequate concentration of Giardia cysts for detection and a low concentration of interfering food debris. In the present study, a microfluidic device, which makes use of inertial separation, was designed and fabricated for the separation of Giardia cysts. A cyclical pumping platform and protocol was developed to concentrate 10-ml suspensions down to less than 1 ml. Tests involving Giardia duodenalis cysts and 1.90-μm microbeads in pure suspensions demonstrated the specificity of the microfluidic chip for cysts over smaller nonspecific particles. As the suspension cycled through the chip, a large number of beads were removed (70%) and the majority of the cysts were concentrated (82%). Subsequently, the microfluidic inertial separation chip was integrated into a method for the detection of G. duodenalis cysts from lettuce samples. The method greatly reduced the concentration of background debris in the final suspensions (10-fold reduction) in comparison to that obtained by a conventional method. The method also recovered an average of 68.4% of cysts from 25-g lettuce samples and had a limit of detection (LOD) of 38 cysts. While the recovery of cysts by inertial separation was slightly lower, and the LOD slightly higher, than with the conventional method, the sample analysis time was greatly reduced, as there were far fewer background food particles interfering with the detection of cysts by immunofluorescence microscopy.
Collapse
Affiliation(s)
- Kyle R Ganz
- Bureau of Microbial Hazards, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Liviu Clime
- Life Sciences Division, National Research Council Canada, Boucherville, Quebec, Canada
| | - Jeffrey M Farber
- Bureau of Microbial Hazards, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Nathalie Corneau
- Bureau of Microbial Hazards, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Teodor Veres
- Life Sciences Division, National Research Council Canada, Boucherville, Quebec, Canada
| | - Brent R Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Itoh N, Kanai K, Kimura Y, Chikazawa S, Hori Y, Hoshi F. Prevalence of intestinal parasites in breeding kennel dogs in Japan. Parasitol Res 2015; 114:1221-4. [PMID: 25627028 DOI: 10.1007/s00436-015-4322-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/23/2014] [Indexed: 12/01/2022]
Abstract
The present study is the first to show overall prevalences of intestinal parasites among breeding kennel dogs in Japan. A total of 573 fresh fecal samples were collected from dogs at 12 breeding kennels. Giardia-specific coproantigen was examined by ELISA kit (SNAP(®) Giardia, IDEXX Laboratories, Inc., Maine, USA). Other intestinal parasites were determined microscopically using the formalin-ethyl acetate sedimentation technique. Overall prevalences of two genera of protists, Giardia spp. and Cystoisospora spp., were 25.7 and 1.2 %, respectively. The prevalence of helminthes was recorded as: Toxocara canis 0.2 %, Toxascaris leonina 0.9 %, Ancylostoma caninum 0.2 %, Trichuris vulpis 2.1 %, and Spirometra erinacei 0.4 %. According to age categories, Giardia spp., Cystoisospora spp., and T. leonina in <1-year-old dogs were significantly more prevalent than in ≥ 1-year-old dogs (61.0 vs. 19.8 %, P < 0.0001; 7.3 vs. 0.2 %, P < 0.0001; and 4.9 vs. 0.2 %, P < 0.001; respectively). With respect to fecal condition, the prevalences of T. leonina and T. vulpis were significantly higher in unformed stool dogs than in formed ones (2.4 vs. 0 %, P < 0.01, and 4.3 vs. 0.8 %, P < 0.05, respectively). In all of the breeding kennels except for one kennel, intestinal parasite infections were found at the high prevalent, ranging from 16.0 to 70.0 %.
Collapse
Affiliation(s)
- Naoyuki Itoh
- Department of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan,
| | | | | | | | | | | |
Collapse
|
21
|
Tanifuji G, Onodera NT, Moore CE, Archibald JM. Reduced Nuclear Genomes Maintain High Gene Transcription Levels. Mol Biol Evol 2013; 31:625-35. [DOI: 10.1093/molbev/mst254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
22
|
An integrated microfludic device for culturing and screening of Giardia lamblia. Exp Parasitol 2013; 137:1-7. [PMID: 24316463 DOI: 10.1016/j.exppara.2013.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/18/2013] [Accepted: 11/27/2013] [Indexed: 01/27/2023]
Abstract
In vitro culturing of trophozoites was important for research of Giardia lamblia (G. lamblia), especially in discovery of anti-Giardia agents. The current culture methods mainly suffer from lab-intension or the obstacle in standardizing the gas condition. Thus, it could benefit from a more streamlined and integrated approach. Microfluidics offers a way to accomplish this goal. Here we presented an integrated microfluidic device for culturing and screening of G. lamblia. The device consisted of a polydimethylsiloxane (PDMS) microchip with an aerobic culture system. In the microchip, the functionality of integrated concentration gradient generator (CGG) with micro-scale cell culture enables dose-response experiment to be performed in a simple and reagent-saving way. The diffusion-based culture chambers allowed growing G. lamblia at the in vivo like environment. It notable that the highly air permeable material of parallel chambers maintain uniform anaerobic environment in different chambers easily. Using this device, G. lamblia were successfully cultured and stressed on-chip. In all cases, a dose-related inhibitory response was detected. The application of this device for these purposes represents the first step in developing a completely integrated microfluidic platform for high-throughput screening and might be expanded to other assays based on in vitro culture of G. lamblia with further tests.
Collapse
|
23
|
Sogame Y, Kojima K, Takeshita T, Kinoshita E, Matsuoka T. Identification of Differentially Expressed Water-insoluble Proteins in the Encystment Process of Colpoda cucullus
by Two-dimensional Electrophoresis and LC-MS/MS Analysis. J Eukaryot Microbiol 2013; 61:51-60. [DOI: 10.1111/jeu.12086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/01/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Yoichiro Sogame
- Department of Biological Science; Faculty of Science; Kochi University; Kochi 780-8520 Japan
| | - Katsuhiko Kojima
- Department of Microbiology and Immunology; Shinshu University School of Medicine; 3-1-1 Asahi Matsumoto Nagano 390-8621 Japan
| | - Toshikazu Takeshita
- Department of Microbiology and Immunology; Shinshu University School of Medicine; 3-1-1 Asahi Matsumoto Nagano 390-8621 Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science; Graduate School of Biomedical Sciences; Hiroshima University; Kasumi 1-2-3 Hiroshima 734-8553 Japan
| | - Tatsuomi Matsuoka
- Department of Biological Science; Faculty of Science; Kochi University; Kochi 780-8520 Japan
| |
Collapse
|
24
|
Ross AGP, Olds GR, Cripps AW, Farrar JJ, McManus DP. Enteropathogens and chronic illness in returning travelers. N Engl J Med 2013; 368:1817-25. [PMID: 23656647 DOI: 10.1056/nejmra1207777] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Allen G P Ross
- Griffith Health Institute, Griffith University, Gold Coast, QLD, Australia.
| | | | | | | | | |
Collapse
|
25
|
Niño CA, Chaparro J, Soffientini P, Polo S, Wasserman M. Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis. Microbiologyopen 2013; 2:525-39. [PMID: 23613346 PMCID: PMC3684764 DOI: 10.1002/mbo3.88] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 01/06/2023] Open
Abstract
Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote.
Collapse
Affiliation(s)
- Carlos A Niño
- Laboratorio de Investigaciones Básicas en Bioquímica - LIBBIQ, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
26
|
Gargantini PR, Serradell MC, Torri A, Lujan HD. Putative SF2 helicases of the early-branching eukaryote Giardia lamblia are involved in antigenic variation and parasite differentiation into cysts. BMC Microbiol 2012. [PMID: 23190735 PMCID: PMC3566956 DOI: 10.1186/1471-2180-12-284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Regulation of surface antigenic variation in Giardia lamblia is controlled post-transcriptionally by an RNA-interference (RNAi) pathway that includes a Dicer-like bidentate RNase III (gDicer). This enzyme, however, lacks the RNA helicase domain present in Dicer enzymes from higher eukaryotes. The participation of several RNA helicases in practically all organisms in which RNAi was studied suggests that RNA helicases are potentially involved in antigenic variation, as well as during Giardia differentiation into cysts. Results An extensive in silico analysis of the Giardia genome identified 32 putative Super Family 2 RNA helicases that contain almost all the conserved RNA helicase motifs. Phylogenetic studies and sequence analysis separated them into 22 DEAD-box, 6 DEAH-box and 4 Ski2p-box RNA helicases, some of which are homologs of well-characterized helicases from higher organisms. No Giardia putative helicase was found to have significant homology to the RNA helicase domain of Dicer enzymes. Additionally a series of up- and down-regulated putative RNA helicases were found during encystation and antigenic variation by qPCR experiments. Finally, we were able to recognize 14 additional putative helicases from three different families (RecQ family, Swi2/Snf2 and Rad3 family) that could be considered DNA helicases. Conclusions This is the first comprehensive analysis of the Super Family 2 helicases from the human intestinal parasite G. lamblia. The relative and variable expression of particular RNA helicases during both antigenic variation and encystation agrees with the proposed participation of these enzymes during both adaptive processes. The putatives RNA and DNA helicases identified in this early-branching eukaryote provide initial information regarding the biological role of these enzymes in cell adaptation and differentiation.
Collapse
Affiliation(s)
- Pablo R Gargantini
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Córdoba, Córdoba X5004ASK, Argentina.
| | | | | | | |
Collapse
|
27
|
Lingdan L, Pengtao G, Wenchao L, Jianhua L, Ju Y, Chengwu L, He L, Guocai Z, Wenzhi R, Yujiang C, Xichen Z. Differential dissolved protein expression throughout the life cycle of Giardia lamblia. Exp Parasitol 2012; 132:465-9. [PMID: 23058231 DOI: 10.1016/j.exppara.2012.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 09/20/2012] [Indexed: 02/02/2023]
Abstract
Giardia lamblia (G. lamblia) has a simple life cycle that alternates between a cyst and a trophozoite, and this parasite is an important human and animal pathogen. To increase our understanding of the molecular basis of the G. lamblia encystment, we have analyzed the soluble proteins expressed by trophozoites and cysts extracted from feces by quantitative proteomic analysis. A total of 63 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ) labeling, and were categorized as cytoskeletal proteins, a cell-cycle-specific kinase, metabolic enzymes and stress resistance proteins. Importantly, we demonstrated that the expression of seven proteins differed significantly between trophozoites and cysts. In cysts, the expression of three proteins (one variable surface protein (VSP), ornithine carbamoyltransferase (OTC), β-tubulin) increased, whereas the expression of four proteins (14-3-3 protein, α-tubulin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), protein disulfide isomerase 2 (PDI-2)) decreased significantly when compared with the levels of these proteins in trophozoites. The mRNA expression patterns of four of these proteins (OTC, α-tubulin, GAPDH, VSP) were similar to the expression levels of the proteins. These seven proteins appear to play an important role in the completion of the life cycle of G. lamblia.
Collapse
Affiliation(s)
- Li Lingdan
- College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Niño CA, Prucca CG, Chaparro J, Luján HD, Wasserman M. The ubiquitin-activating enzyme (E1) of the early-branching eukaryote Giardia intestinalis shows unusual proteolytic modifications and play important roles during encystation. Acta Trop 2012; 123:39-46. [PMID: 22498829 DOI: 10.1016/j.actatropica.2012.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/14/2012] [Accepted: 03/28/2012] [Indexed: 01/14/2023]
Abstract
Giardia intestinalis is considered an early-branching eukaryote and is therefore a valuable model for studying primordial cellular processes. This work reports the characterization of the ubiquitin-activating enzyme (E1) during growth and different stages of trophozoite differentiation into cysts. We found that in Giardia E1 expression (both at mRNA and protein levels) is regulated during encystation. The enzyme is proteolytically processed mainly into two fragments of 68kDa (N-terminal) and 47kDa (C-terminal). This phenomenon has not been described for any other E1. In trophozoites, this enzyme localized at spots within the cytoplasm as detected by using polyclonal antibodies against either E1 N- or C-terminal fragments. This pattern changed during encystation into a diffuse localization throughout the cytoplasm of encysting cells. E1 localizes in mature cysts at cytoplasmic spots and in the cyst wall. Our antisense silencing experiments suggested that E1 is an essential gene for parasite viability. On the other hand, E1 over-expression greatly increased the encystation rate, indicating a relationship between E1 and Giardia differentiation.
Collapse
Affiliation(s)
- Carlos A Niño
- Laboratory of Basic Research in Biochemistry - LIBBIQ, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
29
|
Sogame Y, Kojima K, Takeshita T, Kinoshita E, Matsuoka T. EF-1α and Mitochondrial ATP Synthase β Chain: Alteration of their Expression in Encystment-Induced Colpoda cucullus. J Eukaryot Microbiol 2012; 59:401-6. [DOI: 10.1111/j.1550-7408.2012.00628.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/26/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Yoichiro Sogame
- Department of Biological Science; Faculty of Science; Kochi University; Kochi; 780-8520; Japan
| | - Katsuhiko Kojima
- Department of Microbiology and Immunology; Shinshu University School of Medicine; 3-1-1 Asahi; Matsumoto; Nagano; 390-8621; Japan
| | - Toshikazu Takeshita
- Department of Microbiology and Immunology; Shinshu University School of Medicine; 3-1-1 Asahi; Matsumoto; Nagano; 390-8621; Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science; Graduate School of Biomedical Sciences; Hiroshima University; Kasumi 1-2-3; Hiroshima; 734-8553; Japan
| | - Tatsuomi Matsuoka
- Department of Biological Science; Faculty of Science; Kochi University; Kochi; 780-8520; Japan
| |
Collapse
|
30
|
Castillo-Romero A, Davids BJ, Lauwaet T, Gillin FD. Importance of enolase in Giardia lamblia differentiation. Mol Biochem Parasitol 2012; 184:122-5. [PMID: 22569588 DOI: 10.1016/j.molbiopara.2012.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/24/2012] [Accepted: 04/28/2012] [Indexed: 11/16/2022]
Abstract
The ability of Giardia to differentiate into cysts which survive in the environment and release the virulent trophozoites after ingestion in the small intestine is essential for transmission and disease. We examined the role of enolase, a glycolytic enzyme, in Giardia differentiation. The sequence of Giardia lamblia enolase (gEno) is most similar to enolases in Homo sapiens and Leishmania mexicana, and shows the conserved catalytic and metal-binding residues. We used an integration vector to stably express wild type and mutant gEno. In trophozoites, wild type gEno localized to the cell membrane, caudal flagella and cytosol. gEno is present on the wall of mature cysts, but not in encystation secretory vesicles (ESV). The expression of gEno with a deletion of residues G167-K169, or mutations H389Q/R390S significantly inhibited excystation while mutation of residue D257K had no effect. These results suggest a role for enolase in regulation of Giardia excystation.
Collapse
|
31
|
Ma’ayeh SY, Brook-Carter PT. Representational difference analysis identifies specific genes in the interaction of Giardia duodenalis with the murine intestinal epithelial cell line, IEC-6. Int J Parasitol 2012; 42:501-9. [DOI: 10.1016/j.ijpara.2012.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
|
32
|
Sogame Y, Kojima K, Takeshita T, Fujiwara S, Miyata S, Kinoshita E, Matsuoka T. Protein phosphorylation in encystment-induced Colpoda cucullus: localization and identification of phosphoproteins. FEMS Microbiol Lett 2012; 331:128-35. [DOI: 10.1111/j.1574-6968.2012.02560.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yoichiro Sogame
- Institute of Biological Science; Faculty of Science; Kochi University; Kochi; Japan
| | - Katsuhiko Kojima
- Department of Microbiology and Immunology; Shinshu University School of Medicine; Nagano; Japan
| | - Toshikazu Takeshita
- Department of Microbiology and Immunology; Shinshu University School of Medicine; Nagano; Japan
| | - Shigeki Fujiwara
- Department of Applied Science; Faculty of Science; Kochi University; Kochi; Japan
| | - Seiji Miyata
- Department of Applied Biology; Kyoto Institute of Technology; Kyoto; Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science; Graduate School of Biomedical Sciences; Hiroshima University; Hiroshima; Japan
| | - Tatsuomi Matsuoka
- Institute of Biological Science; Faculty of Science; Kochi University; Kochi; Japan
| |
Collapse
|
33
|
Chuang SF, Su LH, Cho CC, Pan YJ, Sun CH. Functional redundancy of two Pax-like proteins in transcriptional activation of cyst wall protein genes in Giardia lamblia. PLoS One 2012; 7:e30614. [PMID: 22355320 PMCID: PMC3280250 DOI: 10.1371/journal.pone.0030614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022] Open
Abstract
The protozoan Giardia lamblia differentiates from a pathogenic trophozoite into an infectious cyst to survive outside of the host. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately induced. Pax family transcription factors are involved in a variety of developmental processes in animals. Nine Pax proteins have been found to play an important role in tissue and organ development in humans. To understand the progression from primitive to more complex eukaryotic cells, we tried to identify putative pax genes in the G. lamblia genome and found two genes, pax1 and pax2, with limited similarity. We found that Pax1 may transactivate the encystation-induced cwp genes and interact with AT-rich initiatior elements that are essential for promoter activity and transcription start site selection. In this study, we further characterized Pax2 and found that, like Pax1, Pax2 was present in Giardia nuclei and it may specifically bind to the AT-rich initiator elements of the encystation-induced cwp1-3 and myb2 genes. Interestingly, overexpression of Pax2 increased the cwp1-3 and myb2 gene expression and cyst formation. Deletion of the C-terminal paired domain or mutation of the basic amino acids of the paired domain resulted in a decrease of nuclear localization, DNA-binding activity, and transactivation activity of Pax2. These results are similar to those found in the previous Pax1 study. In addition, the profiles of gene expression in the Pax2 and Pax1 overexpressing cells significantly overlap in the same direction and ERK1 associated complexes may phosphorylate Pax2 and Pax1, suggesting that Pax2 and Pax1 may be downstream components of a MAPK/ERK1 signaling pathway. Our results reveal functional redundancy between Pax2 and Pax1 in up-regulation of the key encystation-induced genes. These results illustrate functional redundancy of a gene family can occur in order to increase maintenance of important gene function in the protozoan organism G. lamblia.
Collapse
Affiliation(s)
- Shen-Fung Chuang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Li-Hsin Su
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chao-Cheng Cho
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Jiao Pan
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chin-Hung Sun
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
34
|
Cañete R, Rodríguez P, Mesa L, Brito K, Prior A, Guilhem D, Novaes MRCG. Albendazole versus metronidazole in the treatment of adult giardiasis: a randomized, double-blind, clinical trial. Curr Med Res Opin 2012; 28:149-54. [PMID: 22114904 DOI: 10.1185/03007995.2011.637915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Albendazole (ABZ) is a benzimidazole carbamate compound currently in use for human medical practice against enterobiasis and soil-transmitted helminthiasis (STH); However, its spectrum of activity is broad and goes beyond these infections. OBJECTIVE This study compares the efficacy and safety of ABZ versus metronidazole (MTZ) in human giardiasis. RESEARCH DESIGN AND METHODS A randomized, double-blind, clinical trial was carried out at the Centre of Hygiene, Epidemiology and Microbiology in Matanzas City, Cuba. Adult patients with confirmed symptomatic G. duodenalis mono-infection were randomly assigned to receive either ABZ [400 mg daily (n = 75)] or MTZ [250 mg t.i.d. (n = 75)], both for 5 days. Follow-up fecal samples were obtained at 3, 5, 7 days after treatment end. RESULTS The efficacy was similar for both treatment groups: ABZ (82.6%) and MTZ (85.3%); p > 0.05. Side-effects including bitter taste, headache, vomiting and dizziness were significantly higher in the MTZ group. Abdominal pain was significantly higher in ABZ group. CONCLUSION ABZ was found as effective as MTZ in the treatment of G. duodenalis infections in adult patients from Cuba and could be a useful drug in areas where co-infection with STH infections is common.
Collapse
|
35
|
Cho CC, Su LH, Huang YC, Pan YJ, Sun CH. Regulation of a Myb transcription factor by cyclin-dependent kinase 2 in Giardia lamblia. J Biol Chem 2011; 287:3733-50. [PMID: 22167200 DOI: 10.1074/jbc.m111.298893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protozoan Giardia lamblia parasitizes the human small intestine to cause diseases. It undergoes differentiation into infectious cysts by responding to intestinal stimulation. How the activated signal transduction pathways relate to encystation stimulation remain largely unknown. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately up-regulated by a Myb2 transcription factor. Because cell differentiation is linked to cell cycle regulation, we tried to understand the role of cell cycle regulators, cyclin-dependent kinases (Cdks), in encystation. We found that the recombinant Myb2 was phosphorylated by Cdk-associated complexes and the levels of phosphorylation increased significantly during encystation. We have identified a putative cdk gene (cdk2) by searching the Giardia genome database. Cdk2 was found to localize in the cytoplasm with higher expression during encystation. Interestingly, overexpression of Cdk2 resulted in a significant increase of the levels of cwp gene expression and cyst formation. In addition, the Cdk2-associated complexes can phosphorylate Myb2 and the levels of phosphorylation increased significantly during encystation. Mutations of important catalytic residues of Cdk2 resulted in a significant decrease of kinase activity and ability of inducing cyst formation. Addition of a Cdk inhibitor, purvalanol A, significantly decreased the Cdk2 kinase activity and the levels of cwp gene expression and cyst formation. Our results suggest that the Cdk2 pathway may be involved in phosphorylation of Myb2, leading to activation of the Myb2 function and up-regulation of cwp genes during encystation. The results provide insights into the use of Cdk inhibitory drugs in disruption of Giardia differentiation into cysts.
Collapse
Affiliation(s)
- Chao-Cheng Cho
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
36
|
A proteomics view of programmed cell death mechanisms during host–parasite interactions. J Proteomics 2011; 75:246-56. [DOI: 10.1016/j.jprot.2011.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/21/2011] [Accepted: 07/27/2011] [Indexed: 01/17/2023]
|
37
|
Abstract
Giardia lamblia, a parasite of humans, is a major source of waterborne diarrhoeal disease. Giardia is also an excellent system to study basic biochemical processes because it is a single-celled eukaryote with a small genome and its entire life cycle can be replicated in vitro. Giardia trophozoites undergo fundamental changes to survive outside the intestine of their host by differentiating into infective cysts. Encystation entails the synthesis, processing, transport, secretion and extracellular assembly of cyst wall components. To survive within the intestine, Giardia undergoes antigenic variation, a process by which the parasite continuously switches its major surface molecules, allowing the parasite to evade the host's immune response and produce chronic and recurrent infections. The objective of the present chapter is to provide a better understanding of the molecular mechanisms involved in adaptation and differentiation in Giardia, with a particular focus on the process of encystation and antigenic variation of this interesting micro-organism.
Collapse
|
38
|
Affiliation(s)
- César G. Prucca
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| | - Fernando D. Rivero
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| | - Hugo D. Luján
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| |
Collapse
|
39
|
Transcriptional changes in Giardia during host–parasite interactions. Int J Parasitol 2011; 41:277-85. [DOI: 10.1016/j.ijpara.2010.09.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/20/2022]
|
40
|
Samuelson J, Robbins P. A simple fibril and lectin model for cyst walls of Entamoeba and perhaps Giardia. Trends Parasitol 2011; 27:17-22. [PMID: 20934911 DOI: 10.1016/j.pt.2010.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 01/24/2023]
Abstract
Cyst walls of Entamoeba and Giardia protect them from environmental insults, stomach acids, and intestinal proteases. Each cyst wall contains a sugar homopolymer: chitin in Entamoeba and a unique N-acetylgalactosamine (GalNAc) homopolymer in Giardia. Entamoeba cyst wall proteins include Jacob lectins (carbohydrate-binding proteins) that crosslink chitin, chitinases that degrade chitin, and Jessie lectins that make walls impermeable. Giardia cyst wall proteins are also lectins that bind fibrils of the GalNAc homopolymer. Although many of the details remain to be determined for the cyst wall of Giardia, current data suggest a relatively simple fibril and lectin model for the Entamoeba cyst wall.
Collapse
Affiliation(s)
- John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA.
| | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW To update the reader on the latest developments in the laboratory diagnosis of intestinal protozoa. RECENT FINDINGS Correct identification of a diarrhoea causing pathogens is essential for the choice of treatment in an individual patient as well as to map the aetiology of diarrhoea in a variety of patient populations. Classical diagnosis of diarrhoea causing protozoa by microscopic examination of a stool sample lacks both sensitivity and specificity. Alternative diagnostic platforms are discussed. SUMMARY Recent literature on the diagnosis of intestinal protozoa has focused mainly on nucleic acid-based assays, in particular the specific detection of parasite DNA in stool samples using real-time PCR. In addition, the trend has been moving from single pathogen detection to a multiplex approach, allowing simultaneous identification of multiple parasites. Different combinations of targets can be used within a routine diagnostic setting, depending on the patient population, such as children, immunocompromised individuals and those who have been travelling to tropical regions. Large-scale monitoring and evaluation of control strategies become feasible due to automation and high-throughput facilities. Improved technology also has become available for differentiating protozoa subspecies, which facilitates outbreak investigations and extensive research in molecular epidemiology.
Collapse
|
42
|
Birkeland SR, Preheim SP, Davids BJ, Cipriano MJ, Palm D, Reiner DS, Svärd SG, Gillin FD, McArthur AG. Transcriptome analyses of the Giardia lamblia life cycle. Mol Biochem Parasitol 2010; 174:62-5. [PMID: 20570699 DOI: 10.1016/j.molbiopara.2010.05.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
We quantified mRNA abundance from 10 stages in the Giardia lamblia life cycle in vitro using Serial Analysis of Gene Expression (SAGE). 163 abundant transcripts were expressed constitutively. 71 transcripts were upregulated specifically during excystation and 42 during encystation. Nonetheless, the transcriptomes of cysts and trophozoites showed major differences. SAGE detected co-expressed clusters of 284 transcripts differentially expressed in cysts and excyzoites and 287 transcripts in vegetative trophozoites and encysting cells. All clusters included known genes and pathways as well as proteins unique to Giardia or diplomonads. SAGE analysis of the Giardia life cycle identified a number of kinases, phosphatases, and DNA replication proteins involved in excystation and encystation, which could be important for examining the roles of cell signaling in giardial differentiation. Overall, these data pave the way for directed gene discovery and a better understanding of the biology of G. lamblia.
Collapse
Affiliation(s)
- Shanda R Birkeland
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | | | | | | | | | | | | | |
Collapse
|