1
|
Song Y, Chen J, Qin G, Xu L, He W, Yu S, Pazo EE, He X. A protocol for a single center, randomized, controlled trial assessing the effects of spectacles or orthokeratology on dry eye parameters in children and adolescents. Heliyon 2024; 10:e37779. [PMID: 39323780 PMCID: PMC11422608 DOI: 10.1016/j.heliyon.2024.e37779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
Background The prevalence of myopia among adolescents is increasing precipitously in China, and the popularity of orthokeratology (OK) lenses as an effective treatment for controlling myopia progression is rising. This protocol assessed and compared the clinical dry eye parameters in children and adolescents with myopia treated with spectacles or OK lenses. Methods and analysis This single-masked randomized control trial will include 300 participants (aged 8-17 years) with myopia treated with OK lens (study group) or spectacles (control group). We will record the ocular surface disease index, visual analog scale score, noninvasive tear breakup time, tear meniscus height, meibomian gland score, ocular redness score, visual acuity, tear Matrix Metalloproteinase-9 concentration, tear Lymphotoxin alpha levels at baseline, and after 1-, 3-, 6-, and 12-month. Discussion This study will be a standardized, scientific, clinical trial designed to evaluate the dry eye parameters in children and adolescents with myopia treated with OK lenses for myopia control. Ethics and dissemination This study has been approved by the Ethics Committee of He Eye Specialist Hospital [ethics approval number: IRB(2023)K024.01]. Before participating in the trial, written informed consent will be obtained from all patient's parents or guardians. The findings of this study will be showcased at both local and international conferences and will also be submitted for publication in reputable peer-reviewed journals. Trial registration number Clinicaltrials.gov: NCT06023108 {2a, 2b}.
Collapse
Affiliation(s)
- Yilin Song
- He Eye Specialist Hospital, Shenyang, China
- Dalian Medical University, Dalian, China
| | | | | | - Ling Xu
- He Eye Specialist Hospital, Shenyang, China
| | - Wei He
- He Eye Specialist Hospital, Shenyang, China
| | - Sile Yu
- He Eye Specialist Hospital, Shenyang, China
- He University, College of Public Health, Shenyang, China
| | | | - Xingru He
- He Eye Specialist Hospital, Shenyang, China
- He University, College of Public Health, Shenyang, China
| |
Collapse
|
2
|
Fang X, Lan G, Lin Y, Xie Z, Zhong Y, Luo S, Xiao X, Luo L, Zhang Y, Li H, Wu H. Inflammation due to ocular surface homeostasis imbalance caused by pterygia: tear lymphotoxin-alpha study and a literature review. J Ophthalmic Inflamm Infect 2024; 14:28. [PMID: 38874736 PMCID: PMC11178703 DOI: 10.1186/s12348-024-00413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVE To estimate the pterygium ocular surface state, and compare with healthy eyes and dry eyes. To investigate the inflammation due to pterygia growth by tear Lymphotoxin-alpha (LT α) test. DESIGN Prospective, single-center study. PARTICIPANTS 400 patients, divided into 100 pterygium group, 100 mild dry eye group, 100 moderate dry eye group, and 100 age-and sex-matched normal controls. METHODS The non-invasive break-up time (NIBUT), tear meniscus height (TMH) test, corneal fluorescein staining (CFS), meibomian gland loss score (MGs), and lipid layer thickness (LLT) were evaluated in all patients. Pterygium status and ocular status in the pterygium group were collected. The tear LT α test was conducted in the pterygium patients group. RESULT Pterygium can affect the ocular surface, leading to decreased tear film stability. The TMH, NIBUT, CFS, MGs, and lipid layer thickness can provide insights into this phenomenon. The presence of pterygium can change the structure and condition of the ocular surface. Tear LT α testing shows an abnormal decrease in LT α levels in pterygium patients. This indicates an immune-inflammation microenvironment that causes tissue repair deficiency. CONCLUSION The dry eye triggered by the growth of pterygium may originate from the tear film instability due to pterygia. As an inflammatory index, LT α in the development of pterygium and the aggravation of dry eye patients can indicate that the ocular surface is in different inflammatory states. Future tear testing in LT α may be a potential indicator to assess the inflammatory status of the dry eye.
Collapse
Affiliation(s)
- Xie Fang
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Guoli Lan
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yuan Lin
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China.
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China.
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China.
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China.
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China.
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China.
| | - Zhiwen Xie
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yanlin Zhong
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Shunrong Luo
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Xianwen Xiao
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Lianghuan Luo
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yiqiu Zhang
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Hanqiao Li
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Huping Wu
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China.
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China.
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China.
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China.
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China.
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
3
|
Lan G, Fang X, Zhong Y, Luo S, Xiao X, Xie Z, Luo L, Zhang Y, Li H, Lin Y, Wu H. Evaluation of lymphotoxin-alpha in pterygium and diagnostic value in active and inactive pterygium states. Sci Rep 2024; 14:1866. [PMID: 38253817 PMCID: PMC10803762 DOI: 10.1038/s41598-024-52382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
To explore the correlation between tear LT-a, pterygium status, and dry eye indicators. We established a diagnostic model to evaluate active pterygium. A retrospective study was conducted between June 2021 and June 2023 on 172 patients, comprising 108 men and 64 women. The study analyzed LT-a and various ocular parameters in all participants. The data was collected using Excel software and analyzed using SPSS 25.0 statistical software and Medcalc. We made a nomogram diagnostic model to different diagnosed the state of pterygium. This study found that pterygium has progressive eye surface damage during the active state. There was no significant difference in dry eye indicators between the two groups. However, the concentration of LT-a in the active group was significantly lower than that in the inactive group (P < 0.001). We observed that increased pterygium grade corresponded to a worse ocular surface condition. In addition, LT-a was significantly positively correlated with disease duration, but negatively correlated with age, pterygium size, active pterygium state, and LLT value. The optimal intercept value for evaluating active pterygium in Lt-a was ≤ 0.49 dg/ml. We screened three variables for evaluating active pterygium through Single and Multiple regression analysis: LT-a grading, pterygium size, and congestion score. Finally, we made a reliable diagnostic nomogram model. Pterygium development triggers immune inflammation. Our model based on LT-a identifies active pterygium for personalized treatment options and new research directions.
Collapse
Affiliation(s)
- Guoli Lan
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Xie Fang
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yanlin Zhong
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Shunrong Luo
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Xianwen Xiao
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Zhiwen Xie
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Lianghuan Luo
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yiqiu Zhang
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Hanqiao Li
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yuan Lin
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China.
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China.
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China.
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China.
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China.
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China.
| | - Huping Wu
- Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, China.
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China.
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China.
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China.
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China.
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
4
|
Mulik S, Berber E, Sehrawat S, Rouse BT. Controlling viral inflammatory lesions by rebalancing immune response patterns. Front Immunol 2023; 14:1257192. [PMID: 37671156 PMCID: PMC10475736 DOI: 10.3389/fimmu.2023.1257192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.
Collapse
Affiliation(s)
- Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Department of Biological Sciences, Mohali, Punjab, India
| | - Barry Tyrrell Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
5
|
Shah R, Amador C, Tormanen K, Ghiam S, Saghizadeh M, Arumugaswami V, Kumar A, Kramerov AA, Ljubimov AV. Systemic diseases and the cornea. Exp Eye Res 2021; 204:108455. [PMID: 33485845 PMCID: PMC7946758 DOI: 10.1016/j.exer.2021.108455] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
There is a number of systemic diseases affecting the cornea. These include endocrine disorders (diabetes, Graves' disease, Addison's disease, hyperparathyroidism), infections with viruses (SARS-CoV-2, herpes simplex, varicella zoster, HTLV-1, Epstein-Barr virus) and bacteria (tuberculosis, syphilis and Pseudomonas aeruginosa), autoimmune and inflammatory diseases (rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, gout, atopic and vernal keratoconjunctivitis, multiple sclerosis, granulomatosis with polyangiitis, sarcoidosis, Cogan's syndrome, immunobullous diseases), corneal deposit disorders (Wilson's disease, cystinosis, Fabry disease, Meretoja's syndrome, mucopolysaccharidosis, hyperlipoproteinemia), and genetic disorders (aniridia, Ehlers-Danlos syndromes, Marfan syndrome). Corneal manifestations often provide an insight to underlying systemic diseases and can act as the first indicator of an undiagnosed systemic condition. Routine eye exams can bring attention to potentially life-threatening illnesses. In this review, we provide a fairly detailed overview of the pathologic changes in the cornea described in various systemic diseases and also discuss underlying molecular mechanisms, as well as current and emerging treatments.
Collapse
Affiliation(s)
- Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaithi Arumugaswami
- Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Evaluation of Tear Protein Markers in Dry Eye Disease with Different Lymphotoxin-Alpha Expression Levels. Am J Ophthalmol 2020; 217:198-211. [PMID: 32209340 DOI: 10.1016/j.ajo.2020.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/20/2020] [Accepted: 03/13/2020] [Indexed: 01/18/2023]
Abstract
PURPOSE To compare tear protein markers between normal subjects and patients with dry eye (DE) and high and low lymphotoxin-alpha (LT-α) levels. DESIGN Prospective cross-sectional study. METHODS Patients with DE were divided into low (≤700 pg/mL) and high (>700 pg/mL) LT-α groups. Twelve protein markers were measured by microsphere-based immunoassay and ocular surface parameters were determined in right eyes (33 high LT-α DE, 27 low LT-α DE, and 20 control eyes) and left eyes (21 high LT-α DE, 39 low LT-α DE, and 20 control eyes). RESULTS In both eyes, tumor necrosis factor-α (TNF-α), interleukin (IL)-10, IL-1β, IL-1 receptor antagonist (IL-1Ra), IL-17A, and IL-12/23 p40 levels in high LT-α DE were significantly higher (P < .01) than in low LT-α DE. Significant correlations identified in high LT-α DE were: Standard Patient Evaluation Eye Dryness with IL-10 (R = 0.43, P = .013), IL-1β (R = 0.48, P = .005), and IL-12/23 p40 (R = 0.50, P = .003), IL-12/23 p40 with ocular surface disease index (R = 0.35, P = .049), and epidermal growth factor with corneal fluorescein staining score (R = -0.36, P = .038). Significant correlations in low LT-α DE were: Standard Patient Evaluation Eye Dryness with IL-10 (R = -0.39, P = .046), TNF-α (R = -0.39, P = .047), and IL-17A (R = -0.48, P = .013), ocular surface disease index with TNF-α (R = -0.47, P = .017) and IL-17A (R = -0.46, P = .018), and IL-6 with tear breakup time (R = -0.40, P = .044). Lastly, IL-1Ra levels significantly increased in DE patients, positively correlated with temporal conjunctival hyperemia index, and negatively correlated with Schirmer I test (P < .05). CONCLUSIONS Our study identified tear IL-1Ra level as a potential biomarker to replace the Schirmer I test. Multiple tear protein marker levels increased in high LT-α DE, indicating that high LT-α DE might have a different pathogenesis.
Collapse
|
7
|
Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf 2019; 17:40-49. [PMID: 30317007 PMCID: PMC6340725 DOI: 10.1016/j.jtos.2018.10.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023]
Abstract
Herpes simplex virus type 1 (HSV) keratitis is a leading cause of infectious blindness. Clinical disease occurs variably throughout the cornea from epithelium to endothelium and recurrent HSV stromal keratitis is associated with corneal scarring and neovascularization. HSV keratitis can be associated with ocular pain and subsequent neutrophic keratopathy. Host cell interactions with HSV trigger an inflammatory cascade responsible not only for clearance of virus but also for progressive corneal opacification due to inflammatory cell infiltrate, angiogenesis, and corneal nerve loss. Current antiviral therapies target viral replication to decrease disease duration, severity and recurrence, but there are limitations to these agents. Therapies directed towards viral entry into cells, protein synthesis, inflammatory cytokines and vascular endothelial growth factor pathways in animal models represent promising new approaches to the treatment of recurrent HSV keratitis.
Collapse
Affiliation(s)
- Ann-Marie Lobo
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alex M Agelidis
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Nakhaei-Nejad M, Barilla D, Lee CH, Blevins G, Giuliani F. Characterization of lymphopenia in patients with MS treated with dimethyl fumarate and fingolimod. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 5:e432. [PMID: 29296636 PMCID: PMC5746425 DOI: 10.1212/nxi.0000000000000432] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/03/2017] [Indexed: 01/08/2023]
Abstract
Objective: Lymphopenia is a common occurrence of disease-modifying therapies (DMTs) for relapsing-remitting MS (RRMS). The aim of this study was to dissect the prevalence of various lymphocyte subsets in patients with RRMS treated with 2 DMTs commonly associated with lymphopenia, dimethyl fumarate (DMF), and fingolimod (FTY). Methods: Multicolor flow cytometry and multiplex assays were used to identify up to 50 lymphocyte subpopulations and to examine the expression of multiple cytokines in selected patients. We compared patients untreated (NT) or treated with FTY or DMF who did (DMF-L) or did not (DMF-N) develop lymphopenia. Results: All FTY patients developed lymphopenia in both T-cell and B-cell compartments. CD41 T cells were more affected by this treatment than CD81 cells. In the B-cell compartment, the CD271IgD2 subpopulation was reduced. T cells but not B cells were significantly reduced in DMF-L. However, within the B cells, CD271 cells were significantly lower. Both CD41 and CD81 subpopulations were reduced in DMF-L. Within the remaining CD41 and CD81 compartments, there was an expansion of the naive subpopulation and a reduction of the effector memory subpopulation. Unactivated lymphocyte from DMF-L patients had significantly higher levels of interferon-γ, interleukin (IL)-12, IL-2, IL-4, IL-6, and IL-1β compared with DMF-N. In plasma, TNFβ was significantly higher in DMF-N and DMF-L compared with NT, whereas CCL17 was significantly higher in DMF-L compared with NT and DMF-N. Conclusions: This study shows that different treatments can target different lymphocyte compartments and suggests that lymphopenia can induce compensatory mechanisms to maintain immune homeostasis.
Collapse
Affiliation(s)
- Maryam Nakhaei-Nejad
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - David Barilla
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Chieh-Hsin Lee
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Gregg Blevins
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Fabrizio Giuliani
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
9
|
Understanding the Role of Chemokines and Cytokines in Experimental Models of Herpes Simplex Keratitis. J Immunol Res 2017; 2017:7261980. [PMID: 28491875 PMCID: PMC5401741 DOI: 10.1155/2017/7261980] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/26/2017] [Indexed: 01/10/2023] Open
Abstract
Herpes simplex keratitis is a disease of the cornea caused by HSV-1. It is a leading cause of corneal blindness in the world. Underlying molecular mechanism is still unknown, but experimental models have helped give a better understanding of the underlying molecular pathology. Cytokines and chemokines are small proteins released by cells that play an important proinflammatory or anti-inflammatory role in modulating the disease process. Cytokines such as IL-17, IL-6, IL-1α, and IFN-γ and chemokines such as MIP-2, MCP-1, MIP-1α, and MIP-1β have proinflammatory role in the destruction caused by HSV including neutrophil infiltration and corneal inflammation, and other chemokines and cytokines such as IL-10 and CCL3 can have a protective role. Most of the damage results from neutrophil infiltration and neovascularization. While many more studies are needed to better understand the role of these molecules in both experimental models and human corneas, current studies indicate that these molecules hold potential to be targets of future therapy.
Collapse
|
10
|
Song J, Huang YF, Zhang WJ, Chen XF, Guo YM. Ocular diseases: immunological and molecular mechanisms. Int J Ophthalmol 2016; 9:780-8. [PMID: 27275439 DOI: 10.18240/ijo.2016.05.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022] Open
Abstract
Many factors, such as environmental, microbial and endogenous stress, antigen localization, can trigger the immunological events that affect the ending of the diverse spectrum of ocular disorders. Significant advances in understanding of immunological and molecular mechanisms have been researched to improve the diagnosis and therapy for patients with ocular inflammatory diseases. Some kinds of ocular diseases are inadequately responsive to current medications; therefore, immunotherapy may be a potential choice as an alternative or adjunctive treatment, even in the prophylactic setting. This article first provides an overview of the immunological and molecular mechanisms concerning several typical and common ocular diseases; second, the functions of immunological roles in some of systemic autoimmunity will be discussed; third, we will provide a summary of the mechanisms that dictate immune cell trafficking to ocular local microenvironment in response to inflammation.
Collapse
Affiliation(s)
- Jing Song
- Department of Ophthalmology, Affiliated Hospital of Logistics University of People's Armed Police Force, Tianjin 300161, China
| | - Yi-Fei Huang
- Department of Ophthalmology, Affiliated Hospital of Logistics University of People's Armed Police Force, Tianjin 300161, China; Department of Ophthalmology, General Hospital of PLA, Beijing 100853, China
| | - Wen-Jing Zhang
- Department of Ophthalmology, Affiliated Hospital of Logistics University of People's Armed Police Force, Tianjin 300161, China
| | - Xiao-Fei Chen
- Department of Ophthalmology, General Hospital of PLA, Beijing 100853, China
| | - Yu-Mian Guo
- Department of Ophthalmology, Affiliated Hospital of Logistics University of People's Armed Police Force, Tianjin 300161, China
| |
Collapse
|
11
|
Thompson RL, Williams RW, Kotb M, Sawtell NM. A forward phenotypically driven unbiased genetic analysis of host genes that moderate herpes simplex virus virulence and stromal keratitis in mice. PLoS One 2014; 9:e92342. [PMID: 24651695 PMCID: PMC3961320 DOI: 10.1371/journal.pone.0092342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/21/2014] [Indexed: 12/14/2022] Open
Abstract
Both viral and host genetics affect the outcome of herpes simplex virus type 1 (HSV-1) infection in humans and experimental models. Little is known about specific host gene variants and molecular networks that influence herpetic disease progression, severity, and episodic reactivation. To identify such host gene variants we have initiated a forward genetic analysis using the expanded family of BXD strains, all derived from crosses between C57BL/6J and DBA/2J strains of mice. One parent is highly resistant and one highly susceptible to HSV-1. Both strains have also been fully sequenced, greatly facilitating the search for genetic modifiers that contribute to differences in HSV-1 infection. We monitored diverse disease phenotypes following infection with HSV-1 strain 17syn+ including percent mortality (herpes simplex encephalitis, HSE), body weight loss, severity of herpetic stromal keratitis (HSK), spleen weight, serum neutralizing antibody titers, and viral titers in tear films in BXD strains. A significant quantitative trait locus (QTL) on chromosome (Chr) 16 was found to associate with both percent mortality and HSK severity. Importantly, this QTL maps close to a human QTL and the gene proposed to be associated with the frequency of recurrent herpetic labialis (cold sores). This suggests that a single host locus may influence these seemingly diverse HSV-1 pathogenic phenotypes by as yet unknown mechanisms. Additional suggestive QTLs for percent mortality were identified—one on Chr X that is epistatically associated with that on Chr 16. As would be anticipated the Chr 16 QTL also modulated weight loss, reaching significance in females. A second significant QTL for maximum weight loss in male and female mice was mapped to Chr 12. To our knowledge this is the first report of a host genetic locus that modulates the severity of both herpetic disease in the nervous system and herpetic stromal keratitis.
Collapse
Affiliation(s)
- Richard L. Thompson
- Department of Molecular Genetics, Microbiology, and Biochemistry, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (RLT); (NMS)
| | - Robert W. Williams
- Center of Genomics and Bioinformatics and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Malak Kotb
- Department of Molecular Genetics, Microbiology, and Biochemistry, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Nancy M. Sawtell
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (RLT); (NMS)
| |
Collapse
|