1
|
Stefan K, Gordon R, Rolig A, Honkala A, Tailor D, Davis LE, Modi RI, Joshipura M, Khamar B, Malhotra SV. Mycobacterium w - a promising immunotherapeutic intervention for diseases. Front Immunol 2024; 15:1450118. [PMID: 39534596 PMCID: PMC11554463 DOI: 10.3389/fimmu.2024.1450118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Immunomodulating agents interact with the immune system and alter the outcome of specific immune processes. As our understanding of the immune system continues to evolve, there is a growing effort to identify agents with immunomodulating applications to use therapeutically to treat various diseases. Mycobacterium w (Mw), a heat-killed mycobacterium, is an atypical mycobacterial species that possesses strong immunomodulatory properties. Mw was initially evaluated as an immune-therapeutic against leprosy, but since then Mw has generated a lot of interest and been studied for therapeutic applications across a host of diseases, such as pulmonary tuberculosis, tuberculous pericarditis, sepsis, lung cancer, and more. This article summarizes a large body of work published in the past five decades, describing various aspects of Mw and its potential for further therapeutic development.
Collapse
Affiliation(s)
- Kirsten Stefan
- Department of Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ryan Gordon
- Department of Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Annah Rolig
- Department of Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Alexander Honkala
- Department of Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Dhanir Tailor
- Department of Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Lara E. Davis
- Division of Hematology/Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Rajiv I. Modi
- Research & Development Center, Cadila Pharmaceuticals Ltd, Dholka, Gujarat, India
| | - Manjul Joshipura
- Research & Development Center, Cadila Pharmaceuticals Ltd, Dholka, Gujarat, India
| | - Bakulesh Khamar
- Research & Development Center, Cadila Pharmaceuticals Ltd, Dholka, Gujarat, India
| | - Sanjay V. Malhotra
- Department of Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
2
|
Kim HD, Choi H, Abekura F, Park J, Cho SH, Lee YC, Kim CH. Up-regulation of inflammatory reactions by MPT32, a secreted protein of Mycobacterium tuberculosis in RAW264.7 macrophages. J Cell Biochem 2023; 124:1423-1434. [PMID: 37642132 DOI: 10.1002/jcb.30456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) and is still one of the global health burdens. The occurrence of various cases and multidrug resistance confirm that TB has not been completely conquered. For these reasons, the present research has been conducted to explore TB vaccine and drug candidate possibility using Mtb-secreted proteins. Among these proteins, MPT32 is known to have antigenicity and immunogenicity. There has not been a report on the host immune responses and regulation in macrophage cells. The present study was conducted with MPT32 in RAW 264.7 murine macrophage cells that control immune responses by sensing pathogen invasion and environmental change. We have found that MPT32 could activate lipopolysaccharide (LPS)-induced gene expression of metalloproteinase-9 (MMP-9) and inflammation in RAW 264.7 cells. After treating cells with MPT32, the increase in pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β (IL-1β) and IL-6, was observed. In addition, activated macrophages expressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) to generate various inflammatory mediator molecules, such as nitric oxide (NO). The increase in iNOS and COX-2 levels, which are up-regulators of MMP-9 expression, was also confirmed. The biochemical events are involved in the downstream of activated MAPK signaling and translocation of NF-κ B transcription factor. The present results prove the immunomodulatory effect of MPT32 in the RAW 264.7 murine macrophage cells. it claims the possibility of a TB vaccination and drug candidate using MPT32, contributing to the prevention of TB.
Collapse
Affiliation(s)
- Hee-Do Kim
- Department of Biological Science, SungKyunkwan University, Suwon, Republic of Korea
| | - Hyunju Choi
- Department of Biological Science, SungKyunkwan University, Suwon, Republic of Korea
| | - Fukushi Abekura
- Department of Biological Science, SungKyunkwan University, Suwon, Republic of Korea
| | - Junyoung Park
- Department of Biological Science, SungKyunkwan University, Suwon, Republic of Korea
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Seung-Hak Cho
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, SungKyunkwan University, Suwon, Republic of Korea
- Samsung Advanced Institute for Health Science and Technology (SAIHST), Suwon, Republic of Korea
| |
Collapse
|
3
|
Das UN. "Cell Membrane Theory of Senescence" and the Role of Bioactive Lipids in Aging, and Aging Associated Diseases and Their Therapeutic Implications. Biomolecules 2021; 11:biom11020241. [PMID: 33567774 PMCID: PMC7914625 DOI: 10.3390/biom11020241] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are an essential constituent of the cell membrane of which polyunsaturated fatty acids (PUFAs) are the most important component. Activation of phospholipase A2 (PLA2) induces the release of PUFAs from the cell membrane that form precursors to both pro- and ant-inflammatory bioactive lipids that participate in several cellular processes. PUFAs GLA (gamma-linolenic acid), DGLA (dihomo-GLA), AA (arachidonic acid), EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) are derived from dietary linoleic acid (LA) and alpha-linolenic acid (ALA) by the action of desaturases whose activity declines with age. Consequently, aged cells are deficient in GLA, DGLA, AA, AA, EPA and DHA and their metabolites. LA, ALA, AA, EPA and DHA can also be obtained direct from diet and their deficiency (fatty acids) may indicate malnutrition and deficiency of several minerals, trace elements and vitamins some of which are also much needed co-factors for the normal activity of desaturases. In many instances (patients) the plasma and tissue levels of GLA, DGLA, AA, EPA and DHA are low (as seen in patients with hypertension, type 2 diabetes mellitus) but they do not have deficiency of other nutrients. Hence, it is reasonable to consider that the deficiency of GLA, DGLA, AA, EPA and DHA noted in these conditions are due to the decreased activity of desaturases and elongases. PUFAs stimulate SIRT1 through protein kinase A-dependent activation of SIRT1-PGC1α complex and thus, increase rates of fatty acid oxidation and prevent lipid dysregulation associated with aging. SIRT1 activation prevents aging. Of all the SIRTs, SIRT6 is critical for intermediary metabolism and genomic stability. SIRT6-deficient mice show shortened lifespan, defects in DNA repair and have a high incidence of cancer due to oncogene activation. SIRT6 overexpression lowers LDL and triglyceride level, improves glucose tolerance, and increases lifespan of mice in addition to its anti-inflammatory effects at the transcriptional level. PUFAs and their anti-inflammatory metabolites influence the activity of SIRT6 and other SIRTs and thus, bring about their actions on metabolism, inflammation, and genome maintenance. GLA, DGLA, AA, EPA and DHA and prostaglandin E2 (PGE2), lipoxin A4 (LXA4) (pro- and anti-inflammatory metabolites of AA respectively) activate/suppress various SIRTs (SIRt1 SIRT2, SIRT3, SIRT4, SIRT5, SIRT6), PPAR-γ, PARP, p53, SREBP1, intracellular cAMP content, PKA activity and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α). This implies that changes in the metabolism of bioactive lipids as a result of altered activities of desaturases, COX-2 and 5-, 12-, 15-LOX (cyclo-oxygenase and lipoxygenases respectively) may have a critical role in determining cell age and development of several aging associated diseases and genomic stability and gene and oncogene activation. Thus, methods designed to maintain homeostasis of bioactive lipids (GLA, DGLA, AA, EPA, DHA, PGE2, LXA4) may arrest aging process and associated metabolic abnormalities.
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA; ; Tel.: +508-904-5376
- BioScience Research Centre and Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India
- International Research Centre, Biotechnologies of the third Millennium, ITMO University, 191002 Saint-Petersburg, Russia
| |
Collapse
|
4
|
Halder K, Banerjee S, Ghosh S, Bose A, Das S, Chowdhury BP, Majumdar S. Mycobacterium indicus pranii (Mw) inhibits invasion by reducing matrix metalloproteinase (MMP-9) via AKT/ERK-1/2 and PKCα signaling: A potential candidate in melanoma cancer therapy. Cancer Biol Ther 2015; 18:850-862. [PMID: 26390181 DOI: 10.1080/15384047.2015.1078024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Invasion and metastasis via induction of matrix metalloproteinases are the main causes of death in melanoma cancer. In this study, we investigated the inhibitory effects of heat killed saprophytic bacterium Mycobacterium indicus pranii (Mw) on B16F10 melanoma cell invasion. Mw reported to be an immunomodulator has antitumor activity however, its effect on cancer cell invasion has not been studied. Highly invasive B16F10 melanoma was found sensitive to Mw which downregulated MMP-9 expression. Mw treatment inhibited nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) transcriptional activity and respective DNA binding to MMP-9 promoter. Moreover, Mw also overcame the promoting effects of PMA on B16F10 cell invasion. Mw decreased PMA-induced transcriptional activation of NF-κB and AP-1 by inhibiting phosphorylation of AKT and ERK-1/2. Furthermore, Mw strongly suppressed PMA-induced membrane localization of protein kinase C α (PKCα) since PKCα inhibition caused a marked decrease in PMA-induced MMP-9 secretion as well as AKT/ERK-1/2 activation. These results suggest that Mw may be a promising anti-invasive agent as it blocks tumor growth and inhibits B16F10 cell invasion by reducing MMP-9 activation through inhibition of PKCα/ AKT/ ERK-1/2 phosphorylation and NF-κB/AP-1 activation.
Collapse
Affiliation(s)
- Kuntal Halder
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| | | | - Sweta Ghosh
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| | - Anamika Bose
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| | - Shibali Das
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| | | | - Subrata Majumdar
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| |
Collapse
|
5
|
Mycobacterium indicus pranii mediates macrophage activation through TLR2 and NOD2 in a MyD88 dependent manner. Vaccine 2012; 30:5748-54. [PMID: 22796586 DOI: 10.1016/j.vaccine.2012.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/24/2012] [Accepted: 07/02/2012] [Indexed: 01/07/2023]
Abstract
Mycobacterium indicus pranii (MIP) is a non-pathogenic strain of mycobacterium and has been used as a vaccine against tuberculosis and leprosy. Here, we investigated the role of different pattern recognition receptors in the recognition of heat-killed MIP by macrophages. Treatment of macrophages with MIP caused upregulation of pro-inflammatory cytokines (like TNFα and IL-1β) which was mediated through both TLR2 and NOD2, as revealed by our knockdown and/or knockout studies. Mechanistically, MIP-induced macrophage activation was shown to result in NF-κB activation and drastically abrogated by MyD88 deficiency, suggesting its regulation via an MyD88-dependent, NF-κB pathway. Interestingly, the IFN-inducible cytokine, CXCL10, which is known target of the TRIF-dependent TLR pathway was found to be upregulated in response to MIP but, in an MyD88-dependent manner. Collectively, these results demonstrate macrophages to recognize and respond to MIP through a TLR2, NOD2 and an MyD88-dependent pathway. However, further studies should clarify whether additional TLR-dependent or -independent pathways also exist in regulating the full spectrum of MIP action on macrophage activation.
Collapse
|