1
|
Puerta-Arias JD, Mejía SP, González Á. The Role of the Interleukin-17 Axis and Neutrophils in the Pathogenesis of Endemic and Systemic Mycoses. Front Cell Infect Microbiol 2020; 10:595301. [PMID: 33425780 PMCID: PMC7793882 DOI: 10.3389/fcimb.2020.595301] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023] Open
Abstract
Systemic and endemic mycoses are considered life-threatening respiratory diseases which are caused by a group of dimorphic fungal pathogens belonging to the genera Histoplasma, Coccidioides, Blastomyces, Paracoccidioides, Talaromyces, and the newly described pathogen Emergomyces. T-cell mediated immunity, mainly T helper (Th)1 and Th17 responses, are essential for protection against these dimorphic fungi; thus, IL-17 production is associated with neutrophil and macrophage recruitment at the site of infection accompanied by chemokines and proinflammatory cytokines production, a mechanism that is mediated by some pattern recognition receptors (PRRs), including Dectin-1, Dectine-2, TLRs, Mannose receptor (MR), Galectin-3 and NLPR3, and the adaptor molecules caspase adaptor recruitment domain family member 9 (Card9), and myeloid differentiation factor 88 (MyD88). However, these PRRs play distinctly different roles for each pathogen. Furthermore, neutrophils have been confirmed as a source of IL-17, and different neutrophil subsets and neutrophil extracellular traps (NETs) have also been described as participating in the inflammatory process in these fungal infections. However, both the Th17/IL-17 axis and neutrophils appear to play different roles, being beneficial mediating fungal controls or detrimental promoting disease pathologies depending on the fungal agent. This review will focus on highlighting the role of the IL-17 axis and neutrophils in the main endemic and systemic mycoses: histoplasmosis, coccidioidomycosis, blastomycosis, and paracoccidioidomycosis.
Collapse
Affiliation(s)
- Juan David Puerta-Arias
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellín, Colombia.,School of Health Sciences, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Susana P Mejía
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellín, Colombia.,Max Planck Tandem Group in Nanobioengineering, Universidad de Antioquia, Medellin, Colombia
| | - Ángel González
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
2
|
The Therapy of Pulmonary Fibrosis in Paracoccidioidomycosis: What Are the New Experimental Approaches? J Fungi (Basel) 2020; 6:jof6040217. [PMID: 33050568 PMCID: PMC7712212 DOI: 10.3390/jof6040217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is considered the most important sequela developed in patients suffering from the chronic form of paracoccidioidomycosis (PCM), which leads to the loss of respiratory function in 50% of cases; this residual pulmonary abnormality is present even after antifungal treatment. To date, there is no effective treatment for PF. However, the use of antifungal drugs in combination with other antibiotics or immunomodulatory compounds, as well as biological therapies that include a monoclonal antibody specific to neutrophils, or prophylactic vaccination employing a recombinant antigen of Paracoccidioides brasiliensis that successfully attenuated PF, has been reported. Additionally, mesenchymal stem cell transplantation in combination with antifungal therapy slightly reduced the inflammatory response and profibrotic molecules induced by P. brasiliensis infection. In this review, I report experimental findings from several studies aiming to identify promising therapeutic strategies for treating PF developed in PCM.
Collapse
|
3
|
Puerta-Arias JD, Pino-Tamayo PA, Arango JC, Salazar-Peláez LM, González A. Itraconazole in combination with neutrophil depletion reduces the expression of genes related to pulmonary fibrosis in an experimental model of paracoccidioidomycosis. Med Mycol 2018; 56:579-590. [PMID: 29420794 DOI: 10.1093/mmy/myx087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
Itraconazole (ITC) is the drug of choice for treating paracoccidioidomycosis (PCM); nonetheless, patients with the chronic form of this mycosis develop fibrosis, a residual pulmonary abnormality, even after treatment. Recently, we observed that the depletion of neutrophils with a specific monoclonal antibody (mAb-anti-Ly6G) during the chronic stages of PCM was associated with a decrease in the fungal burden, the inflammatory response and a reduction of fibrosis. Herein, we aimed to evaluate the effect of ITC in combination with the mAb-anti-Ly6G in an experimental model of pulmonary PCM. BALB/c male mice were challenged with Paracoccidioides brasiliensis yeasts and treated with the mAb-anti-Ly6G and/or ITC at 4th week post-infection (p.i.) and then sacrificed at 12th week p.i. to assess neutrophil subpopulations, fungal load, collagen, expression of fibrosis- and pro-inflammatory-related genes and histopathology. We observed that combination of ITC/mAb-anti-Ly6G favored the control of infection and diminished the inflammatory response. Of note, such therapeutic strategy reduced the expression of IL-1β, IL-6, IL-17, IL-10, TNF-α, TGF-β1, TGF-β3, GATA-3, RORc, Ahr, MMP-1α, MMP-8 MMP-15, TIMP-1, and TIMP-2 genes in an additive manner compared to those mice treated with the mAb or ITC alone. Interestingly, ITC induced an increase of type-II neutrophils even in those mice treated with the mAb-anti-Ly6G. These results indicate that combination ITC/mAb-anti-Ly6G reduced the infection and pulmonary fibrosis through down-regulation of inflammatory and pro-fibrotic genes. Additionally, we confirmed the immunomodulatory properties of this antifungal in vivo. This work emphasizes the importance of exploring new potential combination treatments to treat fungal infections.
Collapse
Affiliation(s)
- Juan David Puerta-Arias
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
| | | | - Julián Camilo Arango
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia.,School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| | | | - Angel González
- School of Microbiology, Universidad de Antioquia, Medellín, Colombia.,Basic and Applied Microbiology Research Group (MICROBRA), Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
4
|
In vivo evaluation of the efficacy, toxicity and biodistribution of PLGA-DMSA nanoparticles loaded with itraconazole for treatment of paracoccidioidomycosis. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Verdelho Machado M, Diehl AM. The hedgehog pathway in nonalcoholic fatty liver disease. Crit Rev Biochem Mol Biol 2018; 53:264-278. [PMID: 29557675 DOI: 10.1080/10409238.2018.1448752] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of obesity-associated liver diseases and it has become the major cause of cirrhosis in the Western world. The high prevalence of NAFLD-associated advanced liver disease reflects both the high prevalence of obesity-related fatty liver (hepatic steatosis) and the lack of specific treatments to prevent hepatic steatosis from progressing to more serious forms of liver damage, including nonalcoholic steatohepatitis (NASH), cirrhosis, and primary liver cancer. The pathogenesis of NAFLD is complex, and not fully understood. However, compelling evidence demonstrates that dysregulation of the hedgehog (Hh) pathway is involved in both the pathogenesis of hepatic steatosis and the progression from hepatic steatosis to more serious forms of liver damage. Inhibiting hedgehog signaling enhances hepatic steatosis, a condition which seldom results in liver-related morbidity or mortality. In contrast, excessive Hh pathway activation promotes development of NASH, cirrhosis, and primary liver cancer, the major causes of liver-related deaths. Thus, suppressing excessive Hh pathway activity is a potential approach to prevent progressive liver damage in NAFLD. Various pharmacologic agents that inhibit Hh signaling are available and approved for cancer therapeutics; more are being developed to optimize the benefits and minimize the risks of inhibiting this pathway. In this review we will describe the Hh pathway, summarize the evidence for its role in NAFLD evolution, and discuss the potential role for Hh pathway inhibitors as therapies to prevent NASH, cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- a Division of Gastroenterology, Department of Medicine , Duke University Medical Center , Durham , NC , USA.,b Department of Gastroenterology , Hospital de Santa Maria, CHLN , Lisbon , Portugal
| | - Anna Mae Diehl
- a Division of Gastroenterology, Department of Medicine , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
6
|
Li XY, Zhang YQ, Xu G, Li SH, Li H. miR-124/MCP-1 signaling pathway modulates the protective effect of itraconazole on acute kidney injury in a mouse model of disseminated candidiasis. Int J Mol Med 2018; 41:3468-3476. [PMID: 29568906 DOI: 10.3892/ijmm.2018.3564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/12/2018] [Indexed: 11/06/2022] Open
Abstract
Previous studies have indicated that monocyte chemoattractant protein-1 (MCP‑1), also referred to as C‑C motif chemokine ligand 2, has a significant role in the pathogenesis of sepsis, however, how microRNAs (miRs) contribute to this process remains to be fully elucidated. In the present study, using a mouse model of disseminated candidiasis, the renoprotective effect of itraconazole (ITR) and adenovirus‑delivered miR‑124 was investigated. The mice were treated with ITR (50 mg/kg) or transfected with miR‑124 mimics via tail‑vein injection 7 days prior to Candida albicans infection. The survival outcome was monitored following candidiasis‑induced sepsis with ITR or miR‑124 mimics treatment. The levels of pro‑inflammatory cytokines, including tumor necrosis factor‑α (TNF‑α), interleukin‑1β (IL‑1β) and IL‑6, were determined using enzyme‑linked immunosorbent assays. The mRNA and protein levels were assayed using reverse transcription-quantitative polymerase chain reaction and western blot analyses, respectively. The results showed that ITR and miR‑124 mimics improved the survival outcome in candidiasis‑induced septic mice. The findings also indicated a significant downregulation in the serum levels of TNF‑α, IL‑1β and IL‑6 in the septic mice treated with ITR or miR‑124 mimics. Of note, ITR treatment significantly increased the expression of miR‑124 and decreased the levels of MCP‑1 in the kidneys of the septic mice. It was also shown that the overexpression of miR‑124 reduced the expression of MCP‑1 and attenuated candidiasis‑induced acute kidney injury (AKI) in septic mice. Transfection with miR‑124 mimics was equivalent to ITR in reducing the excessive inflammatory response and renal lesions in septic mice. These results provided evidence supporting the use of miR‑124 mimics as a therapeutic approach for attenuating candidiasis-induced AKI.
Collapse
Affiliation(s)
- Xiao-Yue Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guanxi 541199, P.R. China
| | - Yu-Qi Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guanxi 541199, P.R. China
| | - Gang Xu
- Department of Geriatrics, Guangzhou First People's Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Shao-Hong Li
- Department of Emergency, TungWah Affiliated Hospital of Sun Yat‑sen University, Dongguan, Guangdong 523220, P.R. China
| | - Heng Li
- Department of Cardiovascular Medicine, TungWah Affiliated Hospital of Sun Yat‑sen University, Dongguan, Guangdong 523220, P.R. China
| |
Collapse
|
7
|
Medina-Alarcón KP, Singulani JL, Voltan AR, Sardi JCO, Petrônio MS, Santos MB, Polaquini CR, Regasini LO, Bolzani VS, da Silva DHS, Chorilli M, Mendes-Giannini MJS, Fusco-Almeida AM. Alkyl Protocatechuate-Loaded Nanostructured Lipid Systems as a Treatment Strategy for Paracoccidioides brasiliensis and Paracoccidioides lutzii In Vitro. Front Microbiol 2017; 8:1048. [PMID: 28659880 PMCID: PMC5466964 DOI: 10.3389/fmicb.2017.01048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/26/2017] [Indexed: 12/04/2022] Open
Abstract
Dodecyl protocatechuate (dodecyl) is a derivative of protocatechuic acid (3,4-dihydroxybenzoic acid) that possesses anti-oxidant and antifungal properties. Nanostructured lipid systems (NLS) can potentiate the action of many antifungal agents, reducing the required dose and side effects by improving their activity. This work aimed to evaluate dodecyl protocatechuate loaded into a NLS (NLS+dodecyl) as a strategy for the treatment of Paracoccidioides brasiliensis and P. lutzii in vitro. Antifungal activity against P. brasiliensis and P. lutzii was evaluated using the microdilution technique. NLS+dodecyl showed high antifungal activity with a minimum inhibitory concentration ranging from 0.06 to 0.03 μg/mL; 4- to 16-fold higher than that of free dodecyl. NLS+dodecyl was able to inhibit fungal adhesion of the extracellular artificial matrix proteins (laminin and fibronectin), resulting in 82.4 and 81% inhibition, respectively, an increase of 8–17% compared with free dodecyl. These findings corroborate previous results demonstrating 65 and 74% inhibition of fungal adhesion in pulmonary fibroblast cells by dodecyl and NLS+dodecyl, respectively, representing a 9% increase in inhibition for NLS+dodecyl. Subsequently, cytotoxicity was evaluated using the 0.4% sulforhodamine B assay. NLS+dodecyl did not exhibit cytotoxicity in MRC5 (human pneumocyte) and HepG2 (human hepatic carcinoma) cells, thus increasing the selectivity index for NLS+dodecyl. In addition, cytotoxicity was evaluated in vivo using the Caenorhabditis elegans model; neither dodecyl nor NLS+dodecyl exhibited any toxic effects. Taken together, these results suggest that NLS can be used as a strategy to improve the activity of dodecyl against P. brasiliensis and P. lutzii because it improves antifungal activity, increases the inhibition of fungal adhesion in lung cells and the extracellular matrix in vitro, and does not exhibit any toxicity both in vitro and in vivo.
Collapse
Affiliation(s)
- Kaila P Medina-Alarcón
- Mycology Laboratory and Nucleus of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State UniversityAraraquara, Brazil
| | - Junya L Singulani
- Mycology Laboratory and Nucleus of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State UniversityAraraquara, Brazil
| | - Aline R Voltan
- Mycology Laboratory and Nucleus of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State UniversityAraraquara, Brazil
| | - Janaina C O Sardi
- Mycology Laboratory and Nucleus of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State UniversityAraraquara, Brazil
| | - Maicon S Petrônio
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio PretoAraraquara, Brazil
| | - Mariana B Santos
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio PretoAraraquara, Brazil
| | - Carlos R Polaquini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio PretoAraraquara, Brazil
| | - Luis O Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio PretoAraraquara, Brazil
| | - Vanderlan S Bolzani
- Department of Chemistry, Institute of Chemistry, São Paulo State UniversityAraraquara, Brazil
| | - Dulce H S da Silva
- Department of Chemistry, Institute of Chemistry, São Paulo State UniversityAraraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State UniversityAraraquara, Brazil
| | - Maria J S Mendes-Giannini
- Mycology Laboratory and Nucleus of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State UniversityAraraquara, Brazil
| | - Ana M Fusco-Almeida
- Mycology Laboratory and Nucleus of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State UniversityAraraquara, Brazil
| |
Collapse
|
8
|
Goldani LZ, Wirth F. Animal Models and Antifungal Agents in Paracoccidioidomycosis: An Overview. Mycopathologia 2017; 182:633-643. [PMID: 28324244 DOI: 10.1007/s11046-017-0130-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 02/21/2017] [Indexed: 01/22/2023]
Abstract
Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America. The morbidity and mortality associated with paracoccidioidomycosis necessitate our understanding of fungal pathogenesis and discovering of new agents to treat this infection. Animal models have contributed much to the knowledge of fungal infections and their corresponding therapeutic treatments. This is true for animal models of the primary fungal pathogens such as P. brasiliensis. This review describes the development, details and utility of animal models of paracoccidioidomycosis for studying and developing the current antifungal agents used for therapy of this fungal disease and novel agents with antifungal properties against P. brasiliensis.
Collapse
Affiliation(s)
- Luciano Z Goldani
- Section of Infectious Diseases, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2350, Porto Alegre, RS, 90640-000, Brazil.
| | - Fernanda Wirth
- Section of Infectious Diseases, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2350, Porto Alegre, RS, 90640-000, Brazil
| |
Collapse
|
9
|
Restrepo A, Cano LE, Gonzalez Á. THE POWER OF THE SMALL: THE EXAMPLE OF Paracoccidioides brasiliensis CONIDIA. Rev Inst Med Trop Sao Paulo 2015; 57 Suppl 19:5-10. [PMID: 26465363 PMCID: PMC4711192 DOI: 10.1590/s0036-46652015000700003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Research on Paracoccidioides brasiliensis has centered in the yeast cell probably because of the lack of distinctive features in the mycelium. In 1942 and for the first time, lateral conidia were noticed in the fungus' hyphae. Later on, Brazilian, Venezuelan and Argentinean researchers described "aleurias" when the fungus was grown in natural substrates. In 1970 authors became interested in the conidia and were able to obtain them in large numbers and treat them as individual units. Their shape and size were defined and the presence of all the elements of a competent eukaryotic cell were demonstrated. Conidia exhibited thermal dimorphism and, additionally, when given intranasally to BALB/c male mice, they converted into yeasts in the lungs and produce progressive pulmonary lesions with further dissemination to other organs. Studies on the phagocyte-conidia interaction were revealing and showed that these versatile structures allow a better understanding of the host- P. brasiliensis interactions.
Collapse
|
10
|
Alvarez M, Pina DR, de Oliveira M, Ribeiro SM, Mendes RP, Duarte SB, Miranda JRA. Objective CT-based quantification of lung sequelae in treated patients with paracoccidioidomycosis. Medicine (Baltimore) 2014; 93:e167. [PMID: 25437031 PMCID: PMC4616375 DOI: 10.1097/md.0000000000000167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study presents methodology for objectively quantifying the pulmonary region affected by emphysemic and fibrotic sequelae in treated patients with paracoccidioidomycosis. This methodology may also be applied to any other disease that results in these sequelae in the lungs.Pulmonary high-resolution computed tomography examinations of 30 treated paracoccidioidomycosis patients were used in the study. The distribution of voxel attenuation coefficients was analyzed to determine the percentage of lung volume that consisted of emphysemic, fibrotic, and normal tissue. Algorithm outputs were compared with subjective evaluations by radiologists using a scale that is currently used for clinical diagnosis.Affected regions in the patient images were determined by computational analysis and compared with estimates by radiologists, revealing mean (± standard deviation) differences in the scores for fibrotic and emphysemic regions of 0.1% ± 1.2% and -0.2% ± 1.0%, respectively.The computational results showed a strong correlation with the radiologist estimates, but the computation results were more reproducible, objective, and reliable.
Collapse
Affiliation(s)
- Matheus Alvarez
- From the Departamento de Física e Biofísica, Instituto de Biociências de Botucatu, Univ Estadual Paulista (MA, MDO, JRAM); Departamento de Doenças Tropicais e Diagnóstico por Imagem, Faculdade de Medicina de Botucatu, Univ Estadual Paulista (DRP, SMR, RPM); and Centro Brasileiro de Pesquisas Físicas, CBPF/MCT (SBD)
| | | | | | | | | | | | | |
Collapse
|
11
|
Urán ME, Nosanchuk JD, Restrepo A, Hamilton AJ, Gómez BL, Cano LE. Detection of antibodies against Paracoccidioides brasiliensis melanin in in vitro and in vivo studies during infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1680-8. [PMID: 21813659 PMCID: PMC3187017 DOI: 10.1128/cvi.05099-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/26/2011] [Indexed: 12/18/2022]
Abstract
Several cell wall constituents, including melanins or melanin-like compounds, have been implicated in the pathogenesis of a wide variety of microbial diseases caused by diverse species of pathogenic bacteria, fungi, and helminthes. Among these microorganisms, the dimorphic fungal pathogen Paracoccidioides brasiliensis produces melanin in its conidial and yeast forms. In the present study, melanin particles from P. brasiliensis were injected into BALB/c mice in order to produce monoclonal antibodies (MAbs). We identified five immunoglobulin G1 (IgG1) κ-chain and four IgM melanin-binding MAbs. The five IgG1 κ-chain isotypes are the first melanin-binding IgG MAbs ever reported. The nine MAbs labeled P. brasiliensis conidia and yeast cells both in vitro and in pulmonary tissues. The MAbs cross-reacted with melanin-like purified particles from other fungi and also with commercial melanins, such as synthetic and Sepia officinalis melanin. Melanization during paracoccidioidomycosis (PCM) was also further supported by the detection of IgG antibodies reactive to melanin from P. brasiliensis conidia and yeast in sera and bronchoalveolar lavage fluids from P. brasiliensis-infected mice, as well as in sera from human patients with PCM. Serum specimens from patients with other mycoses were also tested for melanin-binding antibodies by enzyme-linked immunosorbent assay, and cross-reactivities were detected for melanin particles from different fungal sources. These results suggest that melanin from P. brasiliensis is an immunologically active fungal structure that activates a strong IgG humoral response in humans and mice.
Collapse
Affiliation(s)
- Martha E Urán
- Medical and Experimental Mycology Unit, Corporación para Investigaciones Biológicas, Carrera 72A No. 78B-141, A.A. 73-78, Medellín, Colombia.
| | | | | | | | | | | |
Collapse
|