1
|
Aslam S, Aljawdah HM, Murshed M, Serrano GE. Pharmacophore modelling based virtual screening and molecular dynamics identified the novel inhibitors and drug targets against Waddlia chondrophila. Sci Rep 2024; 14:13472. [PMID: 38866811 PMCID: PMC11169463 DOI: 10.1038/s41598-024-63555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Waddlia chondrophila is a possible cause of fetal death in humans. This Chlamydia-related bacterium is an emergent pathogen that causes human miscarriages and ruminant abortions, which results in financial losses. Despite the years of efforts, the underlying mechanism behind the pathogenesis of W. chondrophila is little known which hindered the development of novel treatment options. In the framework of current study, computational approaches were used to identify novel inhibitors (phytocompounds) and drug targets against W. chondrophila. At first, RNA polymerase sigma factor SigA and 3-deoxy-D-manno-octulosonic acid transferase were identified through subtractive proteomics pipeline. Afterwards, extensive docking and simulation analyses were conducted to optimize potentially novel phytocompounds by assessing their binding affinity to target proteins. A 100ns molecular dynamics simulation well complimented the compound's binding affinity and indicated strong stability of predicted compounds at the docked site. The calculation of binding free energies with MMGBSA corroborated the significant binding affinity between phytocompounds and target protein binding sites. The proposed phytocompounds may be a viable treatment option for patients infected with W. chondrophila; however, further research is required to ensure their safety.
Collapse
Affiliation(s)
- Sidra Aslam
- Banner Sun Health Research Institute, Sun City, AZ, USA.
| | - Hossam M Aljawdah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mutee Murshed
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Erven I, Abraham E, Hermanns T, Baumann U, Hofmann K. A widely distributed family of eukaryotic and bacterial deubiquitinases related to herpesviral large tegument proteins. Nat Commun 2022; 13:7643. [PMID: 36496440 PMCID: PMC9741609 DOI: 10.1038/s41467-022-35244-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Distinct families of eukaryotic deubiquitinases (DUBs) are regulators of ubiquitin signaling. Here, we report on the presence of an additional DUB class broadly distributed in eukaryotes and several bacteria. The only described members of this family are the large tegument proteins of herpesviruses, which are attached to the outside of the viral capsid. By using a bioinformatics screen, we have identified distant homologs of this VTD (Viral tegument-like DUB) family in vertebrate transposons, fungi, insects, nematodes, cnidaria, protists and bacteria. While some VTD activities resemble viral tegument DUBs in that they favor K48-linked ubiquitin chains, other members are highly specific for K6- or K63-linked ubiquitin chains. The crystal structures of K48- and K6-specific members reveal considerable differences in ubiquitin recognition. The VTD family likely evolved from non-DUB proteases and spread through transposons, many of which became 'domesticated', giving rise to the Drosophila male sterile (3)76Ca gene and several nematode genes with male-specific expression.
Collapse
Affiliation(s)
- Ilka Erven
- grid.6190.e0000 0000 8580 3777Institute for Genetics, University of Cologne, Zülpicher Straße 47a, D-50674 Cologne, Germany
| | - Elena Abraham
- grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, D-50674 Cologne, Germany
| | - Thomas Hermanns
- grid.6190.e0000 0000 8580 3777Institute for Genetics, University of Cologne, Zülpicher Straße 47a, D-50674 Cologne, Germany
| | - Ulrich Baumann
- grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, D-50674 Cologne, Germany
| | - Kay Hofmann
- grid.6190.e0000 0000 8580 3777Institute for Genetics, University of Cologne, Zülpicher Straße 47a, D-50674 Cologne, Germany
| |
Collapse
|
3
|
Chowdhury UF, Saba AA, Sufi AS, Khan AM, Sharmin I, Sultana A, Islam MO. Subtractive proteomics approach to Unravel the druggable proteins of the emerging pathogen Waddlia chondrophila and drug repositioning on its MurB protein. Heliyon 2021; 7:e07320. [PMID: 34195427 PMCID: PMC8239728 DOI: 10.1016/j.heliyon.2021.e07320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 12/04/2022] Open
Abstract
Waddlia chondrophila is an emerging pathogen that has been implicated in numerous unpropitious pregnancy events in humans and ruminants. Taking into account its association with abortigenic events, possible modes of transmission, and future risk, immediate clinical measures are required to prevent widespread damage caused by this organism and hence this study. Here, a subtractive proteomics approach was employed to identify druggable proteins of W. chondrophila. Considering the essential genes, antibiotic resistance proteins, and virulence factors, 676 unique important proteins were initially identified for this bacterium. Afterward, NCBI BLASTp performed against human proteome identified 223 proteins that were further pushed into KEGG Automatic Annotation Server (KAAS) for automatic annotation. Using the information from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database 14 Waddlia specific metabolic pathways were identified with respect to humans. Analyzing the data from KAAS and KEGG databases, forty-eight metabolic pathway-dependent, and seventy metabolic pathway independent proteins were identified. Standalone BLAST search against DrugBank FDA approved drug targets revealed eight proteins that are finally considered druggable proteins. Prediction of three-dimensional structures was done for the eight proteins through homology modeling and the Ramachandran plot model showed six models as a valid prediction. Finally, virtual screening against MurB protein was performed using FDA approved drugs to employ the drug repositioning strategy. Three drugs showed promising docking results that can be used for therapeutic purposes against W. chondrophila following the clinical validation of the study.
Collapse
Affiliation(s)
| | - Abdullah Al Saba
- Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Abu Sufian Sufi
- Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Akib Mahmud Khan
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ishrat Sharmin
- Sarkari Karmachari Hospital, Fulbaria, Dhaka, Bangladesh
| | - Aziza Sultana
- Sarkari Karmachari Hospital, Fulbaria, Dhaka, Bangladesh
| | - Md Ohedul Islam
- Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| |
Collapse
|
4
|
Collingro A, Köstlbacher S, Horn M. Chlamydiae in the Environment. Trends Microbiol 2020; 28:877-888. [PMID: 32591108 DOI: 10.1016/j.tim.2020.05.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Chlamydiae have been known for more than a century as major pathogens of humans. Yet they are also found ubiquitously in the environment where they thrive within protists and in an unmatched wide range of animals. This review summarizes recent advances in understanding chlamydial diversity and distribution in nature. Studying these environmental chlamydiae provides a novel perspective on basic chlamydial biology and evolution. A picture is beginning to emerge with chlamydiae representing one of the evolutionarily most ancient and successful groups of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Screening of Chlamydia trachomatis and Waddlia chondrophila Antibodies in Women with Tubal Factor Infertility. Microorganisms 2020; 8:microorganisms8060918. [PMID: 32560559 PMCID: PMC7355871 DOI: 10.3390/microorganisms8060918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022] Open
Abstract
Waddlia chondrophila is an emerging intracellular pathogen belonging to the order of Chlamydiales, and was previously associated with adverse pregnancy outcomes, as well as tubal factor infertility (TFI). In this study, we investigate the link between both W. chondrophila and Chlamydia trachomatis IgG seropositivity and TFI. Antibodies against both bacteria were measured in 890 serum samples of women visiting a fertility clinic. After a hysterosalpingography and/or laparoscopy, they were classified as either TFI-negative (TFI−) or TFI-positive (TFI+). The total seroprevalence was 13.4% for C. trachomatis and 38.8% for W. chondrophila. C. trachomatis antibodies were present significantly more often in the TFI+ group than in the TFI− group, while for W. chondrophila no difference could be observed. In conclusion, our study confirms the association between C. trachomatis seropositivity and TFI, but no association was found between W. chondrophila seropositivity and TFI. The high percentage of W. chondrophila seropositivity in all women attending a fertility clinic does, however, demonstrate the need for further research on this Chlamydia-like bacterium and its possible role in infertility.
Collapse
|
6
|
Oghbaei H, Rastgar Rezaei Y, Nikanfar S, Zarezadeh R, Sadegi M, Latifi Z, Nouri M, Fattahi A, Ahmadi Y, Bleisinger N. Effects of bacteria on male fertility: Spermatogenesis and sperm function. Life Sci 2020; 256:117891. [PMID: 32504760 DOI: 10.1016/j.lfs.2020.117891] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 11/24/2022]
Abstract
Bacterial infection can negatively affect different parts of the male genital tract and subsequently cause impaired spermatogenesis and male fertility. However, most of the previous studies have focused on the infected organs of the male genital tract and there are not many studies that investigated the direct effect of bacteria on sperm and their mechanism of action. Interestingly, bacteria can induce different damages on sperm cells such as DNA fragmentation, cell membrane peroxidation, and acrosome impairment. Such negative effects can be mediated by bacteria-secreted toxins and metabolites or by direct attachment of bacteria on the sperm cells and subsequent activation of signaling pathways related to oxidative stress, apoptosis, and inflammation. These bacteria-induced changes can impair semen parameters and subsequently cause infertility. Given the significant destructive effect of some bacteria on sperm function and male fertility, in this study, we reviewed the impact of male urogenital bacteria on spermatogenesis and sperm functions as well as the underlying mechanisms by which the bacteria can damage sperm.
Collapse
Affiliation(s)
- Hajar Oghbaei
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Rastgar Rezaei
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Nikanfar
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Sadegi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Yadollah Ahmadi
- Department of Urology, Sina Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nathalie Bleisinger
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Identification of new DNA-associated proteins from Waddlia chondrophila. Sci Rep 2019; 9:4885. [PMID: 30894592 PMCID: PMC6426960 DOI: 10.1038/s41598-019-40732-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Transcriptional regulation in Chlamydiae is still poorly understood. The absence until recently of genetic tools is the main cause of this gap. We discovered three new potential DNA-associated proteins of Waddlia chondrophila, a Chlamydia-related bacterium, using heparin chromatography coupled to mass spectrometry (Wcw_0377, Wcw_1456, and Wcw_1460). By ChIP-seq analysis, we determined the regulatory landscape of these three proteins and we showed that Wcw_0377 binds all along the genome whereas Wcw_1456 and _1460 possess a wide regulon with a large number of co-regulated genes. Wcw_1456 and Wcw_1460 interact with RpoD (σ66), emerging as potential RpoD regulators. On the other hand, Wcw_0377 is able to reach the host nucleus, where it might interact with eukaryotic histones through its putative chromatin-remodelling SWIB/MDM2 domain.
Collapse
|
8
|
Baud D, Vulliemoz N, Ammerdorffer A, Gyger J, Greub G, Castella V, Stojanov M. Waddlia chondrophila, a Chlamydia-related bacterium, has a negative impact on human spermatozoa. Hum Reprod 2019; 33:3-10. [PMID: 29145645 DOI: 10.1093/humrep/dex342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/24/2017] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION What is the impact of Waddlia chondrophila, an emerging Chlamydia-related bacterium associated with miscarriage, on human spermatozoa? SUMMARY ANSWER W. chondrophila had a negative impact on human spermatozoa (decrease in viability and mitochondrial membrane potential) and was not entirely removed from infected samples by density gradient centrifugation. WHAT IS KNOWN ALREADY Bacterial infection or colonization might have a deleterious effect on male fertility. Waddlia chondrophila was previously associated with miscarriage, but its impact on male reproductive function has never been studied. STUDY DESIGN SIZE, DURATION An in vitro model of human spermatozoa infection was used to assess the effects of W. chondrophila infection. Controls included Chlamydia trachomatis serovar D and latex beads with similar size to bacteria. PARTICIPANTS/MATERIALS, SETTING, METHODS Purified motile spermatozoa were infected with W. chondrophila (multiplicity of infection of 1). Immunohistochemistry combined with confocal microscopy was used to evaluate how bacteria interact with spermatozoa. The impact on physiology was assessed by monitoring cell viability, mitochondrial membrane potential and DNA fragmentation. MAIN RESULTS AND THE ROLE OF CHANCE Using super-resolution confocal microscopy, bacteria were localized on spermatozoa surface, as well as inside the cytoplasm. Compared to controls, W. chondrophila caused a 20% increase in mortality over 72 h of incubation (P < 0.05). Moreover, higher bacterial loads significantly reduced mitochondrial membrane potential. Bacteria present on spermatozoa surface were able to further infect a cell-monolayer, indicating that sperm might vector bacteria during sexual intercourse. LIMITATIONS REASONS FOR CAUTION The main limitation of the study is the use of an in vitro model of infection, which might be too simplistic compared to an actual infection. An animal model of infection should be developed to better evaluate the in vivo impact of W. chondrophila. WIDER IMPLICATIONS OF THE FINDINGS Intracellular bacteria, including C. trachomatis, Mycoplasma spp. and Ureaplasma spp., are associated with male infertility. Waddlia chondrophila might represent yet another member of this group, highlighting the need for more rigorous microbiological analysis during investigations for male infertility. STUDY FUNDING/COMPETING INTEREST(S) This work has been funded by the Department of Obstetrics and Gynecology, Lausanne University Hospital, Switzerland, and by the Swiss National Science Foundation (Grant nos. 310030-156169/1, 320030-169853/1 and 320030-169853/2 attributed to D.B.). D.B. is also supported by the 'Fondation Leenaards' through the 'Bourse pour la relève académique', by the 'Fondation Divesa' and by the 'Loterie Romande'. No conflicts of interest to declare.
Collapse
Affiliation(s)
- D Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Avenue Pierre-Decker 2, 1011 Lausanne, Switzerland
| | - N Vulliemoz
- Reproductive Medicine Unit, Department Woman-Mother-Child, Lausanne University Hospital, Switzerland
| | - A Ammerdorffer
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Avenue Pierre-Decker 2, 1011 Lausanne, Switzerland
| | - J Gyger
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Avenue Pierre-Decker 2, 1011 Lausanne, Switzerland
| | - G Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - V Castella
- Forensic Genetics Unit, University Center of Legal Medicine, Lausanne, Geneva, Switzerland
| | - M Stojanov
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Avenue Pierre-Decker 2, 1011 Lausanne, Switzerland
| |
Collapse
|
9
|
Munang'andu HM. Intracellular Bacterial Infections: A Challenge for Developing Cellular Mediated Immunity Vaccines for Farmed Fish. Microorganisms 2018; 6:microorganisms6020033. [PMID: 29690563 PMCID: PMC6027125 DOI: 10.3390/microorganisms6020033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/15/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022] Open
Abstract
Aquaculture is one of the most rapidly expanding farming systems in the world. Its rapid expansion has brought with it several pathogens infecting different fish species. As a result, there has been a corresponding expansion in vaccine development to cope with the increasing number of infectious diseases in aquaculture. The success of vaccine development for bacterial diseases in aquaculture is largely attributed to empirical vaccine designs based on inactivation of whole cell (WCI) bacteria vaccines. However, an upcoming challenge in vaccine design is the increase of intracellular bacterial pathogens that are not responsive to WCI vaccines. Intracellular bacterial vaccines evoke cellular mediated immune (CMI) responses that “kill” and eliminate infected cells, unlike WCI vaccines that induce humoral immune responses whose protective mechanism is neutralization of extracellular replicating pathogens by antibodies. In this synopsis, I provide an overview of the intracellular bacterial pathogens infecting different fish species in aquaculture, outlining their mechanisms of invasion, replication, and survival intracellularly based on existing data. I also bring into perspective the current state of CMI understanding in fish together with its potential application in vaccine development. Further, I highlight the immunological pitfalls that have derailed our ability to produce protective vaccines against intracellular pathogens for finfish. Overall, the synopsis put forth herein advocates for a shift in vaccine design to include CMI-based vaccines against intracellular pathogens currently adversely affecting the aquaculture industry.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, P.O. Box 8146, Dep NO-0033, 046 Oslo, Norway.
| |
Collapse
|
10
|
Taylor-Brown A, Polkinghorne A. New and emerging chlamydial infections of creatures great and small. New Microbes New Infect 2017; 18:28-33. [PMID: 28560043 PMCID: PMC5436083 DOI: 10.1016/j.nmni.2017.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
Until recently, our knowledge of the host range and diversity of members of the Chlamydiaceae, obligate intracellular bacterial pathogens of humans and animals, was thought to be nearly complete. Aided by advances in molecular diagnostics, a new picture is emerging, however, that the host barriers may be looser than previously thought for many chlamydial species. While cross-host transmission of chlamydial species is a concern for animal health, new reports highlight an emerging zoonotic risk for several species associated with intensification of farming and the widespread popularity of companion animals. The description of an expanded cohort of new species within this family from avian and reptilian hosts has also highlighted how much we still have to learn about the biology and pathogenicity of the Chlamydiaceae as a whole. Reports emerging about these relatives of the traditional chlamydial pathogens are matched by the continued identification of novel Chlamydia-related bacteria in the phylum Chlamydiae, providing evidence that many may be pathogenic to humans or animals and pose a zoonotic or vector-borne risk. The review examines the new hosts described for well-characterized chlamydial veterinary pathogens, emerging novel chlamydial species and the potential for these to cause disease in their respective hosts.
Collapse
Affiliation(s)
- A Taylor-Brown
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - A Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
11
|
Beder T, Scheven MT, Praetzsch D, Westermann M, Saluz HP. Purification of infectious and non-infectious chlamydial particles using iodixanol for density gradient preparation. J Microbiol Methods 2016; 128:20-23. [PMID: 27378442 DOI: 10.1016/j.mimet.2016.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/28/2022]
Abstract
Chlamydiae are obligate intracellular bacteria with two distinct morphological stages, the infectious elementary bodies (EBs) and non-infectious reticulate bodies (RBs). Here we describe a rapid and straightforward protocol for the purification of EBs and RBs involving special density gradients. It has been successfully applied to three chlamydial species.
Collapse
Affiliation(s)
- Thomas Beder
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.
| | - Mareike Thea Scheven
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.
| | - Dominique Praetzsch
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.
| | - Martin Westermann
- Jena University Hospital, Electron Microscopy Center, Jena, Germany; Friedrich Schiller University Jena, Jena, Germany.
| | - Hans Peter Saluz
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany; Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
12
|
Vasilevsky S, Gyger J, Piersigilli A, Pilloux L, Greub G, Stojanov M, Baud D. Waddlia chondrophila induces systemic infection, organ pathology, and elicits Th1-associated humoral immunity in a murine model of genital infection. Front Cell Infect Microbiol 2015; 5:76. [PMID: 26583077 PMCID: PMC4631992 DOI: 10.3389/fcimb.2015.00076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/19/2015] [Indexed: 12/29/2022] Open
Abstract
Waddlia chondrophila is a known bovine abortigenic Chlamydia-related bacterium that has been associated with adverse pregnancy outcomes in human. However, there is a lack of knowledge regarding how W. chondrophila infection spreads, its ability to elicit an immune response and induce pathology. A murine model of genital infection was developed to investigate the pathogenicity and immune response associated with a W. chondrophila infection. Genital inoculation of the bacterial agent resulted in a dose-dependent infection that spread to lumbar lymph nodes and successively to spleen and liver. Bacterial-induced pathology peaked on day 14, characterized by leukocyte infiltration (uterine horn, liver, and spleen), necrosis (liver) and extramedullary hematopoiesis (spleen). Immunohistochemistry demonstrated the presence of a large number of W. chondrophila in the spleen on day 14. Robust IgG titers were detected by day 14 and remained high until day 52. IgG isotypes consisted of high IgG2a, moderate IgG3 and no detectable IgG1, indicating a Th1-associated immune response. This study provides the first evidence that W. chondrophila genital infection is capable of inducing a systemic infection that spreads to major organs, induces uterus, spleen, and liver pathology and elicits a Th1-skewed humoral response. This new animal model will help our understanding of the mechanisms related to intracellular bacteria-induced miscarriages, the most frequent complication of pregnancy that affects one in four women.
Collapse
Affiliation(s)
- Sam Vasilevsky
- Materno-fetal and Obstetrics Research Unit, Department of Obstetrics and Gynecology, Maternity, University Hospital Lausanne, Switzerland
| | - Joel Gyger
- Materno-fetal and Obstetrics Research Unit, Department of Obstetrics and Gynecology, Maternity, University Hospital Lausanne, Switzerland
| | - Alessandra Piersigilli
- School of Life Sciences, École Polytechnique Fédérale Lausanne Lausanne, Switzerland ; Institute of Animal Pathology, University of Bern Bern, Switzerland
| | - Ludovic Pilloux
- Centre Hospitalier Universitaire Vaudois, Institute of Microbiology, University Hospital Lausanne, Switzerland
| | - Gilbert Greub
- Centre Hospitalier Universitaire Vaudois, Institute of Microbiology, University Hospital Lausanne, Switzerland
| | - Milos Stojanov
- Materno-fetal and Obstetrics Research Unit, Department of Obstetrics and Gynecology, Maternity, University Hospital Lausanne, Switzerland
| | - David Baud
- Materno-fetal and Obstetrics Research Unit, Department of Obstetrics and Gynecology, Maternity, University Hospital Lausanne, Switzerland
| |
Collapse
|
13
|
de Barsy M, Bertelli C, Jacquier N, Kebbi-Beghdadi C, Greub G. ESCCAR international congress on Rickettsia and other intracellular bacteria. Microbes Infect 2015; 17:680-8. [PMID: 26297854 DOI: 10.1016/j.micinf.2015.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/17/2022]
Abstract
The European Society for the study of Chlamydia, Coxiella, Anaplasma and Rickettsia (ESCCAR) held his triennial international meeting in Lausanne. This meeting gathered 165 scientists from 28 countries and all 5 continents, allowing efficient networking and major scientific exchanges. Topics covered include molecular and cellular microbiology, genomics, as well as epidemiology, veterinary and human medicine. Several breakthroughs have been revealed at the meeting, such as (i) the presence of CRISPR (the "prokaryotic immune system") in chlamydiae, (ii) an Anaplasma effector involved in host chromatin remodelling, (iii) the polarity of the type III secretion system of chlamydiae during the entry process revealed by cryo-electron tomography. Moreover, the ESCCAR meeting was a unique opportunity to be exposed to cutting-edge science and to listen to comprehensive talks on current hot topics.
Collapse
Affiliation(s)
- Marie de Barsy
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Jacquier
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Carole Kebbi-Beghdadi
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport. Infect Immun 2015; 83:3268-80. [PMID: 26056386 DOI: 10.1128/iai.00322-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/29/2015] [Indexed: 01/07/2023] Open
Abstract
The Chlamydiales are an order of obligate intracellular bacteria sharing a developmental cycle inside a cytosolic vacuole, with very diverse natural hosts, from amoebae to mammals. The clinically most important species is Chlamydia trachomatis. Many uncertainties remain as to how Chlamydia organizes its intracellular development and replication. The discovery of new Chlamydiales species from other families permits the comparative analysis of cell-biological events and may indicate events that are common to all or peculiar to some species and more or less tightly linked to "chlamydial" development. We used this approach in the infection of human cells with Waddlia chondrophila, a species from the family Waddliaceae whose natural host is uncertain. Compared to C. trachomatis, W. chondrophila had slightly different growth characteristics, including faster cytotoxicity. The embedding in cytoskeletal structures was not as pronounced as for the C. trachomatis inclusion. C. trachomatis infection generates proteolytic activity by the protease Chlamydia protease-like activity factor (CPAF), which degrades host substrates upon extraction; these substrates were not cleaved in the case of W. chondrophila. Unlike Chlamydia, W. chondrophila did not protect against staurosporine-induced apoptosis. C. trachomatis infection causes Golgi apparatus fragmentation and redirects post-Golgi sphingomyelin transport to the inclusion; both were absent from W. chondrophila-infected cells. When host cells were infected with both species, growth of both species was reduced. This study highlights differences between bacterial species that both depend on obligate intracellular replication inside an inclusion. Some features seem principally dispensable for intracellular development of Chlamydiales in vitro but may be linked to host adaptation of Chlamydia and the higher virulence of C. trachomatis.
Collapse
|
15
|
Derré I. Chlamydiae interaction with the endoplasmic reticulum: contact, function and consequences. Cell Microbiol 2015; 17:959-66. [PMID: 25930206 DOI: 10.1111/cmi.12455] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/13/2015] [Accepted: 04/27/2015] [Indexed: 01/30/2023]
Abstract
Chlamydiae and chlamydiae-related organisms are obligate intracellular bacterial pathogens. They reside in a membrane-bound compartment termed the inclusion and have evolved sophisticated mechanisms to interact with cellular organelles. This review focuses on the nature, the function(s) and the consequences of chlamydiae-inclusion interaction with the endoplasmic reticulum (ER). The inclusion membrane establishes very close contact with the ER at specific sites termed ER-inclusion membrane contact sites (MCSs). These MCSs are constituted of a specific set of factors, including the C. trachomatis effector protein IncD and the host cell proteins CERT and VAPA/B. Because CERT and VAPA/B have a demonstrated role in the non-vesicular trafficking of lipids between the ER and the Golgi, it was proposed that Chlamydia establish MCSs with the ER to acquire host lipids. However, the recruitment of additional factors to ER-inclusion MCSs, such as the ER calcium sensor STIM1, may suggest additional functions unrelated to lipid acquisition. Finally, chlamydiae interaction with the ER appears to induce the ER stress response, but this response is quickly dampened by chlamydiae to promote host cell survival.
Collapse
Affiliation(s)
- Isabelle Derré
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
16
|
STIM1 Is a Novel Component of ER-Chlamydia trachomatis Inclusion Membrane Contact Sites. PLoS One 2015; 10:e0125671. [PMID: 25915399 PMCID: PMC4411163 DOI: 10.1371/journal.pone.0125671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/24/2015] [Indexed: 11/29/2022] Open
Abstract
Productive developmental cycle of the obligate intracellular bacterial pathogen Chlamydia trachomatis depends on the interaction of the replicative vacuole, named the inclusion, with cellular organelles. We have recently reported the formation of ER-Inclusion membrane contact sites (MCSs), where the endoplasmic reticulum (ER) is in apposition to the inclusion membrane. These platforms contain the C. trachomatis inclusion membrane protein IncD, the mammalian ceramide transfer protein CERT and the ER resident proteins VAPA/B and were proposed to play a role in the non-vesicular trafficking of lipids to the inclusion. Here, we identify STIM1 as a novel component of ER-Inclusion MCSs. STIM1, an ER calcium (Ca2+) sensor that relocate to ER-Plasma Membrane (PM) MCSs upon Ca2+ store depletion, associated with C. trachomatis inclusion. STIM1, but not the general ER markers Rtn3C and Sec61ß, was enriched at the inclusion membrane. Ultra-structural studies demonstrated that STIM1 localized to ER-Inclusion MCSs. Time-course experiments showed that STIM1, CERT and VAPB co-localized throughout the developmental cycle. By contrast, Orai1, the PM Ca2+ channel that interacts with STIM1 at ER-PM MCSs, did not associate with C. trachomatis inclusion. Upon ER Ca2+ store depletion, a pool of STIM1 relocated to ER-PM MCSs, while the existing ER-Inclusion MCSs remained enriched in STIM1. Finally, we have identified the CAD domain, which mediates STIM1-Orai1 interaction, as the minimal domain required for STIM1 enrichment at ER-Inclusion MCSs. Altogether this study identifies STIM1 as a novel component of ER-C. trachomatis inclusion MCSs. We discuss the potential role(s) of STIM1 during the infection process.
Collapse
|
17
|
Jacquier N, Viollier PH, Greub G. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol Rev 2015; 39:262-75. [PMID: 25670734 DOI: 10.1093/femsre/fuv001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chlamydiales are obligate intracellular bacteria including some important pathogens causing trachoma, genital tract infections and pneumonia, among others. They share an atypical division mechanism, which is independent of an FtsZ homologue. However, they divide by binary fission, in a process inhibited by penicillin derivatives, causing the formation of an aberrant form of the bacteria, which is able to survive in the presence of the antibiotic. The paradox of penicillin sensitivity of chlamydial cells in the absence of detectable peptidoglycan (PG) was dubbed the chlamydial anomaly, since no PG modified by enzymes (Pbps) that are the usual target of penicillin could be detected in Chlamydiales. We review here the recent advances in this field with the first direct and indirect evidences of PG-like material in both Chlamydiaceae and Chlamydia-related bacteria. Moreover, PG biosynthesis is required for proper localization of the newly described septal proteins RodZ and NlpD. Taken together, these new results set the stage for a better understanding of the role of PG and septal proteins in the division mechanism of Chlamydiales and illuminate the long-standing chlamydial anomaly. Moreover, understanding the chlamydial division mechanism is critical for the development of new antibiotics for the treatment of chlamydial chronic infections.
Collapse
Affiliation(s)
- Nicolas Jacquier
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), Faculty of Medicine / CMU, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
18
|
Kebbi-Beghdadi C, Greub G. Importance of amoebae as a tool to isolate amoeba-resisting microorganisms and for their ecology and evolution: the Chlamydia paradigm. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:309-24. [PMID: 24992529 DOI: 10.1111/1758-2229.12155] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/14/2014] [Accepted: 02/16/2014] [Indexed: 05/23/2023]
Abstract
Free-living amoebae are distributed worldwide and are frequently in contact with humans and animals. As cysts, they can survive in very harsh conditions and resist biocides and most disinfection procedures. Several microorganisms, called amoeba-resisting microorganisms (ARMs), have evolved to survive and multiply within these protozoa. Among them are many important pathogens, such as Legionella and Mycobacteria, and also several newly discovered Chlamydia-related bacteria, such as Parachlamydia acanthamoebae, Estrella lausannensis, Simkania negevensis or Waddlia chondrophila whose pathogenic role towards human or animal is strongly suspected. Amoebae represent an evolutionary crib for their resistant microorganisms since they can exchange genetic material with other ARMs and develop virulence traits that will be further used to infect other professional phagocytes. Moreover, amoebae constitute an ideal tool to isolate strict intracellular microorganisms from complex microbiota, since they will feed on other fast-growing bacteria, such as coliforms potentially present in the investigated samples. The paradigm that ARMs are likely resistant to macrophages, another phagocytic cell, and that they are likely virulent towards humans and animals is only partially true. Indeed, we provide examples of the Chlamydiales order that challenge this assumption and suggest that the ability to multiply in protozoa does not strictly correlate with pathogenicity and that we should rather use the ability to replicate in multiple and diverse eukaryotic cells as an indirect marker of virulence towards mammals. Thus, cell-culture-based microbial culturomics should be used in the future to try to discover new pathogenic bacterial species.
Collapse
Affiliation(s)
- Carole Kebbi-Beghdadi
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
19
|
Ojcius DM. Another year of microbial pathogens and the host immune response. Microbes Infect 2014; 16:1. [PMID: 24434009 DOI: 10.1016/j.micinf.2013.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Affiliation(s)
- David M Ojcius
- Health Sciences Research Institute, University of California, Merced, USA.
| |
Collapse
|
20
|
Greub G. Pathogenesis and cell corruption by intracellular bacteria. Microbes Infect 2013; 15:969-70. [DOI: 10.1016/j.micinf.2013.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 12/19/2022]
|